
sensors

Article

T-Proper Hypercomplex Centralized Fusion Estimation for
Randomly Multiple Sensor Delays Systems with
Correlated Noises

Rosa M. Fernández-Alcalá * , Jesús Navarro-Moreno and Juan C. Ruiz-Molina

����������
�������

Citation: Fernández-Alcalá, R.M.;

Navarro-Moreno, J.; Ruiz-Molina, J.C.

T-Proper Hypercomplex Centralized

Fusion Estimation for Randomly

Multiple Sensor Delays Systems with

Correlated Noises . Sensors 2021, 21,

5729. https://doi.org/10.3390/

s21175729

Academic Editor: Iren E. Kuznetsova

Received: 15 July 2021

Accepted: 21 August 2021

Published: 25 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Statistics and Operations Research, University of Jaén, Paraje Las Lagunillas, 23071 Jaén, Spain;
jnavarro@ujaen.es (J.N.-M.); jcruiz@ujaen.es (J.C.R.-M.)
* Correspondence: rmfernan@ujaen.es; Tel.: +34-953-212-449

Abstract: The centralized fusion estimation problem for discrete-time vectorial tessarine signals in
multiple sensor stochastic systems with random one-step delays and correlated noises is analyzed
under different T-properness conditions. Based on Tk, k = 1, 2, linear processing, new centralized
fusion filtering, prediction, and fixed-point smoothing algorithms are devised. These algorithms
have the advantage of providing optimal estimators with a significant reduction in computational
cost compared to that obtained through a real or a widely linear processing approach. Simulation
examples illustrate the effectiveness and applicability of the algorithms proposed, in which the
superiority of the Tk linear estimators over their counterparts in the quaternion domain is apparent.

Keywords: centralized fusion estimation; random delay systems; tessarine processing; Tk properness

1. Introduction

Multi-sensor systems and related information fusion estimation theory have attracted
much attention over the last few decades due to their wide range of applications in many
fields, including target tracking, robotics, navigation, big data, and signal processing [1–7].

In practice, failures during data transmission are unavoidable and lead to uncertain
systems. In this regard, a significant problem is the estimation of the state from systems
with random sensor delays (see, for example, ref. [8–13]). Such delays may be mainly
caused by computational load, heavy network traffic, and the limited bandwidth of the
communication channel, as well as other limitations, which mean that the measurements
are not always up to date [8]. It is commonly assumed that measurement delays can be
described by Bernoulli distributed random variables with known conditional probabilities,
where the values 1 and 0 of these variables indicate the presence or absence of measurement
delays in the corresponding sensor [10].

Traditionally, there have been two basic approaches to process the information from
multiple sensors, centralized and distributed fusion. In the former approach, all the
measurement data from each sensor are collected in a fusion center where they are fused
and processed, whereas in the distributed fusion method, the measurements of each sensor
are transmitted to a local processor where they are independently processed before being
transmitted to the fusion center. It is well known that centralized fusion methods lead to
the best (optimal) solution when all sensors work healthily [14–16]. The strength of this
approach lies in the fact that it is easy to implement, and it makes possible the best use of
the available information. Accordingly, with the purpose of optimal estimation, centralized
fusion methodology has received increased attention in recent literature related to multi-
sensor fusion estimation (see, for example, ref. [9,17–19]). Notwithstanding the foregoing,
the main disadvantage of this approach is the high computational load that may be required,
especially when the number of sensors is too large. Alternatively, distributed fusion
methodologies are developed with the purpose of designing solutions with a reduced
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computational load. Although distributed fusion approach presents a better robustness,
flexibility and reliability due to its parallel structure; the main handicap of these solutions
is that they are suboptimal and, hence, it is desirable to explore other alternatives that can
alleviate the computational demand. In this respect, the use of hypercomplex algebras may
well offer an ideal framework in which to analyze the properness characteristics of the
signals which lead to lower computational costs without losing optimality.

In general, the implementation of hypercomplex algebras in signal processing prob-
lems has expanded rapidly because of their natural ability to model multi-dimensional
data giving rise to better geometrical interpretations. In this connection, quaternions
and tessarines appear as 4D hypercomplex algebras composed of a real part and three
imaginary parts, which provide them with the ideal structure for describing three and
four-dimensional signals. Nowadays, they play a fundamental role in a variety of applica-
tions such as robotics, avionics, 3D graphics, and virtual reality [20]. In principle, the use
of quaternions or tessarines means renouncing some of the usual algebraic properties of
the real or complex fields. Thus, while quaternion algebra is non-commutative, tessarines
become a non-division algebra. These properties make each algebra more appropriate
for every specific problem. With this in mind, in [21–24] the application of these two
isodimensional algebras is compared with the objective of showing how the choice of a
particular algebra may determine the proposed method performance.

In the related literature, quaternion algebra has been widely used as a signal pro-
cessing tool and it is still a trending topic in different areas. In particular, in the area of
multi-sensor fusion estimation, ref. [25,26] proposed sensor fusion estimation algorithms
based on a quaternion extended Kalman filter, ref. [27,28] have provided robust distributed
quaternion Kalman filtering algorithm for data fusion over sensor networks dealing with
three-dimensional data, and [29] designed a linear quaternion fusion filter from multi-
sensor observations. A common characteristic of all the estimation algorithms above is
that their methodologies are based on a strictly linear (SL) processing. However, in the
quaternion domain, optimal linear processing is widely linear (WL), which requires the
consideration of the quaternion signal and its three involutions. In this framework, ref. [30]
devised WL filtering, prediction and smoothing algorithms for multi-sensor systems with
mixed uncertainties of sensor delays, packet dropout and missing observations. Interest-
ingly, when the signal presents properness properties (cancellation of one or more of the
three complementary covariance matrices), the optimal processing is SL (if the signal is
Q-proper) or semi-widely linear (if the signal is C-proper), which amounts to operate on a
vector with reduced dimension, which means a significant reduction in the computational
load of the associated algorithms (please review [31–34] for further details).

On the other hand, the use of tessarines is less common in the signal processing
literature and, to the best of the authors’ knowledge, they have never been considered in
multi-sensor fusion estimation problems. In general, the use of tessarines in estimation
problems has been limited by the fact that it is not being a normed division algebra. This
drawback was successfully overcome in [23] by introducing a metric that guarantees the
existence and unicity of the optimal estimator. Moreover, although the optimal processing
in the tessarine field is the WL processing, under properness conditions, it is possible to
get the optimal solution from estimation algorithms with lower computational costs. In
this sense, ref. [23,24] introduced the concept of T1 and T2-properness and provided a
statistical test to determine whether a signal presents one of these properness properties.
According to the type of properness, the most suitable form of processing is T1 linear
processing, which supposes to operate on the signal itself, or T2 linear processing, based
on the augmented vector given by the signal and its conjugate. The application of both
T1 and T2 linear processing to the estimation problem has provided optimal estimation
algorithms of reduced dimension.

Motivated by the above discussions, in this paper we consider a tessarine multiple
sensor system where each sensor may be delayed at any time independently from the
others. The probability of the occurrence of each delay is dealt by a Bernoulli distribution.
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Moreover, unlike most sensor fusion estimation algorithms, the observation noises of dif-
ferent sensors can be correlated. In this context, new centralized fusion filtering, prediction
and fixed-point smoothing algorithms are designed under both T1 and T2-properness con-
ditions. The algorithms proposed provide the optimal estimations of the state; meanwhile,
the computational load has been reduced with respect to the counterpart tessarine WL
(TWL) estimation algorithms. It is important to note that such savings in computational
demand cannot be achieved in the real field. The superiority of these algorithms obtained
from a Tk linear approach over those derived in the quaternion domain is numerically
demonstrated under different conditions of properness.

The remainder of the paper is organized as follows. Section 2 introduces the notation
used throughout the paper and briefly reviews the main concepts related to the processing
of tessarine signals and their implications under Tk properness. Then, in Section 3, the prob-
lem of estimating a tessarine signal in linear discrete stochastic systems with random state
delays and multiple sensors is formulated. Concretely, under Tk -properness conditions,
a compact state-space model of reduced dimension is proposed. From this model, and
based on Tk-properness properties, Tk centralized fusion filtering, step ahead prediction,
and fixed-point smoothing algorithms are devised in Section 4. Furthermore, the goodness
of these algorithms in performance is numerically analyzed in Section 5 by means of a
simulation example, where the superiority of the Tk estimation algorithms above over their
counterparts in the quaternion domain is evidenced. The paper ends with a section of
conclusions. In order to maintain continuity, all technical proofs have been deferred to the
Appendixes A–C.

