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Abstract: Three-dimensional point cloud registration (PCReg) has a wide range of applications in
computer vision, 3D reconstruction and medical fields. Although numerous advances have been
achieved in the field of point cloud registration in recent years, large-scale rigid transformation is a
problem that most algorithms still cannot effectively handle. To solve this problem, we propose a
point cloud registration method based on learning and transform-invariant features (TIF-Reg). Our
algorithm includes four modules, which are the transform-invariant feature extraction module, deep
feature embedding module, corresponding point generation module and decoupled singular value
decomposition (SVD) module. In the transform-invariant feature extraction module, we design TIF in
SE(3) (which means the 3D rigid transformation space) which contains a triangular feature and local
density feature for points. It fully exploits the transformation invariance of point clouds, making
the algorithm highly robust to rigid transformation. The deep feature embedding module embeds
TIF into a high-dimension space using a deep neural network, further improving the expression
ability of features. The corresponding point cloud is generated using an attention mechanism in the
corresponding point generation module, and the final transformation for registration is calculated in
the decoupled SVD module. In an experiment, we first train and evaluate the TIF-Reg method on the
ModelNet40 dataset. The results show that our method keeps the root mean squared error (RMSE) of
rotation within 0.5◦ and the RMSE of translation error close to 0 m, even when the rotation is up to
[−180◦, 180◦] or the translation is up to [−20 m, 20 m]. We also test the generalization of our method
on the TUM3D dataset using the model trained on Modelnet40. The results show that our method’s
errors are close to the experimental results on Modelnet40, which verifies the good generalization
ability of our method. All experiments prove that the proposed method is superior to state-of-the-art
PCReg algorithms in terms of accuracy and complexity.

Keywords: transform-invariant feature; point cloud; registration

1. Introduction

Point cloud registration (PCReg) refers to the problem of finding the rigid transfor-
mation that maximizes the overlap between similar sections of two or more point clouds.
As a fundamental technique in 3D data processing, it is employed in many fields including
computer vision, robotics, medical image analysis and computer-assisted surgery.

Researchers in the past have proposed methods [1–5] to address the PCReg problem.
However, many of them are prone to converging to local optima. With the advent of
deep neural networks (DNNs), it has been shown [6–8] that PCReg methods using DNNs
can achieve higher accuracy and robustness to inaccurate transformation when compared
to traditional methods. The learning-based PCReg method processes unordered point
clouds and extracts features through a deep learning network [9–11]; then, the similarity
of these features is used to calculate the transformation. However, most of these methods
cannot cope with large transformations [7,12]; specifically, they achieve high accuracy
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only when the rotation and translation are limited to [−45◦, 45◦] and [−0.5 m, 0.5 m],
respectively. Most researchers directly use the 3D coordinates of points as inputs for feature
extraction. However, the values of 3D coordinates are susceptible to rigid transformation;
the same point will have different features after transformation. Since they are not robust
to transformation and therefore cannot act as stable inputs for DNNs, DNNs cannot learn
the features with transformation invariance [13,14].

In this work, we propose a novel PCReg method with rigid transform-invariant fea-
tures, named TIF-Reg, to overcome the limitations of existing learning-based methods,
enabling accurate PCReg with large rigid transformations by constructing transform-
invariant features. Figure 1 shows the registration result of TIF-Reg. It includes four
modules, which are the transform-invariant feature extraction module, deep feature em-
bedding module, corresponding point generation module and decoupled SVD module.
The transform-invariant feature extraction module constructs the transform-invariant fea-
tures (TIF) based on the spatial structure of the point cloud. The deep feature embedding
module embeds TIF into a high-dimensional space, leveraging mini-DGCNN to improve
the expressivity of the features. The corresponding point generation module generates the
corresponding points of input clouds through an attention-based module. The decoupled
SVD module calculates the transformation using an SVD module. We test our method on
ModelNet40 and TUM3D under various settings and compare them with traditional and
learning-based methods to demonstrate the superior performance of the proposed method
in terms of accuracy and complexity.

The key contributions of this work are summarized as follows:

1. We propose the leveraging of transform-invariant features in the PCReg problem and
evaluate the expressivity of the features;

2. We propose a novel PCReg method that is robust to the large rigid transformation
between source clouds and target clouds;

3. We evaluate the performance of our method under several settings, demonstrating
the effectiveness of the proposed method.

(a) (b)

Figure 1. Point cloud registration with TIF-Reg. (a) The input point clouds. (b) The registered point
clouds. The relative rotation of [x, y, z] is [77.4◦, −129.5◦, 17.5◦] and the relative translation of [x, y, z]
is [2.9 m, −1.0 m, −2.5 m].

