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Abstract: Advances in robotics are part of reducing the burden associated with manufacturing tasks
in workers. For example, the cobot could be used as a “third-arm” during the assembling task.
Thus, the necessity of designing new intuitive control modalities arises. This paper presents a foot
gesture approach centered on robot control constraints to switch between four operating modalities.
This control scheme is based on raw data acquired by an instrumented insole located at a human’s
foot. It is composed of an inertial measurement unit (IMU) and four force sensors. Firstly, a gesture
dictionary was proposed and, from data acquired, a set of 78 features was computed with a statistical
approach, and later reduced to 3 via variance analysis ANOVA. Then, the time series collected data
were converted into a 2D image and provided as an input for a 2D convolutional neural network
(CNN) for the recognition of foot gestures. Every gesture was assimilated to a predefined cobot
operating mode. The offline recognition rate appears to be highly dependent on the features to be
considered and their spatial representation in 2D image. We achieve a higher recognition rate for a
specific representation of features by sets of triangular and rectangular forms. These results were
encouraging in the use of CNN to recognize foot gestures, which then will be associated with a
command to control an industrial robot.

Keywords: human–robot collaboration; instrumented insole; foot gesture recognition; convolutional
neural network

1. Introduction

The agile demand-driven manufacturing process creates the need to design adap-
tive production using collaborative robotics labelled as cobot. As the flexibility in the
manufacturing process increases with the rapid evolution of technology, the fabrication
process increases in complexity, impeding standard robots from operating alone. Therefore,
operators are brought to work with collaborative robots (cobot) in the same workspace and
share with them production activities or working time [1]. This human–robot collaboration
is intended to contribute to flexibility and agility thanks to the combination of human’s cog-
nition and management abilities with the robot’s accuracy, speed, and repetitive work [2].
However, cobot’s acceptance in industry is still weak as it raises the thorny issues of se-
curity and communication. Safeea et al. [3] demonstrated that the greatest drawback in
the development and acceptance of cobots in industries comes from the reliability and the
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intuitiveness of the proposed interaction scheme. The current trend in research aims to
improve interaction by ensuring a smooth control of the robot in an efficient manner at any
time through improving working conditions and reducing work-related diseases such as
musculoskeletal disorders (MSD) [1].

Assessing such a problem led to third-hand application. An example of such a case
can be seen in an assembling process where the operator needs both of his/her hands
to complete the task and, thus, the cobot must be able to intervene according to the
operator’s need. It is then used to bring parts, hold components while assembling parts,
generate a virtual haptic wall to help assembling [1], add new actions with learning by
demonstration [4], etc. In such an application, upper body recognition (face recognition
and hand gesture) [3,5,6], and lower body recognition (foot-based gesture recognition [7–9])
could be used to select the operating mode and execute some remote-controlled motions.
Consequently, there will be an interference between the cobot’s motion and the camera’s
field of view A facial expression or gesture, such as moving lips, is limited in the number
of different commands and it needs a camera to always be oriented to the operator’s face,
which is another limitation of the method. Therefore, foot gesture recognition becomes an
interesting solution when using instrumented insole including force sensors and inertial
measurement unit (IMU).

This project suggests implementing cobot operating mode selection using the foot in
the scheduling of production activities to improve manufacturing flexibility. Therefore,
an operator could need, utilizing foot gestures, to communicate actions, to be executed
by the cobot, and to select different operating modes such as physical collaboration [10],
autonomous action in shared activities [11], remote control motion [12], and learning new
tasks [4]. This process allows controlling possible modalities of high-dimensionality cobot
with a low-dimensionality wearable device such as a smart armband or smart insole.

For this purpose, we suggest a novel method exploiting time series data collected
from an instrumented insole in this study. Using these data, a large set of features are
computed and then features are extracted based on a dimensionality reduction technic
to select relevant ones. Indeed, the relevant features are transformed into a 2D image
for classification processing using 2D-CNN. The main contribution of this work lies in
the evaluation of the possible spatial representations of the relevant features used in 2D
image. The suggested spatial representations allow for the improvement of foot gesture
recognition results. As the number of research works in this field is increasing, the next
section reviews the state-of-the-art to contextualize the contribution of our research work.

2. Related Work

Firstly, a non-exhaustive definition of the cobot as a third-hand is presented. Then,
examples of systems using a robot as a collaborative worker are reported. Thereafter,
the use of human gesture as command center is explained. Finally, a brief review of the
most different existing methods for gesture recognition is analyzed. In this state-of-the-art,
the previous studies on foot gestures-based pressure sensor matrices and classification
methods, such as CNN, are particularly covered.

2.1. Third-Hand Cobot

The third-hand robot is a process developed by Ewerton et al. [13] in which the robot
is considered an assistant, i.e., it acts as a third-hand of a human worker. For example, this
assistant, also named collaborative robot (or cobot), can provide the necessary tools for its
co-worker (the human) to help him/her to perform its tasks. This collaboration can save the
worker’s time and energy so that some researches have been conducted to use industrial
robots as a third-hand robot. For instance, a semi-autonomous third-hand robot was
developed in [14] to assist the human workers in the assembly of furniture. A KUKA-DLR
lightweight Robot arm [15] was used as a worker’s third-hand for welding of work pieces
in small batches. In this line of thoughts, Metalimbs [16] developed two additional robotic
arms to the user’s body, defined as a fourth hand robot, in order to enhance the user’s
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functions. Another use of cobots is found in the field of retinal microsurgery where the
robot shares a tool’s control with the surgeon [17]. Since these cobots need to communicate
with humans, the next section explains how gesture helps to achieve such communication.