2. Preliminaries

Throughout this paper, and unless otherwise stated, all the random variables are
assumed to have zero-mean. Moreover, the notation and terminology is fairly standard.
They are summarized in the following two subsections.

2.1. Notation

Matrices are indicated by boldfaced uppercase letters, column vectors as boldfaced
lowercase letters, and scalar quantities by lightfaced lowercase letters. Moreover, the
following notation is used.

In denotes the identity matrix of dimension n.
0n×m denotes the n×m zero matrix.
1n denotes the n-vector of all ones.
0n denotes the n-vector of all zeros.
Superscript ∗ stands for the tessarine conjugate.
Superscript T stands for the transpose.
Superscript H stands for the Hermitian transpose.
Subscript r represents the real part of a tessarine.
Subscript ν, for ν = η, η′, η′′, represents the imaginary part of a tessarine.
Z stands for the integer field.
R stands for the real field. Accordingly, A ∈ Rn×m means that A is a real n×m matrix,
and similarly r ∈ Rn means that r is a n-dimensional real vector.
T stands for the tessarine field. Accordingly, A ∈ Tn×m means that A is a tessarine n×m
matrix, and similarly r ∈ Tn means that r is a m-dimensional real vector.
E[·] is the expectation operator.
Cov(·) is the covariance operator.
diag(·) is a diagonal (or block diagonal) matrix with elements specified on the main diagonal.
δn,l is the Kronecker delta function, which is equal to one if l = n, and zero otherwise.
◦ denotes the Hadamard product.
⊗ denotes the Kronecker product.
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2.2. Basic Concepts and Properties

The following property of the Hadamard product will be useful.

Property 1. If A ∈ Rn×n and b ∈ Rn, then

diag(b)A diag(b) =
(
bbT) ◦A. (1)

Definition 1. A tessarine random signal x(t) ∈ Tn is a stochastic process of the form [23]

x(t) = xr(t) + ηxη(t) + η′xη′(t) + η′′xη′′(t), t ∈ Z

where xν(t) ∈ Rn, for ν = r, η, η′, η′′, are real random signals and {1, η, η′, η′′} obeys the
following rules:

ηη′ = η′′, η′η′′ = η, η′′η = −η′, η2 = η′′
2
= −1, η′

2
= 1.

The conjugate of a given tessarine random signal x(t) ∈ Tn, is

x∗(t) = xr(t)− ηxη(t) + η′xη′(t)− η′′xη′′(t).

Moreover, the following two auxiliary tessarine vectors are defined:

xη(t) = xr(t) + ηxη(t)− η′xη′(t)− η′′xη′′(t),

xη′′(t) = xr(t)− ηxη(t)− η′xη′(t) + η′′xη′′(t).

For a complete description of the second-order statistical properties of x(t), we need to
consider the augmented tessarine signal vector x̄(t) = [x

T
(t), xH(t), xηT(t), xη′′T(t)]T. The fol-

lowing relationship between the augmented vector and the real vector
xr(t) = [xTr (t), xTη(t), xTη′(t), xTη′′(t)]

T can be established:

x̄(t) = 2T nxr(t),

where T n = 1
2A⊗ In

A =


1 η η′ η′′

1 −η η′ −η′′

1 η −η′ −η′′

1 −η −η′ η′′

,

with T H
nT n = I4n.

Definition 2. Given two tessarine random signals x(t), y(s) ∈ Tn, the product ? between them is
defined as

x(t) ? y(s) = xr(t) ◦ yr(s) + ηxη(t) ◦ yη(s) + η′xη′(t) ◦ yη′(s) + η′′xη′′(t) ◦ yη′′(s). (2)

The following property of the product ? is easy to check.

Property 2. The augmented vector of x(t) ? y(s) is x(t) ? y(s) = D̄x
(t)ȳ(s), where

D̄x
(t) = T n diag(xr(t))T H

n.

Definition 3. The pseudo autocorrelation function of x(t) ∈ Tn is defined as Rx(t, s) = E[x(t)xH(s)],
∀t, s ∈ Z, and the pseudo cross-correlation function of x(t), y(t) ∈ Tn is defined as
Rxy(t, s) = E[x(t)yH(s)], ∀t, s ∈ Z.
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Note that, depending on the vanishing of the different pseudo correlation functions
Rxxν(t, s), ν = ∗, η, η′′, various kinds of tessarine properness can be defined. In particular,
the following properness conditions in the tessarine domain have recently been introduced
in [23,24].

Definition 4. A random signal x(t) ∈ Tn is said to be T1-proper (respectively, T2-proper) if, and
only if, the functions Rxxν(t, s), with ν = ∗, η, η′′ (respectively, ν = η, η′′), vanish ∀t, s ∈ Z.

In a like manner, two random signals x(t) ∈ Tn1 and y(t) ∈ Tn2 are cross T1-proper, (re-
spectively, cross T2-proper) if, and only if, the functions Rxyν(t, s), with ν = ∗, η, η′′ (respectively,
ν = η, η′′), vanish ∀t, s ∈ Z.

Moreover, x(t) and y(t) are jointly T1-proper (respectively, jointly T2-proper) if, and only if,
they are T1-proper (respectively, T2-proper) and cross T1-proper (respectively, cross T2-proper).

Remark that, T1 properness is more restrictive than T2 properness. Statistical tests
to experimentally check whether a signal is Tk-proper, k = 1, 2, or improper have been
proposed in [23,24].

It should be highlighted that the different properness properties have direct impli-
cations on the optimal linear processing. In general, the optimal linear processing is the
widely linear processing, which requires to operate on the augmented tessarine vector x̄(t).
Nevertheless, in the case of joint Tk-properness, k = 1, 2, the optimal linear processing is
reduced to a Tk linear processing, with the corresponding decrease in the dimension of
the problem. In particular, T1 linear processing is based on the tessarine random signal
itself, and T2 linear processing considers the augmented vector given by the signal and its
conjugate [24].

3. Problem Formulation

Consider the class of linear discrete stochastic systems with state delays and multiple sensors

x(t + 1) =F1(t)x(t) + F2(t)x∗(t) + F3(t)xη(t) + F4(t)xη′′(t) + u(t), t ≥ 0

z(i)(t) =x(t) + v(i)(t), t ≥ 0, i = 1, . . . , R

y(i)(t) =γ(i)(t) ? z(i)(t) + (1n − γ(i)(t)) ? z(i)(t− 1), t ≥ 1, i = 1, . . . , R

(3)

where R is the number of sensors, ? is the product defined in (2), Fj(t) ∈ Tn×n, j = 1, 2, 3, 4, are
deterministic matrices, x(t) ∈ Tn is the system state to be estimated, u(t) ∈ Tn is a tessarine
noise, z(i)(t) ∈ Tn is the ith sensor outputs with tessarine sensor noise v(i)(t) ∈ Tn, y(i)(t) ∈ Tn

is the observation of the ith sensor, γ(i)(t) = [γ
(i)
1 (t), . . . , γ

(i)
n (t)]T ∈ Tn is a tessarine random

vector with components γ
(i)
j (t) = γ

(i)
j,r (t)+ ηγ

(i)
j,η(t)+ η′γ

(i)
j,η′(t)+ η′′γ

(i)
j,η′′(t), for j = 1, . . . , n,

composed of independent Bernoulli random variables γ
(i)
j,ν (t), j = 1, . . . , n, ν = r, η, η′, η′′,

with known probabilities p(i)j,ν(t), and with possible outcomes {0, 1} that indicates if the ν

part of the jth observation component of the ith sensor is up-to-date (case γ
(i)
j,ν (t)) = 1) or

there exits one-step delay (case γ
(i)
j,ν (t)) = 0).

The following assumptions for the above system (3) are made.

Assumption 1. For a given sensor i, the Bernoulli variable vector γ(i)(t) is independent of γ(i)(s),
for t 6= s, and also γ(i)(t) is independent of γ(j)(t), for any two sensors i 6= j.