2. Related Work
2.1. Hand-Crafted Features

In PCReg problems, 3D coordinates are commonly used to find corresponding points [3].
This is simple and effective, but these discrete points cannot holistically describe the char-
acteristics of the point cloud and result in an inaccuracy in registration. In order to improve
the effectiveness of the algorithm, researchers have attempted to extract features with a
stronger representation ability. FPH [15] and FPFH [16] described the curvature of sam-
pling points using a multi-dimensional histogram and then obtained the geometric features
of the K-neighborhood of sampling points. VFH [17] extended FPFH with a viewpoint
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component to maintain the pose discrimination of features. CVFH [18] calculated VFH
features in several point clusters to reduce the loss of key points. LOAM [19] constructed
edge points and plane points by curvature and achieved good results in the continuous
frame registration during SLAM. To summarize, the linear and planar features of point
clouds are considered to improve registration accuracy.

2.2. Traditional Registration Methods

Many variations of ICP such as [20,21] have been proposed in the past several years;
however, ICP and most of its variants can only produce local optimal estimates. In [22], the
authors developed Go-ICP, a branch and bound-based optimization approach to obtain the
globally optimal pose. In [23], the authors described the point cloud and surface normal
densities by utilizing Bayesian nonparametrics to improve the robustness of registration.
In [2,24], the authors attempted to identify global optima through mixed-integer program-
ming and Riemannian optimization. The above methods generally are time-expensive and
impractical for real-time systems. Ransac [25] randomly and repeatedly sampled the point
cloud, calculated the rigid transformation based on FPFH and selected the optimal value.
NDT [1] divided the point cloud into a certain number of grids, calculated the probability
density function (PDF) of each grid according to the normal distribution and obtained the
global registration result of the point cloud by matching the PDF. Recently, Refs. [26,27]
formulated the point cloud registration problem in a probabilistic manner by modeling
the underlying structure of the scene as a latent probability distribution and using the EM
(Expectation Maximization) algorithm, respectively.

2.3. Deep Features Extraction Methods

Due to the fact that point clouds have no inherent order, general image feature extrac-
tion methods are not suitable for point clouds. In [28,29], the authors tried to solve this
problem by voxelizing the point cloud, but this approach results in a loss of information.
PointNet [11] first proposed a DNN to directly consume the original point cloud using a
symmetric function. PointNet++ [9] optimized PointNet for local feature extraction and
extracted different features for each point through feature interpolation. In [30], the authors
used a kd-tree structure to form the computational graph and designed a kd-network with
smaller memory footprints and more efficient computations compared to uniform voxel
grids. In [31], the authors improved PointNet by enlarging the receptive field over the
3D scene. In [32], the authors designed a novel octree data structure to efficiently store
the octant information and CNN features into the graphics memory. In [10], the authors
proposed a graph neural network (GNN), establishing a neighborhood for each point and
constructing a dynamic edge through the 3D coordinates of each point and finally restoring
the graph structure.

2.4. Registration Based on Learning

After PointNet was proposed, the DNNs’ ability to extract features from point clouds
was discovered, and thus many learning-based PCReg algorithms emerged. PointNetLK [6]
drew on the Lucas–Kanade (LK) algorithm and Inverse Compositional (IC) formulation
in 2D images and tracked the rotation and translation of the entire point cloud through
iterative optimization. DCP [7] highlighted the limitations of PointNet and used DGCNN
as an alternative. In addition, theat work referred to [33] in the NLP field, converted
the point cloud registration problem into a seq2seq problem and finally used SVD to
obtain the rotation and translation matrix. In [34], the authors realized partial-to-partial
registration iteratively using an actor–critic closest point module. In [12,35], the authors
achieved PCReg in autonomous driving scenarios by keypoint detection and corresponding
point generation. In [36], the authors directly predicted a rigid transformation attached
to each correspondence by operating on the pool of pose predictions. Generally, these
methods utilize deep features learned by DNNs instead of hand-crafted features to achieve
higher accuracy.
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3. TIF-Reg Algorithm

The architecture of the proposed TIF-Reg is shown in Figure 2. The input includes
the source point cloud X (blue points) and the target point cloud Y (red points). First, we
extract TIF from the input and map TIF into high-dimensional space via DNN. Then, we
generate the corresponding points using an attention mechanism. Lastly, we calculate the
transformation using a decoupled SVD.

Figure 2. The architecture of the TIF-Reg.

3.1. Transform-Invariant Feature Extraction

TIF are point cloud features that are invariant under rigid transformations of the point
cloud, including rotations and translations.