2.2. Use of Human Gesture as Command Center

New intelligent, intuitive, and user-friendly command methods have emerged in the
industry and are usually based on direct or indirect contact with the robot. Direct contact
interfaces imply physical interaction strategies which include the kinesthetic interfaces or
force feedback, allowing them to feel the position, the movements and the forces exerted
by the mechanism, and the tactile interfaces which permit to feel the form, the texture,
and the temperature [4]. Indirect ones are systems based on artificial vision [18,19], voice
recognition [20], and more recently, interfaces using IMU sensors for human gestures
recognition [4]. This type of interface is starting to spread in the field of human–robot
interaction because it turns out to be more robust to environmental disturbances and
constraints such as noise, brightness, etc. [12]. In this study, Neto et al. [12] proposed
an interaction strategy based on human gestures captured through IMUs. It permits to
recover the specific movements of the upper part of the human body. They offer various
modes of interaction depending on whether the human’s posture is static or dynamic.
However, such strategies require both hands to be free to operate the robot. Moreover, the
results of a comparative study between hand and foot-based gestures in a simulation of a
scenario where the hands are busy showed that the use of foot gestures saves more than
70% of time than the traditional approach based on hand gestures. The foot gestures were
then perceived as more useful and satisfying [21]. As a result, many current systems use
foot gestures as an alternative mechanism of interaction in situations where the hands are
preoccupied or unavailable. Some applications use tapping feet and kick to interact with
a mobile device [22]. Others use foot-based interaction to produce music [23] or perform
navigational tasks in interactive 3D environments [8]. Metalimbs propose an interactive
system to control the position of two robotic arms by the movement of the user’s foot and
the grip of each arm is controlled by the toes [16]. To achieve such performances, various
artificial intelligence algorithms are investigated. As depicted in the next section, gesture
classification in the field of artificial intelligence is still an important issue.

2.3. Gesture Recognition Methods

Human gesture recognition is applied to recognize the useful information of human
motion. Statistical modeling, such as discreet Hidden Markov model (HMM), was used as
classifier to learn and recognize five gestures performed during the motor hoses assem-
bly [24]. It was also used to teach robots to reproduce gestures by looking at examples [25],
to distinguish between finger and hand gesture classes [26], and to recognize hand gestures
in order to command a robot companion [27]. However, HMMs need a large amount of
training data and therefore their system performance could be limited by the characteris-
tics of the training data [28]. Dynamic time warping (DTW) is a widely used method in
human gesture recognition applications (an algorithm used for online time series recog-
nition). It can deal with gesture signals varying in amplitude and resolve ambiguities in
the recognition result even for multiclass classification. It is known that the use of DTW
with a set of sequential data of hand gestures have good classification rates [29]. However,
it is a dynamic method that focuses most on the local motion information and has less
consideration for the global features of gesture trajectories. Contrary to the DTW, the
convolutional neural network (CNN) is a recognition method that uses static images of
gesture trajectories and, thus, omits the local motion information [30].

Each method has distinct advantages and disadvantages. In fact, both static and dy-
namic recognition methods (CNN and DTW) were used to achieve better recognition accu-
racy in digit-writing hand gestures’ localization and recognition for Smart TV systems [30].
However, CNN is more efficient than many traditional classification methods [31]. CNN
is known for its robustness at low input variations and low pre-treatment rate necessary
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for their operation [31]. Numerous applications relying on CNN in the classification of
human gestures or actions have been recorded and were based on either 1D-CNN [32,33],
2D-CNN [34–36], or 3D CNN [37].

Most applications based on camera rely either on 2D-CNN, as it computes a 2D image
as input [36], or 3D-CNN to accurately scope the information in the space. For example, 3D-
CNNs have been developed for the recognition of human actions from airport surveillance
cameras [37]. This model extracts characteristics of spatial and temporal dimensions by
performing 3D convolutions, thus capturing the motion information encoded in several
images. Furthermore, for foot-based applications, some research works rely either on 1D-
CNN or 2D-CNN when using inertial measurement unit sensors. Those relying on 1D-CNN
directly scope the time series signal (data) obtained from the sensors to achieve accurate
classification as shown in [32,33]. However, the classification performance is still low as
the difficulty to efficiently combine all the information received from the different sensors
arises [33]. Furthermore, 2D-CNN appears to be more realistic as it focuses on the analysis
based on 2D images rendering it slower than 1D-CNN but more accurate and flexible in
the analysis of features extracted from IMU [38]. However, it requires defining the set of
images received from raw motion sensors data. Many attempts have been recorded. In [34],
a 2D-based CNN method for fall detection using body sensors has been investigated by
directly scoping raw motion data in a 2D image without feature extraction and achieving
high accuracy of 92.3%. Thus, for the proposed method, there is only scope between two
possibilities (fall detection or not). In [35], a similar work has been conducted, based on the
effective representation of sEMG (Surface electromyography) signals in images by using
a sliding window to continuously address all the signals obtained from the input to a
grayscale image. However, none of these proposed works demonstrate the impact of a
spatial representation of features used to constitute a 2D image on classification results.