Assumption 2. For a given sensor i, γ(i)(t) is independent of x(t), u(t) and v(j)(t), for any
i, j = 1, . . . , R.

Assumption 3. u(t) and v(i)(t) are correlated white noises with respective pseudo variances Q(t)
and R(i)(t). Moreover, E[u(t)v(i)H(s)] = S(i)(t)δt,s.
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Assumption 4. v(i)(t) is independent of v(j)(t), for any two sensors i 6= j.

Assumption 5. The initial state x(0) is independent of the additive noises u(t) and v(i)(t), for
t ≥ 0 and i = 1, . . . , R.

Remark 1. From the hypotheses established on the Bernoulli random variables it follows that, for
any j1, j2 = 1, . . . , n, ν1, ν2 = r, η, η′, η′′ and i1, i2 = 1, . . . , R,

E
[
γ
(i1)
j1,ν1

(t)γ(i2)
j2,ν2

(t)
]
=

 p(i1)j1,ν1
(t), i f i1 = i2, j1 = j2, ν1 = ν2

p(i1)j1,ν1
(t)p(i2)j2,ν2

(t), otherwise,

E
[(

1− γ
(i1)
j1,η1

(t)
)(

1− γ
(i2)
j2,η2

(t)
)]

=

 1− p(i1)j1,ν1
(t), i f i1 = i2, j1 = j2, ν1 = ν2(

1− p(i1)j1,ν1
(t)
)(

1− p(i2)j2,ν2
(t)
)

, otherwise.

(4)

3.1. One-State Delay System under Tk-Properness

In this section, a TWL one-state delay system, which exploits the full amount second-
order statistics information available, is introduced and analyzed in Tk-properness scenar-
ios, k = 1, 2.

For this purpose, consider the augmented vectors x̄(t), z̄(i)(t), and ȳ(i)(t) of x(t),
z(i)(t), and y(i)(t), respectively. Then, by applying Property 2 on system (3), the following
TWL one-state delay model can be defined:

x̄(t + 1) =Φ̄(t)x̄(t) + ū(t), t ≥ 0

z̄(i)(t) =x̄(t) + v̄(i)(t), t ≥ 0, i = 1, . . . , R

ȳ(i)(t) =D̄γ(i)
(t)z̄(i)(t) + D̄(1−γ(i))

(t)z̄(i)(t− 1), t ≥ 1, i = 1, . . . , R

(5)

where

Φ̄(t) =


F1(t) F2(t) F3(t) F4(t)
F∗2(t) F∗1(t) F∗4(t) F∗3(t)
Fη

3(t) Fη
4(t) Fη

1(t) Fη
2(t)

Fη′′

4 (t) Fη′′

3 (t) Fη′′

2 (t) Fη′′

1 (t)

.

Moreover, from Assumption 3, the pseudo correlation matrices associated to the aug-
mented noise vectors ū(t) and v̄(i)(t) are given by

E[ū(t)ūH(s)] = Q̄(t)δt,s;

E[v̄(i)(t)v̄(i)H(s)] = R̄(i)(t)δt,s;

E[ū(t)v̄(i)H(s)] = S̄(i)(t)δt,s.

The following result establishes conditions on system (5), which lead to Tk-properness
properties of the processes involved.

Proposition 1. Consider the TWL one-state delay model (5).

1. If x(0) and u(t) are T1-proper, and Φ̄(t) is a block diagonal matrix of the form

Φ̄(t) = diag
(

F1(t), F∗1(t), Fη
1(t), Fη′′

1 (t)
)

,

then x(t) is T1-proper.
If additionally p(i)j,r (t) = p(i)j,η(t) = p(i)j,η′(t) = p(i)j,η′′(t) , p(i)j (t), ∀t, j, i, v(i)(t) is T1-proper,

and u(t) and v(i)(t) are cross T1-proper, then x(t) and y(i)(t) are jointly T1-proper.
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2. If x(0) and u(t) are T2-proper, and Φ̄(t) is a block diagonal matrix of the form

Φ̄(t) = diag
(

Φ2(t), Φ
η
2(t)

)
, with Φ2(t) =

[
F1(t) F2(t)
F∗2(t) F∗1(t)

]
, (6)

then x(t) is T2-proper.
If additionally, p(i)j,r (t) = p(i)j,η(t), p(i)j,η′(t) = p(i)j,η′′(t), ∀t, j, i, v(i)(t) is T2-proper and u(t),

and v(i)(t) are cross T2-proper, then x(t) and y(i)(t) are jointly T2-proper.

Proof. The proof follows immediately from the application of the corresponding conditions
on system (5) and the computation of the augmented pseudo correlation matrices Rx̄(t, s)
and Rx̄ȳ(i)(t, s).

Remark 2. Note that under T1-properness conditions, Π̄
γ(i)

(t) = E[D̄γ(i)
(t)], i = 1, . . . , R, is a

diagonal matrix of the form Π̄
γ(i)

(t) = I4 ⊗Π
(i)
1 (t), with Π

(i)
1 (t) = diag(p(i)1,r(t), . . . , p(i)n,r(t)).

Likewise, under T2-properness conditions, Π̄
γ(i)

(t) = E[D̄γ(i)
(t)], i = 1, . . . , R, takes the

form of a block diagonal matrix as follows:

Π̄
γ(i)

(t) = diag
(

Π
(i)
2 (t), Π

(i)
2 (t)

)
, with Π

(i)
2 (t) =

1
2

[
Π

(i)
a (t) Π

(i)
b (t)

Π
(i)
b (t) Π

(i)
a (t)

]
,

where Π
(i)
a (t) = diag(p(i)1,r(t) + p(i)1,η′(t), . . . , p(i)n,r(t) + p(i)n,η′(t)) and Π

(i)
b (t) = diag(p(i)1,r(t)−

p(i)1,η′(t), . . . , p(i)n,r(t)− p(i)n,η′(t)).

3.2. Compact State-Space Model

By stacking the observations at each sensor in a global observation vector

~z(t) =
[
z̄(1)

T
(t), . . . , z̄(R)T(t)

]T
, the TWL one-state delay system (5) can be rewritten in

a compact form as

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0

~z(t) = C̄x̄(t) +~v(t), t ≥ 0

~y(t) = D̄~γ
(t)~z(t) + D̄(1−~γ)

(t)~z(t− 1), t ≥ 1

(7)

where~v(t) and~y(t) denote the stacking vector of v̄(i)T(t) and ȳ(i)T(t), for i = 1, . . . , R, re-
spectively. Moreover, C̄ = 1R ⊗ I4n, D̄~γ

(t) = L̄diag(~γr(t))L̄H and
D̄(1−~γ)

(t) = L̄diag(14Rn −~γr(t))L̄H, with L̄ = IR ⊗ T n.
In addition, E[~v(t)~vH(s)] = R̄(t)δt,s, with R̄(t) = diag

(
R̄(1)(t), . . . , R̄(R)(t)

)
, and

E[ū(t)~vH(s)] = S̄(t)δt,s, with S̄(t) =
[
S̄(1)(t), . . . , S̄(R)(t)

]
.

In this paper, our aim is to investigate the centralized fusion estimation problem
under conditions of Tk-properness, with k = 1, 2. In this sense, the use of Tk-properness
properties allows us to consider the observation equation with reduced dimension

yk(t) = D̃~γ
k (t)C̄x̄(t) + D̃(1−~γ)

k (t)C̄x̄(t− 1) + D̃~γ
k (t)~v(t) + D̃(1−~γ)

k (t)~v(t− 1), t ≥ 1 (8)

where x̄(t) satisfies the state equation in (7), D̃~γ
k (t) = Lk diag(~γr(t))L̄H and

D̃(1−~γ)
k (t) = Lk diag(14Rn −~γr(t))L̄H, with Lk = IR ⊗ T k and T k =

1
2Bk ⊗ In, where

• T1-proper scenario:

B1 =
[

1 η η′ η′′
]
;
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y1(t) ,
[
y(1)T(t), . . . , y(R)T(t)

]T.

• T2-proper scenario:

B2 =

[
1 η η′ η′′

1 −η η′ −η′′

]
;

y2(t) ,
[
y(1)T(t), y(1)H(t), . . . , y(R)T(t), y(R)H(t)

]T
.