As shown in Figure 3, consider the point cloud with N points: X = {x1, x2, . . . , xN}.
For each xi ∈ X(i = 1, 2, . . . , N), we construct the neighborhood set of xi denoted U(xi)
through the k-nearest neighbors algorithm (K-NN). Hence, there are N neighborhoods in
X, and each neighborhood contains K points. Each point in X is described as xib ∈ U(xi)
(b = 1, 2, . . . , k), and we define the TIF of xib as

Lxib = [l1, l2, l3, l4]

and 
l1 = ||xib − x̄||,
l2 = ||xib − xi||,
l3 = ||xi − x̄||,
l4 = ||xik − xi||.

(1)

where x̄ is the center of X and xik is the last point in U(xi). l1, l2, l3 form a triangular
structure, which we call a triangular feature. l4 describes the density of the k-NN to some
degree and is called the local density feature. The triangular feature and local density
feature represent the relative position characteristics between the points and the local
distribution characteristics of the point cloud. Unlike 3D coordinates, the TIF can remain
stable when point clouds are transformed. Therefore, they are more suitable for PCReg
problems than 3D coordinates. In Figure 2, the input is an N × 3 tensor, representing the
3D coordinates of the point cloud. After TIF extraction, the point cloud is represented as an
N × K× 4 tensor, where K refers to the points from k-NN.
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Figure 3. TIF. The points in blue are the points in U(xi). The TIF of (xib) is represented by Euclidean
distances l1, l2, l3 and l4.

3.1.1. Triangular Feature

Since point clouds are sets of points without any specific order, an input cloud with
N points can have N! permutations, making it difficult to obtain the position of a specific
point [11]. However, the relative distance between points is invariant. To ensure the
invariance of TIF to rigid transformation, we attempt to seek out two points with fixed
relative positions (we regard them as indexable points) and define the Euclidean distance
of indexable points as the descriptor of a point.

Firstly, it is easy to see that the shape distribution of X will not change after rigid
transformation, meaning the relative position of the center x̄ in a point cloud will remain
the same after transformation. Note that we are focused on relative positions and not
coordinates. Moreover, since the relative distance of points will not be affected by trans-
formations, for each xi ∈ X, the k-NN U(xi) will be constant during transformations as
well. That is, for each xij ∈ U(xi), its neighborhood set center xi will remain stable during
transformation. According to the above analyses, we offer each xij ∈ U(xi) two indexable
points: x̄ and xi. Connecting the three points together, we can obtain the triangular feature
of xij, represented as the side length of the triangle l1, l2, l3, as shown in (1).

l3 may seem to offer nothing in terms of improving the representation ability of a
triangular feature; however, it can be proved that the full triangular feature can be more
effective than when only considering l1 and l2. For example, considering xj ∈ X from
Figure 4, U(xj) is the k-NN of xj, and xja ∈ U(xi) (a = 1, 2, . . . , k). If we only consider l1
and l2, then we can obtain the feature of xja, by calculating l1 = ||xja − x̄||, l

′
2 = ||xja − xj||.

Note how the features of xib and xja for xi and xj, respectively, are the same when l2 = l
′
2,

leading to the weak uniqueness of the features. What makes the situation worse is that
innumerable points with the same feature can be found on the sphere with xib as center
and l3 as radius. Therefore, l3 is necessary to describe the global characteristics of point
clouds and is helpful to distinguish different k-NN neighborhoods.

Figure 4. TIF analysis. l3, l4 are necessary for improving the uniqueness of TIF.
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3.1.2. Local Density Feature

Although we have built triangular features for each point, this is still insufficient for
effective uniqueness in a 3D point cloud. For example, in Figure 4, if we rotate the point xij
with l3 as the axis, we can obtain the circle �O, and each point on �O (such as xin) has the
same triangular feature as xij.

To overcome this issue, we take inspiration from NDT [1]. The distribution of a
point cloud will not be affected by the reordering of the points in the point cloud and
remains unchanged during rigid transformation. NDT places the point cloud on a grid and
calculates the probability distribution function of a point that is observed in a particular
unit of the grid and then performs registration using the likelihood function of the point
cloud distribution. Similarly, in this work, we directly construct the local density feature of
the point cloud with the k-NN as the unit. In order to avoid one of the features from being
concealed due to the magnitude difference between the triangular feature and the local
density feature, we must instead express the local density feature in terms of Euclidean
distance. Since the number of points in U(xi) is fixed, the radius of U(xi) is one indicator
of the density of the local point cloud. Generally, the sparser the point cloud, the larger
the radius, and the denser the point cloud, the smaller the radius. Therefore, the radius of
U(xi), which can be used effectively with the triangular feature, is used in this paper to
describe the local density feature of xi.