Thus, we formulated two hypothesizes which are (1) for foot-based interaction context,
a 2D-convolutional neural network seems to be suitable for foot gesture recognition; and
(2) the selection of the most important features and their spatial representation in the 2D
image greatly impact the recognition process.

By using an instrumented insole and applying a 2D-CNN algorithm, the main contri-
bution of the present study is to develop a new methodology for a foot gesture recognition
system to select a cobot operating mode. The instrumented insole was worn by the worker
to acquire the foot gestures’ signals. More specifically, we suggest a simple feature extrac-
tion technique using data acquired from an inertial measurement unit (IMU) and force
sensors, as well as 2D image generation to classify foot gestures. To achieve this goal, we
have evaluated our system in different scenarios of gestures, since those can be performed
easily to control a robot. The proposed classification algorithm, trained with backprop-
agation, is then optimized to recognize gestures. Our results showed a new advance in
this area, providing interesting directions for future research by highlighting the impact
of features extraction and their spatial representation in a 2D image for the recognition
process. By enhancing the existing foot recognition methods, our goal is to increase the
ease of work of the operator.

3. Materials and Methods

Since the operator’s hands were occupied during his work, this article proposes to
use foot movements to control a robot. The overview of the proposed gesture recognition
system is illustrated in Figure 1.

The system requires data information from a human’s foot to be computed and
analyzed for selecting one cobot operating mode. The material aspect is presented in
Section 3.1. For the treatment process, the gesture recognition system was based on
machine learning classification, thus requiring training and validation phases.
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The training phase began with defining a set of foot gestures to be assimilated to
cobot operating modes (Section 3.2). Once the dictionary was established, we proceeded to
data processing and then features selection (Section 3.3) to reduce the complexity of the
model. Once completed, the selected features were transmitted to the image generation
(Section 3.3.1) to determine the most relevant representation. The generated images were
provided as an input for the 2D-CNN used for foot gestures recognition (Section 3.3.2).

The testing phase involved testing the classification of foot gestures with 2D-CNN.
The proposed real-time implementation algorithm can be summarized in Figure 2. It
depicts an initial set of conditions to discriminate between normal walking pattern and
foot gesture command. Once the algorithm detected that the user starts a gesture, it waited
for the time T until the gesture was completed. The detection of the start of a gesture was
based on a triggering condition related to the FSR’s sensors. Using the data inside the
sliding windows, the algorithm proceeded to compute the features, generate an image,
perform the 2D CNN classification for gesture recognition, and submit an operating mode
to the cobot. The cobot selected an appropriate algorithm from the available operating
modes such as trajectory tracking, collision avoidance, etc.

3.1. Instrumented Insole

While the user made a gesture, the instrumented insole acquired, processed, and
wirelessly transmitted the data via TCP to the computer to start the gesture recognition.
The proposed enactive insole is a non-intrusive, non-invasive, and inexpensive device.
The sampling frequency used in data processing and transmission was 32 Hz (Figure 3).
It contained a 9-axis motion processing unit MPU9250 [39], which measured the foot’s
acceleration, velocity, and orientation through a set of 3-axis accelerometer, 3-axis gyroscope,
and 3-axis magnetometer combined with a digital motion processor (DMP). Moreover,
four force-sensitive resistors (FSR), two in the forefoot position and two in heel position,
were also integrated to measure the pressure applied on the insole. The analog signals
acquired from pressure sensors were converted by an analog-to-digital converter (ADC)
ADS1115 [40] with a 16-bit resolution. Finally, an ESP8266-12E WiFi module [41], located
at the foot arch position, was used to transmit the data to a local computer. The detailed
design of the insole was previously presented in [42].
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Once the material architecture was defined, a cobot operating mode based on gesture
dictionaries for 2D CNN training phase was used, as presented in the next section.

3.2. Foot-Based Command: Gesture Dictionnaries

Selection between cobot operating mode was based on two gesture dictionaries:
pressure and IMU sensors (one for each kind of sensor) for classification purposes. Machine
learning classification needs a training phase with a set of grayscale images generated by
relevant features for each gesture. This section proposes a two-foot-based dictionaries
utilizing information from the 3-axis accelerometer, 3-axis gyroscope (angular velocity),
3-axis magnetometer, and the four pressure sensors of the insole.

Based on the sensor readings and different movements of the foot, dictionaries of
movements are shown below. Tables 1 and 2 present some basics movements recognizable
by each sensor considered alone.

Table 1. Dictionary of detectable movements by the accelerometer with ankle as center.

Movements of Rotation and Translation with Ankle at Center
Movements of Rotation and

Translation with Toes at
Center
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Horizontal movement of rotation 

(with toes as center) 

 
Movement of translation 

(left/right) 

 
Movement of translation 

(front/back) 

 
Movement of translation 
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Vertical movement of rotation 

(with toes as center) 

Note: Each movement is described below the illustration. 