Remark 3. Note that under Tk-properness conditions, Π̃
~γ
k (t) = E

[
D̃~γ

k (t)
]

is given by

Π̃
~γ
k (t) = diag

(
Π̃

γ(1)

k (t), . . . , Π̃
γ(R)

k (t)
)

, where Π̃
γ(i)

k (t) =
[
Π

(i)
k (t), 0kn×(4−k)n

]
with Π

(i)
k (t),

i = 1, . . . , R, given in Remark 2.

Similarly, Π̃
(1−~γ)
k (t) = E

[
D̃(1−~γ)

k (t)
]

is given by the block diagonal matrix

Π̃
(1−~γ)
k (t) = diag

(
Π̃
(1−γ(1))
k (t), . . . , Π̃

(1−γ(R))
k (t)

)
with Π̃

(1−γ(i))
k (t) =

[
Ikn−Π

(i)
k (t), 0kn×(4−k)n

]
.

Accordingly, whereas the optimal linear processing for the estimation of a tessarine
signal x(t) is the TWL processing based on the set of measurements {~y(1), . . .~y(t)}, under
Tk-properness conditions the optimal estimator of x(t) ∈ Tn, x̂Tk (t|s), can be computed
by projecting on the set of measurements {yk(1), . . . , yk(s)}, for k = 1, 2. Thereby, Tk
estimators are obtained that have the same performance as TWL estimators, but with a
lower computational complexity. More importantly, this computational load saving cannot
be achieved with the real approach.

Note that tessarine algebra is not a Hilbert space and, as a consequence, neither
the existence nor the uniqueness of the projection on a set of tessarines is guaranteed.
Nevertheless, this drawback has been overcome in [23] by defining a suitable metric, which
assures the existence and uniqueness of these projections.

The following property sets the correlations between the noises, ū(t) and~v(t), and
both the augmented state x̄(t) and the observations yk(t).

Property 3. Under Assumptions 1–4, the following correlations hold.

1. Correlations between noises and the augmented state:

(a) E[x̄(t + 1)ūH(t)] = Q̄(t);
(b) E[x̄(t)ūH(s)] = 04n×4n, for t ≤ s;
(c) E[x̄(t + 1)~vH(t)] = S̄(t);
(d) E[ ¯x(t)ṽH(s)] = 04n×4Rn, for t ≤ s.

2. Correlations between noises and Tk observations:

(a) E[yk(t)ūH(t)] = Π̃
~γ
k (t)S̄

H(t);

(b) E[yk(t + 1)ūH(t)] = Π̃
~γ
k (t + 1)C̄Q̄(t) + Π̃

(1−γ)
k (t + 1)S̄H(t);

(c) E[yk(t)ūH(s)] = 0kRn×4n, for t < s;

(d) E[yk(t)~vH(t)] = Π̃
~γ
k (t)R̄(t);

(e) E[yk(t + 1)~vH(t)] = Π̃
~γ
k (t + 1)C̄S̄(t) + Π̃

(1−γ)
k (t + 1)R̄(t);

(f) E[yk(t)~vH(s)] = 0kRn×4Rn, for t < s.

Remark 4. Observe that, under a Tk-properness setting, the state equation in (7) is equivalent to
the Tk state equation

xk(t + 1) = Φk(t)xk(t) + uk(t), t ≥ 0 (9)

where,

• in a T1-proper scenario, x1(t) , x(t), u1(t) , u(t), and Φ1(t) , F1(t);
• in a T2-proper scenario, x2(t) , [xT(t), xH(t)]T, u2(t) , [uT(t), uH(t)]T and Φ2(t) is as

in (6).
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In such cases, Qk(t) = E[uk(t)uH
k (t)] and Sk(t) = E[uk(t)vHk (t)], for k = 1, 2, where

v1(t) ,~v(t) and v2(t) , [~vT(t),~vH(t)]T, with~v(t) =
[
v(1)T(t), . . . , v(R)T(t)

]T
.

Nevertheless, Equation (9) cannot be used together with the observation Equation (8), since
the latter involves the augmented state vector x̄(t).

4. Tk-Proper Centralized Fusion Estimation Algorithms

In this section, the Tk centralized fusion filter, prediction, and fixed-point smoothing
algorithms are designed on the basis of the set of observations {yk(1), . . . , yk(s)}, k = 1, 2,
defined in (8).

With this purpose in mind, the observation Equation (8) is used to devise filtering,
prediction, and smoothing algorithms for the augmented state vector x̄(t). Then, by
applying Tk-properness properties, the recursive formulas for the filtering, prediction, and
smoothing estimators of xk(t) are easily determined. Finally, the desired Tk centralized
fusion filtering, prediction and fixed-point smoothing estimators are obtained as a subvector
of them.

Theorems 1–3 summarize the recursive formulas for the computation of these Tk
estimators as well as their associated error variances.

4.1. Tk Centralized Fusion Filter

Theorem 1. The optimal Tk centralized fusion filter x̂Tk (t|t) and one-step predictor x̂Tk (t + 1|t)
for the state x(t) are obtained by extracting the first n components of the optimal estimator x̂k(t|t)
and x̂k(t + 1|t), respectively, which are recursively computed from the expressions

x̂k(t|t) = x̂k(t|t− 1) + Lk(t)εk(t), t ≥ 1 (10)

x̂k(t + 1|t) = Φk(t)x̂k(t|t) + Hk(t)εk(t), t ≥ 1 (11)

with x̂k(0|0) = 0kn and x̂k(1|0) = 0kn, and where Hk(t) = Sk(t)Πk(t)Ω−1
k (t), with

Πk(t) = diag
(

Π
(1)
k (t), . . . , Π

(R)
k (t)

)
and Π

(i)
k (t), i = 1, . . . , R, defined in Remark 2 for k = 1, 2.

Moreover, εk(t) are the innovations calculated as follows

εk(t) = yk(t)−Πk(t)Ck x̂k(t|t− 1)− (Im −Πk(t))Ck x̂k(t− 1|t− 1)

− (Im −Πk(t))Gk(t− 1)εk(t− 1), t ≥ 1 (12)

with m = kRn, εk(0) = 0m, and where Ck = 1R ⊗ Ikn, Gk(t) = Rk(t)Πk(t)Ω−1
k (t), with

Rk(t) = E[vk(t)vHk (t)].
In addition, Lk(t) = Θk(t)Ω−1

k (t), where Θ(t) is computed through the equation

Θk(t) = Pk(t|t− 1)CT
k Πk(t) + Φk(t− 1)Pk(t− 1|t− 1)CT

k (Im −Πk(t))

+ Sk(t− 1)(Im −Πk(t))−Hk(t− 1)ΘH
k (t− 1)CT

k (Im −Πk(t))

−Φk(t− 1)Θk(t− 1)GH
k (t− 1)(Im −Πk(t))

−Hk(t− 1)Ωk(t− 1)GH
k (t− 1)(Im −Πk(t)), t > 1 (13)

with Θk(1) = Pk(1|0)CT
k Πk(1) + Φk(0)Pk(0|0)CT

k (Im −Πk(1)) + Sk(0)(Im −Πk(1)), and
the innovations covariance matrix Ωk(t) is obtained as

Ωk(t) = M1
k(t)−M2

k(t)−M3
k(t) +M4

k(t) + Πk(t)CkPk(t|t− 1)CT
k Πk(t)

+ Πk(t)Jk(t− 1)(Im −Πk(t)) + (Im −Πk(t))JHk (t− 1)Πk(t)

+ (Im −Πk(t))
[
CkPk(t− 1|t− 1)CT

k − CkΘk(t− 1)GH
k (t− 1)−Gk(t− 1)ΘH

k (t− 1)CT
k

−Gk(t− 1)Ωk(t− 1) GH
k (t− 1)

]
(Im −Πk(t)), t > 1 (14)



Sensors 2021, 21, 5729 10 of 22

with

Ωk(1) = M1
k(1)−M2

k(1)−M3
k(1) +M4

k(1) + Πk(1)CkPk(1|0)CT
k Πk(1)

+ Πk(1)Jk(0)(Im −Πk(1)) + (Im −Πk(1))J
H
k (0)Πk(1)