3.2. Deep Feature Embedding

In Section 3.1, the original 3D points have been transformed to 4D TIF features. In this
section, we embed the TIF features via a deep neural network into high-dimensional space
to strengthen the representation ability of feature descriptors. Mini-DGCNN, a simplified
version of DGCNN, is used here. It uses a dynamic graph structure: it constructs a local
k-NN graph for each xi ∈ X and pools the features of the points in U(xi) together using a
max pooling layer.

In this work, the mini-DGCNN only utilizes a static graph in DGCNN, which helps to
reduce the network complexity and yet still achieve the same performance of registration.
As shown in Figure 2, the Deep Feature Embedding (DFE) layer transforms the N × K× 4
feature to an N × 320 tensor.

3.3. Corresponding Point Cloud Generation

A prominent part of the typical point cloud registration process is the construction of
a matching between the points in the original and target point clouds. The ICP algorithm
iteratively updates the transformation by minimizing the distance between corresponding
points to gradually optimize their alignments. However, this method is prone to stalling
in local optima and can lead to poor registration results. Inspired by the attention mecha-
nism in [7,33], we propose a destination point cloud generation method based on point
cloud similarity rather using a point-to-point mapping between the source and target
point clouds.

The attention mechanism is derived from the study of human vision and is widely used
in the natural language processing (NLP) field to handle sequence-to-sequence (seq2seq)
problems, such as machine translation and question answering. During observations,
in order to efficiently distribute limited attention resources, humans tend to selectively
focus on the more important data or regions of the subject and ignore the less useful
noise. Similarly, in seq2seq problems, researchers use the attention mechanism to select
information that is critical to the task at hand from a large amount of input information. In
this paper, we regard the PCReg as a seq2seq problem, with point clouds X and Y as the
source and target sequence, respectively. The purpose is to generate an output destination
point cloud Z that is as similar as possible to Y with a mapping to correspond each point
in X to each point in Z. With this goal in mind, we apply the attention mechanism to
generate Z.
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The attention weight W is obtained using the similarity between features in X and Y:

W = softmax(FX FY
T) (2)

where FX and FY are the deep features obtained in Section 3.2 from X and Y, respectively.
Then, Z, the corresponding point cloud of X, can be generated from W and Y:

Z = WY (3)

For each xi ∈ X(i = 1, 2, . . . , N), we generate its corresponding point zi ∈ Z
(i = 1, 2, . . . , N) using the similarity between features in X and Y. This approach avoids
constructing a direct matching of points between X and Y since the rigid transformation
is obtained with respect to X and Z instead of X and Y. Since Z has a one-to-one point
correspondence with X, we can achieve the results in one shot, avoiding local optima
during the iteration.

3.4. Decoupled SVD

After obtaining the optimal destination point cloud, the final step is to calculate the
relative transformation between it and the original. Multilayer perceptrons (MLP) and
singular value decomposition (SVD) are commonly used to compute these results, and in
this work, we apply the latter as it was proven to be more effective for registration than
MLP in recent work [7]. More concretely, we aim to find the transformation [RXY, tXY]
between X and Y that minimizes the error E:

E(RXY, tXY) =
1
N

N

∑
i=1
||RXYxi + tXY − zi|| (4)

Here, zi ∈ Z, where Z is calculated in the last section to replace Y in a one-to-one
mapping. The cross-covariance matrix H of X and Z is

H =
N

∑
i=1

xcen
i (zcen

i )T (5)

Here, xcen
i = xi − x̄ and zcen

i = zi − z̄. x̄ and z̄ are the center of X and Z respectively. De-
fine the centralized X and Z as Xcen and Zcen, then xcen

i ∈ Xcen (i = 1, 2, . . . , N) and zcen
i ∈ Zcen

(i = 1, 2, . . . , N). Using SVD, the cross-covariance matrix H can be decomposed as

H = USVT (6)

We can use R and t to minimize (4) based on (6):{
RXY = VUT ,
tXY = −RXY x̄ + z̄.

(7)

From the experimental results (see table in Section 4.2), we find that when using the
original SVD, the proposed method maintains high accuracy when the rotation is within the
range [−180◦, 180◦] and the translation is within the range [−20 m, 20 m]. However, this
will gradually decrease with larger translations. In order to solve this issue, in this section,
we decouple the calculation of translation and rotation by introducing a two-step method.
The proposed method with original SVD will be dubbed TIF-Reg, and the proposed method
with decoupled SVD will be dubbed TIF-Reg2. We discuss the details of TIF-Reg2 below.

Step 1: Calculate rotation

In step 1, instead of X and Y, we use Xcen and Ycen as the inputs of the proposed
method’s attention mechanism to generate Zcen. According to (4), the rotation between X
and Y can be calculated by using only Xcen and Zcen. That is, the rotation has no relation to
the translation.
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Xcen will coincide completely with Ycen only when X has the same distribution as Y;
otherwise, there will be a translation tl between them. The greater the difference between
the distributions, the greater the translation. Generally, tl is much smaller than tXY, thus
avoiding the previously mentioned effect of large translations on overall accuracy. In step
1, RXY and tl are calculated.

tl = −RXY x̄cen + z̄cen (8)

Here, z̄cen is the center of Zcen.