Horizontal movement of
rotation (with toes as center)
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Note: Each movement is described below the illustration. 

Movement of translation
(left/right)
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Movement of translation
(front/back)
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Movement of translation
(up/down)
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Note: Each movement is described below the illustration. 

Vertical movement of rotation
(with toes as center)

Note: Each movement is described below the illustration.

Table 2. Dictionary of captured movement by the pressure sensors.

Active or Inactive Force Sensors (FSR) during the Movements

4 FSRs 2 FSRs 1 FSR
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
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(e) 

(a) 
(b) 

The four sensors are inactive
(foot is not touching the

ground)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
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The two sensors at the front
are active (foot is inclined

forward)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which 
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(e) 

(a) 
(b) 

The two sensors at the back
are active (foot is inclined

backward)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which 
looks like a kick. 

(e) 

(a) 
(b) 

Only the sensor at the front
outside is active (foot is
inclined front-outward)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which 
looks like a kick. 

(e) 

(a) 
(b) 

The four sensors are active
(foot flat on the ground)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which 
looks like a kick. 

(e) 

(a) 
(b) 

The two outside sensors are
active (foot is inclined

outwards)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which 
looks like a kick. 

(e) 

(a) 
(b) 

The two inside sensors are
active (foot is inclined

inwards)
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
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From these simple foot gestures dictionaries, combinations of three or four movements
were used to create five gestures, as shown in Table 3. Each movement has multiple
advantages. It was simple to execute and easy to detect at once.

Table 3. Representation of the five proposed gestures denoted from G1 to G5.
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
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(e) 

(a) 
(b) 
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which 
looks like a kick. 

(e) 

(a) 
(b) 
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks 
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2) 
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture 
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4) 
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(e) 

(a) 
(b) 
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In Table 3, (a) represents an illustration of the first gesture denote (G1) which looks
like crushing a cigarette with the forefoot; (b) is an illustration of the second gesture (G2)
which looks like crushing a cigarette with the heel; (c) is an illustration of the third gesture
(G3) which looks like tap with the forefoot; (d) is an illustration of the fourth gesture (G4)
which looks like tap with the heel; and (e) is an illustration of the fifth gesture (G5) which
looks like a kick.

Once identified, the foot gestures needed to be mapped with the defined cobot op-
erating mode. In this study, based on observation of Alexander et al. [8], the following
commands with mapping gestures are presented in Table 4. Additional gestures with
different commands could be certainly defined, as described in the introduction such as
physical collaboration [10], autonomous action in shared activities [11], remote control
motion [12], and learning new tasks [4].

Table 4. Foot mapping gesture.

Foot Gesture Cobot Operating Mode

1. Cigarette crush with the forefoot Switching to the “third hand” mode
2. Cigarette crush with the heel Fast trajectory control
3. Tap with the forefoot Precise trajectory control (Slow)
4. Tap with the heel Motor-holding by the robot
5. Kick Stopping the robot

The proposed foot-based dictionary mapped with cobot operating mode must be
decoded in order to accurately scope the difference between gestures. The next section
proposes the overall process for data acquisition and features selection.

3.3. Data Acquisition and Features Selection

The data presented in Table 3 are acquired by an instrumented insole worn in the left
foot. In this study, the gestures of a single participant (one of the authors of this paper,
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a healthy adult) were recorded. The measurement time of each gesture was set at 15 s.
For numerical simulation, signals from the 3-axis accelerometer, 3-axis gyroscope, and
the 4 FSRs were exploited. We also measured the Euler angles and the quaternions from
the Digital Motion Processor (DMP). The details from the insole’s signals are provided in
Table 5.

Table 5. Insole’s device signals.

Signal’s Name Description Signal’s Origin

AcX, AcY, AcZ Acceleration in the 03 axis (X, Y, Z) 3-axis accelerometer

VaX, VaY, VaZ Angular velocity in the 03 axis (X, Y, Z) 3 axis gyroscopes

P Euler’s angle: P (Pitch)

DMP (Digital Motion Processor)
R Euler’s angle: R (Roll)

Y Euler’s angle: Y (Yaw)

q1, q2, q3, q4 Quaternions

F1 Sum of two FSR sensors located at the forefoot

FSR sensorsF2 Sum of two FSR sensors located in the heel

Ftot Sum of the four FSR sensors

For this study, we only focused on the sum of FSR sensors rather than considering
them alone because, based on our proposed gestures, it is difficult to only have one FSR
sensor activated at once.

Once the insole’s data were collected, features enhancement and selection or reduction
could be conducted to accurately scope the characteristics of each proposed gesture for
classification purposes, thus limiting the complexity of the model [43].

We tried two methods using the proposed dataset. Firstly, we selected 08 features,
presented in Table 6, from the acquired data.

Table 6. Proposed features for foot recognition based on human observation.