+ (Im −Πk(1))CkPk(0|0)CT
k (Im −Πk(1)), (15)

where

Jk(t) = Ck
[
Φk(t)Pk(t|t)CT

k −Hk(t)ΘH
k (t)C

T
k + Sk(t)−Φk(t)Θk(t)GH

k (t)

−Hk(t)Ωk(t)GH
k (t)

]
,

with Jk(0) = Ck
[
Φk(0)Pk(0|0)CT

k + Sk(0)
]
, and

M1
k(t) = Lk

{
Cov(~γr(t)) ◦

(
L̄HC̄Σ̄(t− 1)C̄TL̄

)}
LH

k ,

M2
k(t) = Lk

{
Cov(~γr(t)) ◦

(
L̄HC̄S̄(t)L̄

)}
LH

k ,

M3
k(t) = Lk

{
Cov(~γr(t)) ◦

(
L̄HS̄H(t)C̄TL̄

)}
LH

k ,

M4
k(t) = Lk

{
∆pr

(t) ◦
(
L̄HR̄(t)L̄

)
+ ∆1−pr

(t) ◦
(
L̄HR̄(t− 1)L̄

)}
LH

k ,

where ∆pr
(t) = E[~γr(t)~γrT(t)], ∆1−pr

(t) = E[(14Rn −~γr(t))(14Rn −~γr(t))T], with entries
given in (4), and

Σ̄(t) =
[
Φ̄(t)D̄(t)Φ̄H(t) + Q̄(t)− Φ̄(t)D̄(t)− D̄(t)Φ̄H(t) + D̄(t)

]
,

where D̄(t) = Rx̄(t, t) is recursively computed from

D̄(t) = Φ̄(t− 1)D̄(t− 1)Φ̄H(t− 1) + Q̄(t− 1). (16)

Finally, the Tk filtering and prediction error pseudo covariance matrices PTk (t|t) and
PTk (t + 1|t), respectively, are obtained from the filtering and prediction error pseudo covariance
matrices Pk(t|t) and Pk(t + 1|t), calculated from the recursive expressions

Pk(t|t) = Pk(t|t− 1)−Θk(t)Ω−1
k (t)ΘH

k (t), (17)

with Pk(0|0) = E[xk(0)xHk (0)], and

Pk(t + 1|t) = Φk(t)Pk(t|t)ΦH
k (t)−Hk(t)ΘH

k (t)Φ
H
k (t)

−Φk(t)Θk(t)HH
k (t)−Hk(t)Ωk(t)HH

k (t) + Qk(t), (18)

with Pk(1|0) = Φk(0)Pk(0|0)ΦH
k (0) + Qk(0).

Remark 5. In the implementation of the above algorithm, the particular structure of Σ̄(t) under
Tk-properness conditions should be taken into consideration. In this regard, it is not difficult to
check that Σ̄(t) is a block diagonal matrix of the form

• T1-properness: Σ̄(t) = diag
(

Σ1(t), Σ∗1(t), Σ
η
1(t), Σ

η′′

1 (t)
)

;

• T2-properness: Σ̄(t) = diag
(

Σ2(t), Σ
η
2(t)

)
,

with Σk(t) = Φk(t)Dk(t)ΦH
k (t) +Qk(t)−Φk(t)Dk(t)−Dk(t)ΦH

k (t) +Dk(t), k = 1, 2, where
Dk(t) = Rxk (t, t) is recursively computed from

Dk(t) = Φk(t− 1)Dk(t− 1)ΦH
k (t− 1) + Qk(t− 1).
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4.2. Tk Centralized Fusion Predictor

Theorem 2. The optimal Tk centralized fusion predictor x̂Tk (t + τ|t) for the state x(t) is obtained
by extracting the first n components of the optimal estimator x̂k(t + τ|t), which is recursively
computed from the expression

x̂k(t + τ|t) = Φk(t + τ − 1)x̂k(t + τ − 1|t), τ ≥ 2 (19)

with the initialization the one-step predictor x̂k(t + 1|t) given by (11).
Moreover, the Tk-proper prediction error pseudo covariance matrix PTk (t + τ|t) is obtained from

the prediction error pseudo covariance matrix Pk(t + τ|t), computed from the recursive expression

Pk(t + τ|t) = Φk(t + τ− 1)Pk(t + τ− 1|t)ΦH
k (t + τ− 1) + Qk(t + τ− 1), τ ≥ 2 (20)

with the initialization the one-step prediction error pseudo covariance matrix given by (18).

4.3. Tk Centralized Fusion Smoother

Theorem 3. The optimal Tk centralized fusion fixed-point smoother x̂Tk (t|s), for a fixed instant
t < s, for the state x(t) is obtained by extracting the n first components of the optimal estimator
x̂k(t|s), which is recursively computed from the expressions

x̂k(t|s) = x̂k(t|s− 1) + Lk(t, s)εk(s), t ≥ 1 (21)

with initial condition x̂k(t|t) given by (10), and where the innovations εk(s) are recursively
computed from (12) and Lk(t, s) = Θk(t, s)Ω−1

k (s) with Ω−1
k (s) obtained from the recursive

expression (14) and

Θk(t, s) =
[
Ek(t, s− 1)ΦH

k (s− 1)−Θk(t, s− 1)HH
k (s− 1)

]
CT

k Πk(s)

+
[
Ek(t, s− 1)CT

k −Θk(t, s− 1)GH
k (s− 1)

]
(Im −Πk(s)), (22)

Ek(t, s) =
[
Ek(t, s− 1)ΦH

k (s− 1)−Θk(t, s− 1)HH
k (s− 1)

](
I − CT

k Πk(s)LH
k (s)

)
−
[
Ek(t, s− 1)CT

k −Θk(t, s− 1)GH
k (s− 1)

]
(Im −Πk(s))LH

k (s), (23)

with initialization Θk(t, t) = Θk(t) given by (13) and Ek(t, t) = Pk(t|t).
Furthermore, the Tk fixed-point smoothing error pseudo covariance matrix is recursively

computed through the expression

Pk(t|s) = Pk(t|s− 1)−Θk(t, s)Ω−1
k (s)ΘH

k (t, s), (24)

with Pk(t|t) the filtering error pseudo covariance matrix (17).

As mentioned above, the main advantage of the proposed Tk centralized fusion
algorithms is that the resulting Tk centralized fusion estimators coincide with the optimal
TWL counterparts; meanwhile, they lead to computational savings with respect to the one
derived from a TWL approach.

Remark 6. The computational demand of the proposed tessarine estimation algorithms under Tk,
for k = 1, 2 properness conditions is similar to that of their counterparts in the quaternion domain,
i.e., the QSL and QSWL estimation algorithms, respectively, (review [34] for a comparative analysis
of the computational complexity of quaternion estimators). Therefore, the computational load of
TWL estimation algorithms is of order O(64R3n3), whereas the Tk, for k = 1, 2, algorithms are of
order O(m3), with m = kRn.
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5. Simulation Examples

In this section, the effectiveness of the above Tk-proper centralized fusion estimation
algorithms is experimentally analyzed. With this aim, the following simulation examples
have be chosen to reveal the superiority of the proposed Tk-proper estimators over their
counterparts in the quaternion domain, when Tk-properness conditions are present.

Let us consider the following tessarine system with three sensors:

x(t + 1) = f1x(t) + u(t)

z(i)(t) =x(t) + v(i)(t), i = 1, 2, 3

y(i)(t) =γ(i)(t) ? z(i)(t) + (1− γ(i)(t)) ? z(i)(t− 1), i = 1, 2, 3

with f1 = 0.9− 0.3η + 0.02η′ + 0.1η′′ ∈ T. The following assumptions are made on the
initial state and additive noises.