Step 2: Calculate translation

We first note that tXY, the relative translation between X and Y, can be decomposed
as follows, where tl is as defined in step 1, and tg is the remainder of the final translation.

tXY = tl + tg (9)

To calculate tg, we first transform X to X′ using the values obtained in step 1:

X′ = RXYX̄ + tl (10)

We denote the center of X′ as x̄′ and obtain tg = ȳ− x̄′, completing our calculations
for the translation, tXY, between X and Y.

In this section, we decompose tXY to tl and tg by centralizing the point cloud. tl
and RXY are calculated in step 1, and tg is calculated in step 2. This approach decouples
rotation and translation and therefore increases the robustness of the proposed method to
large translation.

3.5. Loss Function

Considering the relationship between X and Y, we have

Y = RXYXl + tXY (11)

Due to the lack of order of the point cloud, the difference between Ygt and Ypre cannot
be calculated directly, where gt represents the ground truth value (referring to the actual
target point cloud) and pre represents the predicted value (referring to the destination
point cloud obtained by the algorithm). Instead, we represent the difference using the
loss function:

Loss = ||Rpre
XY

T
Rgt

XY − I||2 + ||tpre
XY − tgt

XY||
2 (12)

4. Experiments

The proposed method TIF-Reg was evaluated against ModelNet40 [29] and TUM 3D
object (TUM3D) [37] datasets. All experiments were performed on a laptop computer with
an Intel I7-8750 CPU, an Nvidia GTX 1060 GPU and with 24 GB RAM.

Implementation Details of TIF-Reg: The architecture of the TIF-Reg is shown in
Figure 2. In the deep feature embedding module, the EdgeConv (denoted as DGCNN [10])
layers were used in mini-DGCNN and the numbers of filters in each layer were 64, 64, 64,
128 and 320. The optimizer applied here was Adam with an initial learning rate of 0.0001,
which was divided by 10 at epochs 40 and 60. The total training epochs were 80 and the
training took approximately 4 h in our condition.

Baselines: We used five baselines including the traditional methods ICP [3] , GO-
ICP [22] and Ransac+ICP, and learning-based methods PointnetLK [6] and DCP-v2 [7]
(referred to as DCP [7]).

Evaluation metrics: We measured the root mean squared error (RMSE) and mean
absolute error (MAE) between the ground truth value and predicted value for both rotation
(R) and translation (t), which are represented as RMSE(R), RMSE(t), AME(R) and AME(t),
respectively. The metrics related to rotation are in units of degrees. The metrics related to
translation are in units of meters.
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ModelNet40 dataset: This dataset consists of 12,311 CAD models from 40 categories.
We randomly sampled 2048 points from the mesh faces and rescaled points into a unit
sphere. In our experiments, we split up each category randomly, obtaining 9843 models for
training and 2468 models for testing. For each model, 1024 points from the outer surface
were uniformly sampled, and all of the points were centered and rescaled to fit in the
unit sphere.

TUM3D: This dataset includes 20 CAD models from 20 different categories of 3D point
cloud models and is significantly different from the ModelNet40. We used all of the 3D
models for testing. For each model, 4096 points were uniformly sampled from the original
CAD and all of the points were rescaled to fit in the unit sphere.

4.1. Train and Test on ModelNet40

Firstly, we trained the learning-based methods on the first 20 categories and tested all
of the PCReg methods on the same 20 categories as well. We took the sampled point cloud
from CAD as target Y. X was obtained through an arbitrary transformation of Y. where the
rotation was in the range [−45◦, 45◦] and the translation was in the range [−0.5 m, 0.5 m].

Table 1 shows the results of this experiment. We can see that ICP had the largest errors
(the RMSE and MAE) both in rotation and translation, while the traditional algorithm
Go-ICP achieved similar results to the PointNetLK algorithm based on the deep neural
network. Ransac+ICP achieved the middle performance for all methods but performed
best out of the traditional methods. Both DCP and TIF-Reg had lower errors, but TIF-Reg
performed the best and outperformed other methods by roughly an order of magnitude.

Table 1. Training and testing on same categories with ModelNet40.