Feature’s Name Description Signal’s Origin

Nam Norm of acceleration 3-axis accelerometer

Ngy Norm of angular velocity 3 axis gyroscopes

P Euler’s angle: P (Pitch)
DMP (Digital Motion

Processor)
R Euler’s angle: R (Roll)

Y Euler’s angle: Y (Yaw)

F1 Sum of two FSR sensors
located at the forefoot

FSR sensorsF2 Sum of two FSR sensors
located in the heel

Ftot Sum of the four FSR sensors

The choice of the 08 proposed features was based on our observation of signals
behavior for each gesture. We noticed a difference in the signal’s variation for each gesture.
Table 7 presents the latter.
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Table 7. Signals of the norm of acceleration and the norm of angular velocity related to the five proposed gestures.

Gestures Norm of Acceleration Nam Norm of Angular Velocity Ngy

G1
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At this point, we could observe that the norm of acceleration for G1 and G2 presents
important peaks of about 8000 mm·s−2. However, for G3 and G4, the value of the peak
is lower and equals to 4900 mm·s−2. As for G5, the norm of amplitudes attends a higher
value for a long time. Moreover, the signals obtained from the norm of the angular velocity,
the sum of the two FSR sensors located at the forefoot (F1), the sum of the two FSR sensors
located at the heel (F2), and the Euler Angles are suitable to be selected as different features
to discriminate foot gestures.

The second method used in this paper considered feature enhancement and reduction,
which consists of using the raw signals obtained from the instrumented insole, and then
computed feature enhancement. This operation led to a set of 78 features presented in
Tables 8 and 9.

Table 8. Features preselected for statistical analysis part 1.

Statistical Parameters
(Abbreviation) Mean (m) Variance (var) Standard Deviation (td)

Characteristics

AcXm, AcYm, AcZm, Nam AcXvar, AcYvar, AcZvar AcXstd, AcYstd, AcZstd

VaXm, VaYm, VaZm VaXvar, VaYvar, VaZvar VaXstd, VaYstd, VaZstd

Pm, Rm, Ym Pvar, Rvar, Yvar Pstd, Rstd, Ystd

q1m, q2m, q3m, q4m q1var, q2var, q3var, q4var q1std, q2std, q3std, q4std

F1m, F2m F1var, F2var F1std, F2std

Table 9. Features preselected for statistical analysis part 2.

Statistical Parameters
(Abbreviation) Skewness (Skew) Kurtosis (Kurt) Root Mean Square (Rms)

Characteristics

AcXskew, AcYskew, AcZskew AcXkurt, AcYkurt, AcZkurt AcXrms, AcYrms, AcZrms

VaXskew, VaYskew, VaZskew VaXkurt, VaYkurt, VaZkurt VaXrms, VaYrms, VaZrms

Pskew, Rskew, Yskew Pkurt, Rkurt, Ykurt Prms, Rrms, Yrms

q1skew, q2skew, q3skew, q4skew q1kurt, q2kurt, q3kurt, q4kurt q1rms, q2 rms, q3 rms, q4 rms

F1skew, F2skew F1kurt, F2kurt F1rms, F2rms

Notes: Ac and Va correspond, respectively, to the acceleration and the angular velocity computed along the X, Y, Z axis; Na is the norm of
the acceleration; P, R, and Y are the Euler angles; q1, q2, q3, q4 are the Quaternions.
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Dimension reduction technics used in this paper extract the relevant features to be
used in the image generation process. According to the state-of-the-art, there are mainly two
approaches. One is based on the reduction in features by searching possible combinations
of features to identify the principal components with the highest variance which will be
used for classification purposes. Usually, the employed method is based on principal
component analysis (PCA) which only focuses on generating new inputs, regardless of the
label of data, thus posing the problem of the features selection in real-time identification
where the principal components might differ from one time to another. The other solution
is to deal with features selection which consists of choosing between the set of possible
features, the most representatives ones. The method is usually based on statistical analysis
in which the evaluation of features importance for discriminating between gestures is
realized. In this work, ANOVA statistical analysis, which is the most used in statistical
computation, was used to compare the significant differences in characteristics to determine
whether or not a characteristic allows good features identification of gestures as suggested
in [44]. ANOVA’s result was then calculated from the null hypothesis. The null hypothesis
is that all the calculated characteristics distribution is similar. Given that there is a null
hypothesis if the probability (p-value) is less than 0.05, the characteristics were significantly
different. The ANOVA’s results computed with Matlab 2016b for a data set of 100 samples
as 20 per gestures are given in Table 10.

Table 10. ANOVA’s statistical results.

Characteristics ANOVA
(p-Value) Characteristics ANOVA

(p-Value) Characteristics ANOVA
(p-Value)