1. The initial state x0 is a tessarine Gaussian variable determined by the real covariance matrix

E[xr(0)xrT(0)] =


a 0 −2.5 0
0 4 0 −2.5
−2.5 0 a 0

0 −2.5 0 4

. (25)

2. u(t) is a tessarine white Gaussian noise with a real covariance matrix

E[ur(t)urT(s)] =


0.9 0 c 0
0 b 0 c
c 0 0.9 0
0 c 0 b

δt,s. (26)

3. The measurement noises v(i)(t) of the three sensors are tessarine white Gaussian
noises defined as

v(i)(t) = αiu(t) + w(i)(t),

where the coefficients αi are the constant scalars α1 = 0.5, α2 = 0.8, and α3 = 0.4 and
w(i)(t), i = 1, 2, 3, are T1-proper tessarine white Gaussian noises with mean zeros and
real covariance matrices

E[w(i)r
(t)w(i)rT

(s)] =


βi 0 0 0
0 βi 0 0
0 0 βi 0
0 0 0 βi

δt,s,

with β1 = 4, β2 = 8, and β3 = 25, and independent of u(t). Note that, if αi = 0, then
the noises u(t) and v(i)(t) are uncorrelated. In the opposite case, when αi becomes
more different from 0, the correlation between u(t) and v(i)(t) is stronger.

Moreover, at every sensor i, the Bernoulli random variables γ
(i)
ν (t), ν = r, η, η′, η′′, have

the constant probabilities P[γ(i)
ν (t) = 1] = p(i)ν , for all t ∈ T.

In this framework, a comparative study between tessarine and quaternion approaches
is carried out to evaluate the performance of the proposed filtering, prediction and smooth-
ing algorithms under T1 and T2 properness conditions. Specifically, besides the filtering,
the 3-step prediction and fixed-point smoother at t = 20 problems are considered in
our simulations.

5.1. Study Case 1: T1-Proper Systems

Consider the values a = 4 in (25) and b = 0.9 and c = 0.3 in (26), and the
Bernoulli probabilities
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• p(1)r = p(1)η = p(1)η′ = p(1)η′′ = p1;

• p(2)r = p(2)η = p(2)η′ = p(2)η′′ = p2;

• p(3)r = p(3)η = p(3)η′ = p(3)η′′ = p3.

Note that, under these conditions, both x(t) and y(i)(t), i = 1, 2, 3, are jointlyT1-proper.
For the purpose of comparison, the error variances of both T1 and QSL estimators have been

computed for different Bernoulli probabilities pi, i = 1, 2, 3. We denote the QSL error variances
by PQSL(t|s). Then, as a performance measure, we compute the difference between the
T1 and QSL error variances associated to the filter, DE1(t|t) = PQSL(t|t) − P1(t|t), the
3-step predictor, DE1(t + 3|t) = PQSL(t + 3|t)− P1(t + 3|t), and the fixed-point smoother
at t = 20, DE1(20|t) = PQSL(20|t)− P1(20|t), for t > 20.

Firstly, these differences are displayed in Figure 1 considering different degrees of cor-
relations between the state and measurement noises: independent noises
(α1 = α2 = α3 = 0), low correlations (α1 = 0.5, α2 = 0.8, α3 = 0.4), and high correla-
tions (α1 = 5, α2 = 8, α3 = 4) and two levels of uncertainties: high delay probabilities
(case p1 = 0.5, p2 = 0.2, p3 = 0.4) and low delay probabilities (case p1 = 0.9, p2 = 0.5,
p3 = 0.8). As we can see, in all situations these differences are positive, which indicate
that the proposed T1 estimators outperform the QSL estimators. Moreover, this superiority
in performance increases when the correlation between the system noises is higher. With
respect to the levels of uncertainties, a better behavior of the T1 estimators over the QSL
counterparts is generally observed in the scenario of high delays probabilities, i.e., when
the Bernoulli probabilities are smaller.
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Figure 1. Difference between QSL and T1 error variances for the problem of (a) filtering, (b) 3-step prediction and (c)
fixed-point smoothing.

Next, in order to evaluate the performance of the proposed estimators versus the
probability of delay, we consider the same Bernoulli probabilities in the three sensors
(p1 = p2 = p3 = p), and the difference between the T1 and QSL error variances are com-
puted for different values of p. Figure 2 illustrates these differences for
p = 0, 0.2, 0.4, 0.6, 0.8, 1. In these figures, the superiority in performance of T1 estima-
tors over QSL estimators is confirmed since DE1 > 0 in every case. Additionally, in the
filtering and prediction problems it is observed that this superiority is higher for the small-
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est Bernoulli probabilities, i.e., when the delay probabilities are greater. On the other hand,
in the fixed-point smoothing problem, a similar behavior for Bernoulli probabilities p and
1− p is obtained, the advantages of the T1 smoothing algorithm being higher than the QSL
one at intermediate values of p (case p = 0.4 and p = 0.6). These results are examined in
detail below.
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Figure 2. Difference between QSL and T1 error variances for the problem of (a) filtering, (b) 3-step prediction and
(c) fixed-point smoothing.

Our aim now is to analyze the benefits of our T1 estimation algorithms in terms of the
Bernoulli probabilities of the three sensors p. In this analysis, different values of c in (26)
are also considered. Then, the means of the difference between the T1 and QSL filtering,
prediction, and fixed-point smoothing error variances have been computed as

• Filtering problem: MDEp
1 (t|t) =

1
100

100
∑

t=1
DEp

1 (t|t);

• 3-step prediction problem: MDEp
1 (t + 3|t) = 1

97

97
∑

t=1
DEp

1 (t + 3|t);

• Fixed-point smoothing problem: MDEp
1 (20|t) = 1

80

80
∑

t=1
DEp

1 (20|t);

for p varying from 0 to 1 and the values of c = 0, 0.3, 0.6, and 0.8, and where DEp
1 (t|t),

DEp
1 (t + 3|t) and DEp

1 (20|t) denote the difference between the T1 and QSL filtering, 3-
step prediction, and fixed-point smoothing error variances, respectively, for a value of
the Bernoulli probability p. Note that in the case c = 0, the noise u(t) is, besides being
T1-proper, Q-proper, and a higher value of c means that the noise u(t) moves further away
from the Q-properness condition. The results of this analysis are depicted in Figure 3
where, on the one hand, we can clearly observe how the best performance of T1 filtering
and prediction estimators over the QSL counterparts is obtained for the smallest Bernoulli
probabilities. Specifically, except for the case c = 0.8, the maximum difference between
T1 and QSL errors is achieved when the Bernoulli probability takes the value 0, i.e., when
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only one-step delay exists in the measurements. However, in the fixed-point smoothing
problem T1 is more advantageous when the Bernoulli probabilities p tend to 0.5. On
the other hand, in every case, the superiority of our T1 estimation algorithms is more
evident as the parameter c in (26) grows, i.e., the noise u(t) is further away from the
Q-properness condition.
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Figure 3. Mean of the difference between QSL and T1 error variances for the problem of (a) filtering, (b) 3-step prediction,
and (c) fixed-point smoothing.

5.2. Study Case 2: T2-Proper Systems

Consider the values a = 6 in (25), b = c = 0.3 in (26), and the Bernoulli probabilities
for the three sensors as in Section 5.1. Note that, under these conditions, both x(t) and
y(i)(t), i = 1, 2, 3, are jointly T2-proper.

Thus, we are interested in comparing the behavior of T2 centralized fusion estima-
tors with their counterparts in the quaternion domain, i.e., the quaternion semi-widely
linear (QSWL) estimators. For this purpose, the T2 and QSWL error variances, P2(t|s)
and PQSWL(t|s), respectively, have been computed by considering different Bernoulli
probabilities for the three sensors.

Specifically, we consider the filtering, the 3-step prediction, and the fixed-point smooth-
ing problems at t = 20, and, as a measure of comparison, we use the difference between
both QSWL and T2 error variances, which are defined as DE2(t|t) = PQSWL(t|t)− P2(t|t)
(filtering), DE2(t+ 3|t) = PQSWL(t+ 3|t)−P2(t+ 3|t) (3-step prediction), and DE2(20|t) =
PQSWL(20|t)− P2(20|t) (fixed-point smoothing).