Model RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP 24.671776 19.745914 0.272832 0.232474
GO-ICP 12.540327 2.662239 0.022866 0.007269

Ransac+ICP 5.796506 0.571111 0.002664 0.000620
PointNetLK 15.00359 4.623225 0.0294655 0.007932

DCP 1.110271 0.750817 0.001732 0.001193
TIF-Reg (ours) 0.032146 0.018655 0.000161 0.000086

We tested the generalizability of the different methods using different categories for
training and testing. Learning-based methods were trained on the first 20 categories and
tested on the last 20 categories. Traditional methods, which do not require the training of
the model, were also tested on the last 20 categories.

As shown in Table 2, ICP still had the largest error while GO-ICP and Ransac+ICP had
similar errors, but Ransac+ICP achieved a much better result than the previous experiment.
TIF-Reg still exhibited the best performance among all the methods. In this experiment,
almost all methods’ accuracies declined to varying degrees, except Ransac+ICP and TIF-
REg. This shows that the methods DCP and PointNetLK based on deep learning achieved
a slightly poor generalization of data in different categories, but our method was basically
unaffected by different data categories.

Table 2. Test on different categories in ModelNet40.

Model RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP 25.776054 21.047745 0.275492 0.235166
GO-ICP 15.169330 3.020630 0.024685 0.006873

Ransac+ICP 2.092478 0.079216 0.002046 0.000086
PointNetLK 17.138983 5.858677 0.034564 0.010009

DCP 3.516694 2.452658 0.019696 0.015069
TIF-Reg (ours) 0.026178 0.016377 0.000152 0.000089
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4.2. Robustness to Transformation (Rotation and Translation)

This experiment tested the robustness of TIF-Reg to transformation, which is essential
for evaluating the effectiveness of the PCReg method. This experiment was divided into
two steps: first, we kept the translation within [−0.5 m, 0.5 m] while gradually expanding
the rotation from [−45◦, 45◦] to [−180◦, 180◦] to test the robustness to rotation. Then, we
kept the rotation within [−180◦, 180◦] while gradually expanding the translation from
[−2 m, 2 m] to [−20 m, 20 m] to test the robustness to translation. In this section, learning-
based methods were trained on the first 20 categories and tested on the last 20 categories.

Table 3 shows the rotation robustness of all methods (see Table 2 for rotation within
[−45◦, 45◦]. Table 4 shows the translation robustness. According to Tables 3 and 4, ICP,
GO-ICP and PointNetLK almost failed under larger rotation and translation. DCP was
no longer valid under lager translation.The performance of Ransac+ICP was much better
than the above methods, but compared with the first two experiments, the error was still
large under larger rotation and translation. Of all methods, TIF-Reg demonstrated the
highest robustness to transformation throughout the experiment. As the angle of rotation
increased, the accuracy of TIF-Reg decreased slightly, but it had the lowest error and was
the most stable.

Table 3. Testing rotation robustness with translation within [−0.5 m, 0.5 m].

[−90◦, 90◦] [−180◦, 180◦]
Method RMSE(R) RMSE(t) RMSE(R) RMSE(t)

ICP 50.779556 0.279689 103.976852 0.278700
GO-ICP 55.838398 0.051618 98.706337 0.071191

Ransac+ICP 8.590699 0.008878 11.678988 0.005560
PointNetLK 34.286675 0.043960 84.266951 0.066225

DCP 14.976441 0.023615 50.218693 0.028399
TIF-Reg (ours) 0.052140 0.000152 0.048890 0.000152

Table 4. Testing translation robustness with rotation within [−180◦, 180◦].

[−2 m, 2 m] [−8 m, 8 m] [−16 m, 16 m] [−20 m, 20 m]
Method RMSE(R) RMSE(t) RMSE(R) RMSE(t) RMSE(R) RMSE(t) RMSE(R) RMSE(t)

ICP 103.257759 1.151752 103.534096 4.614248 103.485107 9.228573 103.257805 11.535716
GO-ICP 99.908691 0.091628 107.544991 0.058547 105.837303 0.048313 105.370491 0.064317

Ransac+ICP 13.933655 0.007383 15.290869 0.125023 12.971705 0.011452 14.138081 0.009134
PointNetLK 90.978516 0.127608 93.810654 0.16224849 94.534180 0.150836 93.385742 0.170027

DCP 52.990562 0.053355 65.167519 0.022785 65.984886 0.012464 65.332367 0.010580
TIF-Reg (ours) 0.055016 0.000148 0.152886 0.000153 0.323746 0.000154 0.431104 0.000154

4.3. Effectiveness of TIF

In this experiment, in order to verify the effectiveness of TIF, we compared the per-
formance of the proposed method when using 3D coordinates, an incomplete TIF (only
three of l1, l2, l3, l4 are selected) and the complete TIF. The training set and test set used here
were the same as Section 4.2, and the random transformation was within [−180◦, 180◦] and
[−8 m, 8 m].