AcXm 0.0362 AcXvar 9.82089 × 10−9 AcXstd 1.48053 × 10−12

AcYm 0.0037 AcYvar 7.0831 × 10−13 AcYstd 8.60749 × 10−14

AcZm 0.1522 AcZvar 1.11004 × 10−13 AcZstd 7.66846 × 10−15

VaXm 0.7163 VaXvar 0.0006 VaXstd 0.0004

VaYm 4.2743 × 10−5 VaYvar 0.0078 VaYstd 0.0001

VaZm 0.6465 VaZvar 0.9967 VaZstd 3.58713 × 10−6

Pm 4.70768 × 10−17 Pvar 0.0005 Pstd 1.15232 × 10−9

Rm 1.99492 × 10−35 Rvar 2.12177 × 10−16 Rstd 1.01984 × 10−5

Ym 0.0006 Yvar 0.0008 Ystd 2.06642 × 10−9

q1m 1.44179 × 10−16 q1var 6.40077 × 10−11 q1std 2.37864 × 10−6

q2m 2.29963 × 10−19 q2var 1.97067 × 10−10 q2std 2.38143 × 10−12

q3m 1.78075 × 10−9 q3var 0.048 q3std 9.1542 × 10−13

q4m 1.19374 × 10−7 q4var 7.41653 × 10−7 q4std 1.13254 × 10−10

F1m 7.62104 × 10−67 F1var 1.52173 × 10−16 F1std 1.56796 × 10−12

F2m 1.64653 × 10−65 F2var 3.33183 × 10−17 F2std 3.23638 × 10−8

AcXrms 0.0104 AcXkurt 1.54661 × 10−9 AcXskew 1.48053 × 10−12

AcYrms 0.0024 AcYkurt 4.18682 × 10−21 AcYskew 8.60749 × 10−14

AcZrms 0.1614 AcZkurt 2.44817 × 10−17 AcZskew 7.66846 × 10−15

VaXrms 0.5866 VaXkurt 8.66958 × 10−7 VaXskew 0.0004

VaYrms 2.09045 × 10−5 VaYkurt 7.08042 × 10−14 VaYskew 0.0001

VaZrms 0.6497 VaZkurt 3.37356 × 10−6 VaZskew 3.58713 × 10−6
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Table 10. Cont.

Characteristics ANOVA
(p-Value) Characteristics ANOVA

(p-Value) Characteristics ANOVA
(p-Value)

Prms 1.48031 × 10−13 Pkurt 0.0671 Pskew 1.15232 × 10−9

Rrms 0.0618 Rkurt 0.5788 Rskew 1.01984 × 10−5

Yrms 0.0003 Ykurt 0.1283 Yskew 2.06642 × 10−9

q1rms 3.92505 × 10−13 q1kurt 0.0284 q1skew 2.37864 × 10−6

q2 rms 0.1313 q2kurt 0.6328 q2skew 2.38143 × 10−12

q3 rms 0.091 q3kurt 0.0146 q3skew 9.1542 × 10−13

q4 rms 6.92425 × 10−11 q4kurt 0.0152 q4skew 1.13254 × 10−10

F1rms 6.59022 × 10−49 F1kurt 1.66156 × 10−7 F1skew 1.56796 × 10−12

F2rms 2.68932 × 10−38 F2kurt 5.70291 × 10−5 F2skew 3.23638 × 10−8

Nam 1.49825 × 10−115

For each gesture, ANOVA results determined that there are three main characteristics
which are the norm of acceleration (Nam), the sum of the two sensors located at the forefoot
(F1m), and the sum of the two FSR sensors located at the heel (F2m). Figure 4 presents the
ANOVA representation of each selected feature and its corresponding values for each of
the proposed five gestures numerated from G1 to G5.
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Figure 4. Analysis of variance (ANOVA): (a) Mean of the acceleration (Nam), (b) Mean of the FSR
sensors of the forefoot (F1m), (c) Mean of the FSR sensors of the heel (F2m).
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An analysis of the proposed ANOVA results shows the possibility to enhance our
classification method by means of a threshold. Figure 4a shows that, for the mean of the
norm of acceleration Nam, there is a threshold of 0.25. This means that, for gestures where
the variation of Nam is important, such as for gestures 1, 2, and 5, the measured value
is greater than 0.25, whereas, for gestures 3 and 4, the value of the Nam is less than 0.25.
Therefore, additional conditions were set.

By reproducing the same analysis, a similar set of conditions applying on the mean of
the sum of the two FSR sensors in the heel shows a threshold value of 0.4, meanwhile, for
the sum of the two FSR sensors located at the forefoot, the threshold appears to be difficult
to be set. A further histogram analysis conducted in a more complete data set of about 100
samples per gesture is presented in Tables 11 and 12.

Table 11. Histogram analysis of Nam and F2m.

Nam F2m

G1
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Table 11. Cont.
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Table 12. Cont.
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features selected for image generation, the algorithm of the temporal method involving 
the signal preprocessing and the image composition follows five steps: (1) collection of 
the sensor data; (2) segmentation of the signals (the beginning of each gesture was identi-
fied and then the first twenty-five pieces of data were recorded from the beginning); (3) 
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Histogram analysis of Nam shows the same threshold value of 0.25 as the one presented
from ANOVA’s result in Figure 4a. The histogram analysis of F2m presents a threshold
value of about 0.35 and for F1m the threshold values appear to be 0.38. Those results are
mainly the same obtained from ANOVA’s analysis in Figure 4b for F1m and Figure 4c for
F2m. In order to generalize the threshold results, we decided to set it to 0.4 for both F1m
and F2m. Table 13 presents a summary of the proposed threshold values for the processing
algorithm to ensure images normalization.

Table 13. Selected features threshold.