Figures 4 and 5 compare the difference between QSWL and T2 centralized esti-
mation error variances for different Bernoulli probabilities p1, p2 and p3. Specifically,
Figure 4 analyzes the filtering and 3-step prediction error variance differences DE2(t|t) and
DE2(t + 3|t) for the following cases:

1. Case 1: for values of p1 = 0.1, 0.5, 0.9 in three situations: p2 = 0.9 and p3 = 0.1,
p2 = 0.1 and p3 = 0.9, and p2 = p3 = 0.5;
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2. Case 2: for values of p2 = 0.1, 0.5, 0.9 in three situations: p1 = 0.9 and p3 = 0.1,
p1 = 0.1 and p3 = 0.9, and p1 = p3 = 0.5;

3. Case 3: for values of p3 = 0.1, 0.5, 0.9 in three situations: p1 = 0.9 and p2 = 0.1,
p1 = 0.1 and p2 = 0.9, and p1 = p2 = 0.5.
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Figure 4. Difference between QSWL and T2 error variances for the problem of filtering (left column) and 3-step prediction
(right column) for Cases 1–3.

It should be highlighted that similar results are obtained with any other combination
of Bernoulli probabilities pi, i = 1, 2, 3.
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From these figures, we can reaffirm that T2 processing is a better approach than the
QSWL processing in terms of performance (DE2 > 0). Moreover, in the filtering and 3-step
prediction problems (Figure 4), this fact is more evident when the probabilities of the
Bernoulli variables decrease (that is, the delay probabilities increase).

The differences between both QSWL and T2 error variances for the fixed-point smooth-
ing problem are illustrated in Figure 5. Note that, since the behavior of the differences
between QSWL and T2 fixed-point smoothing errors is similar for Bernoulli probabilities
values pi and 1− pi, these differences are analyzed in the following cases:

1. Case 4: for values of p1 = 0.1, 0.3, 0.5 in three situations: p2 = 0.1 and p3 = 0.3,
p2 = 0.3 and p3 = 0.1, and p2 = p3 = 0.3.

2. Case 5: for values of p2 = 0.1, 0.3, 0.5 in three situations: p1 = 0.1 and p3 = 0.3,
p1 = 0.3 and p3 = 0.1, and p1 = p3 = 0.3.

3. Case 6: for values of p3 = 0.1, 0.3, 0.5 in three situations: p1 = 0.1 and p2 = 0.3,
p1 = 0.3 and p2 = 0.1, and p1 = p2 = 0.3.

In every situation, the better behavior of T2 processing over the QSWL processing is
verified, and also this superiority increases when the Bernoulli probabilities tends to 0.5,
i.e., when there is a similar chance of receiving updated and delayed information.
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Figure 5. Difference between QSWL and T2 error variances for the fixed-point smoothing problem for Cases 4–6.

6. Discussion

From among the different sensor fusion methods, it is the centralized fusion tech-
niques that provide the optimal estimators from measurements of all sensors. Nevertheless,
to avoid the computational load involved in these estimates, especially in systems with
a large number of sensors, suboptimum estimation algorithms have been traditionally
designed by using a decentralized fusion approach. This paper has overcome the above
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computational difficulties without renouncing to obtain the optimal solution, by consid-
ering hypercomplex algebras. Quaternions and, more recently, tessarines are the most
usual 4D hypercomplex algebra employed in signal processing. Commonly, since both
quaternions and tessarines are isomorfic spaces to R4, they involve the same computa-
tional complexity. Interestingly, under properness conditions, this complexity in terms
of dimension is reduced to a half for QSWL and T2-proper methods and four times for
QSL and T1-proper methods, which leads to a significant reduction in the computational
load of our algorithms. Precisely, it is in this context that the use of hypercomplex algebras
becomes an ideal tool with computational advantages over the existing methods to address
the centralized fusion estimation problem.

In general, neither of these algebras always performs better than the other, and the
choice of the most suitable one is conditioned by the characteristics of the signal. Due to
the commutativity and reduced computational complexity, the tessarine algebra makes it
particularly interesting for our purposes. Thus, under conditions of Tk-properness, filtering,
prediction, and fixed-point smoothing algorithms of reduced dimension have been devised
for the estimation of a vectorial tessarine signal based on one-step randomly delayed
observations coming from multiple sensors stochastic systems with different delay rates
and correlated noises. The reduction of the dimension of the problem under Tk-properness
scenarios makes it possible for these algorithms to facilitate the computation of the optimal
estimates with a lower computational cost in comparison with the real processing approach.
It should be highlighted that this computational saving cannot be attained in the real field.

The good performance of the algorithms proposed has been experimentally illustrated
by means of two simulation examples, where the better behavior of the proposed Tk
estimates over their counterparts in the quaternion domain under Tk-properness conditions
has been evidenced.

In future research, we will set out to explore the design of decentralized fusion estima-
tion algorithms for hypercomplex signals and investigate the use of new hypercomplex
algebras in this field.
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Appendix A. Proof of Theorem 1

The proof is based on the innovation technique. Consider the one-state delay model:

x̄(t + 1) = Φ̄(t)x̄(t) + ū(t), t ≥ 0

yk(t) = D̃γ
k (t)C̄x̄(t) + D̃(1−γ)

k (t)C̄x̄(t− 1) + D̃γ
k (t)~v(t) + D̃(1−γ)

k (t)]~v(t− 1), t ≥ 1
(A1)

and define the innovations as εk(t) = yk(t)− ŷk(t|t− 1).
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In order to simplify the proof of Theorem 1, the following results have been previ-
ously established.

Appendix A.1. Preliminary Results

The following property, stated without proof, about the correlations between the
innovations εk(t) and the augmented state x̄(t) and the noises ū(t) and vk(t), will be useful
in the proof of Theorem 1.

Property A1. Given the system (A1), and under the Assumptions 1-4, the following correlations
hold:

1. E[ū(t)εHk (t)] = S̄(t)Π̃γH

k (t).
2. E[ū(t)εHk (s)] = 04n×m, for t > s.

3. E[v̄(t)εHk (t)] = R̄(t)Π̃γH

k (t).
4. E[v̄(t)εHk (s)] = 04Rn×m, for t > s.

Moreover, the following results will be of interest in the derivation of the formulas
given in Theorem 1.

Lemma A1. Denote ∆D̃γ
k (t) = D̃γ

k (t)− Π̃
~γ
k (t) and ∆D̃(1−γ)

k (t) = D̃(1−γ)
k (t)− Π̃

(1−γ)
k (t).

For any tessarine random vectors α1(t), α2(t) ∈ T4Rn and β(t) ∈ Tq, for any dimension q, the
following relations hold:

1. E
[
∆D̃γ

k (t)α1(t)αH2(s)∆D̃
γH

k (t)
]
= Lk

{
Cov(~γr(t)) ◦

(
L̄HE[α1(t)ᾱ2

H(s)]L̄
)}

LH
k .

2. E
[
∆D̃γ

k (t)α1(t)αH2(s)D̃
γH

k (t)
]
= Lk

{
Cov(~γr(t)) ◦

(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .

3. E
[
∆D̃γ

k (t)α1(t)αH2(s)D̃
(1−γ)H

k (t)
]
= −Lk

{
Cov(~γr(t)) ◦

(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .

4. E
[
∆D̃γ

k (t)α1(t)βH(s)
]
= 0m×q.

5. E
[
D̃γ

k (t)α1(t)αH2(s)D̃
γH

k (t)
]
= Lk

{
E
[
~γr(t)~γrT(t)

]
◦
(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .

6. E
[
D̃γ

k (t)α1(t)αH2(s)D̃
(1−γ)H

k (t)
]
=

Lk

{
E
[
~γr(t)(14Rn −~γr(t))T

]
◦
(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .

7. E
[
D̃(1−γ)

k (t)α1(t)αH2(s)D̃
(1−γ)H

k (t)
]
=

Lk

{
E
[
(Im −~γr(t))(Im −~γr(t))T

]
◦
(
L̄HE[α1(t)αH2(s)]L̄

)}
LH

k .

Proof. The proof is immediate from (1) and taking into account that D̃γ
k (t) = Lk diag(~γr(t))L̄H

and D̃(1−γ)
k (t) = Lk diag(14Rn −~γr(t))L̄H.