As shown in Table 5, the algorithm failed when using 3D coordinates. It performed
well when using an incomplete TIF; however, the best results occurred when using the
complete TIF. This demonstrates the effectiveness of not only TIF in the PCReg problem
but also of each individual element in TIF in improving its representation ability.
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Table 5. Test results on the effectiveness of TIF.

Model RMSE(R) MAE(R) RMSE(t) MAE(t)

Coordinates 24.671776 19.745914 0.272832 0.232474
l2l3l4 12.540327 2.662239 0.022866 0.007269
l1l3l4 5.796506 0.571111 0.002664 0.000620
l1l2l4 15.00359 4.623225 0.0294655 0.007932
l1l2l3 1.110271 0.750817 0.001732 0.001193

l1l2l3l4 0.032146 0.018655 0.000161 0.000086

4.4. Robustness to Large Translation

We had already tested the translation robustness of the proposed method in Section 4.2,
but in this experiment, we tested the proposed method’s performance with regard to even
larger translations. The dataset used here was the same as Section 4.2, the rotation was
within [−180◦, 180◦], and the translation was expanded from [−20 m, 20 m] to [−120 m,
120 m].

Figure 5 displays the error of TIF-Reg and TIF-Reg2 with large translations. According
to Figure 5a,c, as the translation increased, the rotation error of TIF-Reg increased signif-
icantly, while TIF-Reg2 maintained high precision. Figure 5b,d demonstrates that both
TIF-Reg and TIF-Reg2 hardly increased in terms of translation error and maintained an
error of less than 0.01. The error of TIF-Reg was slightly lower than that of TIF-Reg2. This
shows that the performance of the decoupled SVD module is superior to that of using
SVD directly.

(a) (b)

(c) (d)

Figure 5. The results of TIF-Reg and TIF-Reg2 in response to large translations. (a) The results for the RMSE of rotation.
(b) The results for the RMSE of translation. (c) The results for the MAE of rotation. (d) The results for the MAE of translation.
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4.5. Generalization on New Test Set

In this experiment, in order to further test the generalization of the proposed method,
we used the new dataset TUM3D. We randomly performed 36 transformations on each of
the 20 sampled CAD models to produce 720 source point clouds for the test set. The settings
here were the same as Section 4.2 except for the test set.

The experiment result was showed in Table 6. Here, there are two arguments R and
t and Table 6 only shows t. The first line of Table 6 shows R in the range of [−45◦, 45◦],
the second line shows R in the range of [−90◦, 90◦], and the other lines shows R R in the
range of [−180◦, 180◦]. The table shows that the TIF-Reg model trained on ModelNet40
was still able to maintain a high accuracy on the TUM3D dataset and had strong robustness
to transformation as well.

Table 6. Test results on TUM3D.

Model RMSE(R) MAE(R) RMSE(t) MAE(t)

[−0.5 m, 0.5 m] 0.091567 0.055786 0.000469 0.000301
[−0.5 m, 0.5 m] 0.141789 0.077974 0.000469 0.000298
[−0.5 m, 0.5 m] 0.161362 0.082230 0.000469 0.000301
[−2 m, 2 m] 0.161990 0.082795 0.000470 0.000301
[−8 m, 8 m] 0.172049 0.092861 0.000470 0.000304
[−16 m, 16 m] 0.232689 0.116418 0.000474 0.000308
[−20 m, 20 m] 0.437807 0.232852 0.001016 0.000567

4.6. Complexity

This experiment was used to compare the complexity of the algorithm, including time
complexity and model complexity. The complexity of the algorithm involves many factors,
such as computation, real-time performance and hardware costs.

4.6.1. Time Complexity

We profiled the inference time of different methods in this experiment. In order to
make the comparison more comprehensive, we tested the time complexity with point
clouds of different sizes. The inference time was measured in seconds. Note that Go-ICP
was ignored in the experiment as it took over 16 s, far exceeding other methods.

As shown in Table 7, the time complexity of Ransac+ICP was the highest, and it was
less affected by the number of points than other methods. The time complexity of two
deep learning-based methods, PointNetLK and DCP, was most affected by the number
of point clouds. As the number of point clouds increased, so did their time complexity.
TIF-Reg showed the best real-time performance among learning-based methods and was
equivalent to ICP, which was the best of the baselines (the blue line of TIF-Reg covers the
black line of ICP, and the “O” markings of ICP cover the “X” markings of TIF-Reg).

Table 7. Time complexity.