Mean of the acceleration norm (Nam)
{

If (Nam > 0.25) then Nam = 0.9
If not (Nam < 0.25) then Nam = 0.1

Mean of the sum of two FSR sensors in the forefoot (F1m)
{

If (F1m > 0.4) then F1m = 0.9
If not (F1m < 0.4) then F1m = 0.1

Mean of the sum of two FSR sensors at the heel (F2m)
{

If (F2m > 0.4) then F2m = 0.9
If not (F2m < 0.4) then F2m = 0.1

Once the features are selected, the next section proposes the 2D-CNN image generation
for classification purposes.

3.3.1. 2D-CNN Image Generation

A 2D-CNN system was used to recognize gestures. The 2D-CNN system has as an
input of a 2D image constituted by the features presented above. Independently from the
features selected for image generation, the algorithm of the temporal method involving
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the signal preprocessing and the image composition follows five steps: (1) collection of the
sensor data; (2) segmentation of the signals (the beginning of each gesture was identified
and then the first twenty-five pieces of data were recorded from the beginning); (3) deter-
mination of all the maximum values of the insole’s sensor measurements; (4) normalization
of the data between 0 and 1 (a division of the data by the previously measured maximum);
and (5) composition of the matrices of the pixels.

For 2D-CNN image generation, we firstly define a set of images based on features
selection presented in Table 6. These 8 features were represented in an image according to
the spatial disposition presented in Figure 5a. This representation results in a 15 × 15 pixels
image and the images obtained from the 5 different foot gestures are shown in Figure 5b–f.
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Figure 5. (a) Characteristic images of gestures, (b) G1: Cigarette crash with the forefoot, (c) G2: Cigarette crash with the
heel, (d) G3: Tapping with the forefoot, (e) G4: Tapping gesture with the heel, (f) G5: kick gesture.

Secondly, for complexity reduction purposes, we constructed two sets of images
based on the three selected features obtained from ANOVA analysis. A first set of images
was constructed based on rectangles representation of the selected features according
to Figure 6. Each feature was converted into a pixel and displaced accordingly to the
representation in Figure 6a. Since they are grayscale images, the value of each pixel in the
matrix is between 0 (indicating black) and 255 (indicating white). The images presented in
Figure 6 are based on a set of rectangles. Images are also made up of 11 × 11 pixels.
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Cigarette crash with the heel, (d) G3: Tapping with the forefoot, (e) G4: Tapping gesture with the
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To reduce the grid size of the image, a new set of geometric representations was
proposed for modeling the three selected characteristics. The square, the rectangle, and
the triangle represent the mean of the norm of acceleration Nam, the mean of the sum of
two FSR sensors integrated into the forefoot position F1m, and of the two ones integrated
in the heel position F2m, respectively. This method is called “Data Wrangling” and it
consists of transforming the raw data to another format in order to make it easier to use.
Figure 7 presents the proposed method to obtain a set of images to be used. The threshold
is determined from the analysis previously presented in Section 3.3.
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Figure 8. Characteristic images of gestures: (a) G1: Cigarette crash with the forefoot; (b) G2: Cigarette
crash with the heel; (c) G3: Tapping with the forefoot; (d) G4: Tapping gesture with the heel; (e) G5:
Kick gesture.

3.3.2. 2D-CNN Classification Method

A grayscale image was used as an input of CNN. CNN consists of a succession of
layers that include feature maps and subsampling maps. The CNN model is designed
with four main building blocks, as shown in Figure 9: (1) convolution; (2) pooling or
subsampling; (3) non-linearity (ReLU); and (4) fully connected.
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Figure 9. 2D-CNN methodology adopted.

Convolution is the first layer of CNN. Indeed, its role consists of extracting the
characteristics of the images presented as the input. During this phase, 2D convolution
is applied to the image in order to determine its useful information. The filtered images
pass through the second layer (pool) of the CNN. The role of this part is to reduce the
size of the image while preserving its most important information. Indeed, a sliding
window traverses the image and reduces its size by using a local maximum operation. The
rectified linear unit (ReLU) is the third layer of the CNN in which each negative value
will be replaced by zero. Therefore, the size of the image is not changed in this layer. The
fully connected layer is a multilayer perceptron that combines the characteristics of the
images and determines the probability of each class presented in the learning phase. In this
proposed CNN architecture, the nonlinear function used is the sigmoid function. Figure 9
presents the general structure of the CNN used for gesture recognition.

Based on the structure of image presented as input, there are some characteristics
adopted as given in Table 14.
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Table 14. CNN characteristics.

Convolution C1 Pooling P1 Convolution C2 Pooling P2
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connected Layer) 

Number of convolution 
Kernel 5 / 15 / 
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connected Layer) 

Number of convolution 
Kernel 7 / 17 / 
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(10 neurons on the Fully
connected Layer)

Number of
convolution Kernel 5 / 15 /

Windows size 2 × 2 2 × 2 2 × 2 2 × 2

Input 15 × 15 14 × 14 7 × 7 6 × 6

Output 14 × 14 7 × 7 6 × 6 3 × 3
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 Convolution C1 Pooling P1 Convolution C2 Pooling P2 

 
(10 neurons on the Fully 

connected Layer) 

Number of convolution 
Kernel 5 / 15 / 

Windows size 2 × 2 2 × 2 2 × 2 2 × 2 
Input 15 × 15 14 × 14 7 × 7 6 × 6 

Output 14 × 14 7 × 7 6 × 6 3 × 3 

 
(11 neurons on the Fully 

connected Layer) 