Appendix A.2. Expressions in Theorem 1

Although tessarine algebra is not a Hilbert space, the existence and uniqueness of
the projection of an element on the set of measurements {yk(1), . . . , yk(s)}, for k = 1, 2, is
guaranteed ([23]). Now, from Theorem 3 of [23], we obtain

ˆ̄x(t|t) = ˆ̄x(t|t− 1) + L̃k(t)εk(t), (A2)

with L̃k(t) = Θ̃k(t)Ω−1
k (t), where Θ̃k(t) = E[x̄(t)εHk (t)] and Ωk(t) = E[εk(t)εHk (t)]. Then,

by applying Tk-properness conditions, (10) is directly devised.
Taking projections on both sides of the state and observation equations in (A1) onto

the linear space spanned by {εk(1), . . . , εk(t− 1)}, and using Property A1, we have

ˆ̄x(t + 1|t) = Φ̄(t) ˆ̄x(t|t) + H̃k(t)εk(t) (A3)
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ŷk(t|t− 1) = Π̃
~γ
k (t)C̄ ˆ̄x(t|t− 1) + Π̃

(1−γ)
k (t)

[
C̄ ˆ̄x(t− 1|t− 1) + ˆ̄v(t− 1|t− 1)

]
(A4)

where H̃k(t) = S̄(t)Π̃γH

k (t)Ω−1
k (t) and ˆ̄v(t|t) = G̃k(t)εk(t), with G̃k(t) = R̄(t)Π̃γH

k (t)Ω−1
k (t).

Then, (11) follows from (A3) and the Tk-properness conditions on Φ̄(t) and Π̃
~γ
k (t)

established in Proposition 1 and Remark 3. Likewise, (12) is easily obtained from (A4).
Consider now the gain matrix L̃k(t) = Θ̃k(t)Ω−1

k (t) in (A2). Denote the prediction error and
its covariance matrix as ε̄(t|t− 1) = x̄(t)− ˆ̄x(t|t− 1) and P̄(t|t− 1) = E[ε̄(t|t− 1)ε̄H(t|t− 1)],
respectively. Then, by applying (A1) and (A4), ε̄(t|t − 1) ⊥ ˆ̄x(t|t − 1), Property 3 and
Property A1, we have

Θ̃k(t) = P̄(t|t− 1)C̄T
Π̃

γH

k (t) + Φ̄(t− 1)P̄(t− 1|t− 1)C̄T
Π̃

(1−γ)H

k (t) + S̄(t− 1)Π̃(1−γ)H

k (t)

− H̃k(t− 1)Θ̃H
k (t− 1)C̄T

Π̃
(1−γ)H

k (t)− Φ̄(t− 1)Θ̃k(t− 1)G̃H
k (t− 1)Π̃(1−γ)H

k (t)

− H̃k(t− 1)Ωk(t− 1)G̃H
k (t− 1)Π̃(1−γ)H

k (t), t > 1 (A5)

and thus, the recursive expression (13) is directly obtained from (A5), by applying the
Tk-properness conditions on Φ̄(t), and denoting by Pk(t|t− 1) the first m×m submatrix
of P̄(t|t− 1).

Next, we devise the expression for the innovation covariance matrix (14). For this
purpose, the innovations are rewritten in the following form

εk(t) = ∆D̃γ
k (t)C̄x̄(t) + Π̃

~γ
k (t)C̄ε̄(t|t− 1)− ∆D̃γ

k (t)C̄x̄(t− 1) + Π̃
(1−γ)
k (t)C̄ε̄(t− 1|t− 1)

+ D̃γ
k (t)~v(t) + D̃(1−γ)

k (t)~v(t− 1)− Π̃
(1−γ)
k (t)G̃k(t− 1)εk(t− 1). (A6)

From (A3), the prediction error ε̄(t + 1|t) can be expressed as

ε̄(t + 1|t) = Φ̄(t)ε̄(t|t) + ū(t)− H̃k(t)εk(t). (A7)

As a consequence, from (A7), using Property 3 and Property A1, and taking into account
that ε̄(t|t) ⊥ εk(t), we have

E[ū(t)ε̄H(t|t)] = −H̃k(t)Θ̃
H
k (t), (A8)

E[ε̄(t + 1|t)ε̄H(t|t)] = Φ̄(t)P̄(t|t)− H̃k(t)Θ̃
H
k (t), (A9)

E[ε̄(t|t)v̄H(t)] = −Θ̃k(t)G̃H
k (t), (A10)

E[ε̄(t|t)v̄H(t + 1)] = 04n×4Rn, (A11)

E[ε̄(t + 1|t)v̄H(t)] = S̄(t)− Φ̄(t)Θ̃k(t)G̃H
k (t)− H̃k(t)Ω̃k(t)G̃H

k (t), (A12)

E[ε̄(t + 1|t)v̄H(t + 1)] = 04n×4Rn. (A13)

Then, the expression (14) for the innovation covariance matrix is obtained from (A6), by
using Lemma A1, Property 3, Property A1, (A9)–(A13), ε̄(t + 1|t) ⊥ εk(t), and by applying
Tk properness conditions. Furthermore, the recursion of D̄(t) = E[x̄(t)x̄H(t)] given in (16)
is a direct consequence of the augmented state equation in system (A1). In a similar way,
Equation (15) follows.

In the following step, consider the filtering error covariance matrix P̄(t|t) = E[ε̄(t|t)ε̄H(t|t)]
with ε̄(t|t) = x̄(t) − ˆ̄x(t|t). From (A2), we directly obtain that P̄(t|t) = P̄(t|t − 1) −
Θ̃k(t)Ω−1

k (t)Θ̃H
k (t) and thus (17) holds by virtue of Tk properness conditions.

Finally, from (A7) , and taking into consideration that ε̄(t|t) ⊥ εk(t), (A8), and
Property A1, we have

P̄(t + 1|t) = Φ̄(t)P̄(t|t)Φ̄H(t)− H̃k(t)Θ̃
H
k (t)Φ̄

H(t)

− Φ̄(t)Θ̃k(t)H̃H
k (t)− H̃k(t)Ωk(t)H̃H

k (t) + Q̄(t).
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From Tk properness conditions (18) follows.

Appendix B. Proof of Theorem 2

From the projection of x(t + τ) onto the linear space spanned by {εk(1), . . . , εk(t)},
we have

ˆ̄x(t + τ|t) = Φ(t + τ − 1) ˆ̄x(t + τ − 1|t), τ ≥ 2

Then, from Tk properness conditions, (19) holds.
Finally, from (19), it is clear that the prediction error covariance matrix Pk(t + τ|t)

satisfies the recursive expression (20).

Appendix C. Proof of Theorem 3

By projecting the state x(t) onto the linear space spanned by {εk(1), . . . , εk(s)}, we have

ˆ̄x(t|s) = ˆ̄x(t|s− 1) + L̃k(t, s)εk(s), t < s (A14)

with L̃k(t, s) = θ̃k(t, s)Ω−1
k (s), where θ̃k(t, s) = E[x̄(t)εHk (s)]. Then, (21) is directly derived

from (A14), by applying Tk properness conditions.
Consider the matrix θ̃k(t, s). From (12) and (8), we have

θ̃k(t, s) = E[x̄(t)ε̄H(s|s− 1)]C̄T
Π̃
~γ
k (s) + E[x̄(t)ε̄H(s− 1|s− 1)]C̄T

(Im − Π̃
~γ
k (s))

− θ̃k(t, s− 1)G̃H
k (s− 1)(Im − Π̃

~γ
k (s))

Let us define the matrix Ē(t, s) = E
[
x̄(t)ε̄H(s|s)

]
. Thus, from (A1) and (A3), it follows that

θ̃k(t, s) =
[
Ē(t, s− 1)Φ̄H(s− 1)− θ̃k(t, s− 1)H̃H

k (s− 1)
]
C̄T

Π̃
~γ
k (s)

+
[
Ē(t, s− 1)C̄T − θ̃k(t, s− 1)G̃H

k (s− 1)
]
(Im − Π̃

~γ
k (s)) (A15)

Then, (22) follows from T proper conditions.
In a similar way, from (A1)–(A3) and (A15), Ē(t, s) is of the form

Ē(t, s) =
[
Ē(t, s− 1)Φ̄H(s− 1)− θ̃k(t, s− 1)HH(s− 1)

](
Im − C̄T

Π̃
~γ
k (s)L

H(s)
)

−
[
Ē(t, s− 1)C̄T − θ̃k(t, s− 1)GH(s− 1)

]
(Im − Π̃

~γ
k (s))L

H(s) (A16)

where Ē(t, t) = P̄(t|t). Then, (23) follows from Tk proper conditions.
Finally, (24) can be easily derived from (21).
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