Number of Points
Method ICP Ransac+ICP PointNetLK DCP TIF-Reg (Ours)

512 0.00289 0.00709 0.01903 0.04866 0.00288
1024 0.01549 0.03583 0.08846 0.27933 0.01553
2048 0.08757 0.14639 0.40375 0.84061 0.08754
4096 0.89991 0.84154 1.17099 1.16391 0.89993

4.6.2. Model Complexity

Since the traditional methods (ICP, Ransac+ICP, Go-ICP) do not have models, only
learning-based methods (PointnetLK,DCP,TIF-Reg) were compared in the experiment.
As shown in Table 8, the TIF-Reg model occupied the least space.This shows that the
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calculation process involved in our method is the most simple compared with the other
two methods using neural networks.

Table 8. Model complexity.

Model PointNetLK DCP TIF-Reg (ours)

Model Size 621.9 KB 22.4 MB 495.9 KB

5. Discussion

In this section, we discuss the experimental results of TIF-Reg with that of other
methods we used as the baselines.

5.1. Algorithm Accuracy

ICP [3] is an algorithm that easily falls into local optimal solutions, and the key to its
success is a good initial transformation. It is obvious that ICP cannot deal with situations
with large transformations. As we can see from Tables 2–4, the errors of ICP become larger
as the transformation becomes larger. Go-ICP [22] improved ICP by introducing branch-
and-bound (BnB) to improve the global search ability of the algorithm, so it performs better
than ICP, but its performance is still limited under large transformations. Tables 3 and 4
show that when the transformation is large, Go-ICP no longer presents advantages, and its
results are basically close to the ICP results. For Ransac+ICP, we used the Ransac algorithm
for rough registration and ICP algorithm for fine registration. Therefore, Ransac can provide
an initial transformation close to the optimal solution for ICP; thus, it can achieve higher
precision. Tables 2–4 show that Ransac+ICP is the most effective method other than our
method for both small and large transformations. PointNetLK [6] uses PointNet [11] to
provide deep features of point clouds, but the network structure of PointNet is simple and
it loses local information of point clouds, so it cannot describe point clouds well. Tables 2–4
show that its errors increase as the transformation increases. In contrast, DCP [7] and
TIF-Reg use DGCNN, which can extract richer point clouds information to obtain deep
features, so their features have better performance. TIF-Reg further uses TIF rather than
the 3D coordinates of point clouds as the network’s input; thus, its model can deal with the
point cloud registration under large translations and has better performance than DCP. We
can see that the performance of TIF-reg is very little affected by large rotation or translation
in Tables 2–4, and it achieves good generalization in different datasets, as can be seen in
Table 6. We can also see that the use of the decoupled SVD module can further improve the
performance of the algorithm under large transformations in Figure 5.

5.2. Algorithm Complexity

The results of algorithm complexity can be seen in Table 7. ICP [3] is the simplest tradi-
tional iterative algorithm, and its time complexity is close to TIF-Reg. When the number of
points is 1024, ICP and TIF-Reg only use 0.01549 s and 0.01553 s, respectively. GO-ICP [22]
introduces BnB to search for the global optimal solution; based on the iterative process
of ICP, it adds the step of searching the nearest neighbor points, so its time complexity is
higher than ICP. For Ransac+ICP, in order to obtain more accurate solutions, Ransac needs
to carry out a large number of iterations, which greatly increases the time complexity of the
algorithm. It is the most time-consuming algorithm of all methods we compared expect
GO-ICP. When the number of points is 1024, the elapsed time is 0.03583 s, which is more
than twice that of TIF-Reg. For the methods based on deep learning, it is well known that
the larger the amount of input data of the neural network, the higher the operation cost
of the network. PointnetLK [6] involves the iterative process of neural networks, while
DCP [7] includes complex network structures. Both of these will necessarily increase the
time complexity of the model as the data increases. When the number of points is 1024,
they consume 0.08846 s and 0.27933 s, respectively. When the number of points is 4096,
their time consumption becomes very close and reaches 1.16 s approximately. Our method
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avoids the iterative process and does not involve a complex network structure, so it can
achieve the best real-time performance.

Based on the analysis above, TIF-Reg is an algorithm that ensures high accuracy while
having low time consumption.

6. Conclusions

We have presented TIF-Reg, a novel point cloud registration approach for adapting
transform-invariant features. By constructing transform-invariant features, the proposed
method achieves the high-precision registration of point clouds when the rotation is within
the range of [−180◦, 180◦] and the translation is within the range of [−20 m, 20 m]. More-
over, the proposed method is almost unaffected by translation due to the decoupling of
translation and rotation in SVD. Experiments have shown that TIF outperforms state-
of-the-art methods in many aspects, including accuracy, robustness and complexity. Its
considerable potential in many applications allows TIF to be easily integrated into other
networks. Finally, we believe that our work presents an important step forward for the com-
munity as it affords an effective strategy for the point cloud registration framework, as well
as presenting an innovation in deep feature extraction for all deep learning networks.
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