Number of convolution 
Kernel 7 / 17 / 

Windows size 2 × 2 2 × 2 2 × 2 2 × 2 
Input 11 × 11 10 × 10 5 × 5 4 × 4 

Output 10 × 10 5 × 5 4 × 4 2 × 2 
(11 neurons on the Fully

connected Layer)

Number of
convolution Kernel 7 / 17 /

Windows size 2 × 2 2 × 2 2 × 2 2 × 2

Input 11 × 11 10 × 10 5 × 5 4 × 4

Output 10 × 10 5 × 5 4 × 4 2 × 2
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(100 neurons on the Fully
connected Layer)

Number of
convolution Kernel 10 / 10 /

Windows size 4 × 4 2 × 2 2 × 2 2 × 2

Input 9 × 9 6 × 6 3 × 3 2 × 2

Output 6 × 6 3 × 3 2 × 2 1 × 1

4. Results

Foot gesture identification task was considered as a pattern recognition problem in
which a set of foot’s movements of one of this paper’s authors was recorded for training
and validation steps. The classification of gestures was based on statistical information
extracted from its patterns. For every gesture, 70% of data were defined as training samples,
15% as validation samples, and 15% as test ones. The CNN model was trained using the
training and validation set and tested independently with the testing set. Many of tests
(100) were finally performed to obtain an optimized model. The selected parameters to
test the CNN model in TensorFlow were obtained from the training process and were
presented for each type of image presented as input. Table 15 presents the latter.

Table 15. CNN test parameters.

Parameters
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The recognition process is based on the gradient method. Confusion matrix related to
each method and the recognition rate for the five-foot gestures are presented in Table 16.
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Table 16. 2D-CNN classification results.

Images Input Recognition Rate Comments
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By using statistical analysis based on
ANOVA, the recognition rate appears to
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14%. This set of images based on a spatial
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rectangular form could successfully
recognize 3 foot gestures (G1, G3, G4).

Furthermore, the system is able to make a
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However, there is still some confusion of
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G1 and G5, with 66.6%, 33.3%, 30%, and

70%, respectively.
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With the enhancement of the images
using ANOVA for selecting feature and

the modification of the spatial
representation of the features in the
images using a set of forms (squares,
rectangles, and triangles), the system
achieves a 100% of recognition rate.

Therefore, each foot gesture is correctly
identified.

Based on these results, it can be inferred that ANOVA analysis contributed to the great
increase (about 14%) in the recognition rate, implying that features specification has an
important place in the recognition process. Furthermore, by using the spatial distribution of
the selected features obtained from the ANOVA analysis, we achieved different results, 74%
for the first case and 100% for the second one. These results show that the rescaling method
of the features data has an important impact on the classification base 2D-CNN method.

5. Limit of the Study

Limitations in this study can be seen in several points. Firstly, the recognition process
only accounts for one user (the first author of this research works) whose characteristic
has previously been scoped in the convolutional neural network, thus requiring for every
new user to compute the training process. Secondly, our study is conducted in a strictly
supervised environment where noises arisen from environmental consideration, such
as vibrations, are taken out, thus requiring the enhancement of disturbances robustness
for all industries purposes. Thirdly, this current study has not been yet implemented in
real-time embedded system for online classification tests. Finally, a study of the proposed
classification algorithm for a larger set of gestures and participants is yet to be considered.

6. Conclusions and Future Works

In this paper, a new method that can be used for human–robot interaction in hybrid
work cells is proposed. The goal is to switch between possible cobot operating modes based



Sensors 2021, 21, 5743 22 of 24

on foot gesture command. Therefore, this article presents a foot gesture human–robot
interface using an instrumented insole located inside the worker’s left shoe. Firstly, two
foot gesture dictionaries were formulated, then five gestures assimilated to five selected
commands to control a robot were chosen. Foot gesture signals were collected from the
insole and processed for features selection. In this process, a statistical analysis utilizing a
dataset recorded from one person who repeated the different foot gestures several times
was computed to identify the most representative features, i.e., the mean of the acceleration
norm, the mean of the sum of the two FSR sensors located in the forefoot, and the mean of
the sum of the two FSR sensors located in the heel. Then several sets of grayscale images
based on the spatial representation (geometric form) of the above features in the selected
2D image were proposed to adequately scope the differences between the suggested five
gestures. Thus, the proposed 2D images were given as input to a 2D convolutional neural
network with backpropagation algorithm for foot gesture recognition. Offline results
showed the great impact of variance analysis in the recognition process as we achieve
a higher recognition rate of 74% only by selecting the relevant features. Furthermore, a
spatial representation of the selected features in the 2D images seems to greatly impact the
recognition process as there a set of geometric configurations exists in which the recognition
rate is very high, nearly 100%. From these results, it can then be inferred that the use of
foot gesture classification for cobot operating mode selection is possible.

Future research aims to increase the number of chosen gestures in order to have
more assimilated commands. Furthermore, for globalization purposes, larger sets of foot
gesture executions methods from different persons are required and, finally, a real-time
implementation of the proposed solution in the instrumented insole processors ought to
be attempted.
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