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Abstract: This study provides two mathematical tools to best estimate the gravity direction when
using a pair of non-orthogonal inclinometers whose measurements are affected by zero-mean Gaus-
sian errors. These tools consist of: (1) the analytical derivation of the gravity direction expectation
and its covariance matrix, and (2) a continuous description of the geoid model correction as a linear
combination of a set of orthogonal surfaces. The accuracy of the statistical quantities is validated
by extensive Monte Carlo tests and the application in an Extended Kalman Filter (EKF) has been
included. The continuous geoid description is needed as the geoid represents the true gravity direc-
tion. These tools can be implemented in any problem requiring high-precision estimates of the local
gravity direction.

Keywords: inclinometer data processing; covariance analysis; geoid correction

1. Introduction

The direct measurement of gravity using inclinometers has a variety of practical
applications. Tilt sensors, such as accelerometers or inclinometers, are the hardware of
choice for measuring a planet’s gravitational field. While the gravity is perturbed on a
global scale by other massive bodies (e.g., Moon, Sun), local perturbations to the gravity
vector’s pointing direction depend on nearby mass distributions and anomalies, or a lack
thereof. A detailed review of various kinds of solid tilt sensors with comparisons between
the most typical tilt sensing techniques can be found in [1].

From a sensory perspective, inclinometers are commonly used to measure inclination
angle magnitudes and structural deformations. Measured values are typically provided as
a percentage or angular deflection with respect to a level reference surface, whose nominal
orientation is perpendicular to the local gravity vector. Other classic inclinometer use cases
include measuring the slope gradient during activities such as tunneling, de-watering and
excavation, as well as those that require monitoring the integrity of the ground around
a structure.

In land surveying and mapping, an inclinometer can provide a rapid measurement of
the slope of a geographic feature [2] or be used for analyzing the magnitude, rate, direction,
depth, and type of landslides [3]. Continuous monitoring of landslides is important for
early warning purposes. In general, inclinometers can be used for continuous monitoring
of any movement, providing valuable information for landslide autonomous geometry
reconstruction [4]. In the oil and gas industries, inclinometers are used to measure the strike
and dip of geologic formations [5] in order to detect oil and mineral deposits. In forestry,
tree height measurements can be made by an inclinometer using standardized methods [6].
Major artillery guns may have an associated inclinometer used to facilitate the aiming
of shells over long distances [7,8]. Permanently installed inclinometers are employed at
major earthworks such as dams [9,10] to monitor the long-term stability of the structure.
Inclinometers can also be used in robotics [11] and to measure bridge deflections [12] for
bridge safety evaluation. Specifically, the authors of [13] developed and implemented a
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measuring system to assess railway bridges using measurements of the structural response
to passing trains. Furthermore, low-cost tilt sensors are now commonplace in commercially
available smartphones in order to make relative orientation estimates of the device.

Inclinometers are also used in more complex systems, such as in problems of estimat-
ing the position and orientation of a calibrated camera observing a set of n 3D points, known
as Perspective-n-Point (PnP) problems [14], and in “Stellar Positioning Systems” [15–17],
where the gravity direction along with celestial references can be used to estimate the
geographical position in scenarios where real-time GPS information is unavailable (e.g., on
Mars). Such systems can also be used on Earth as a backup system during instances of GPS
jamming or spoofing.

Today, new types of inclinometers are emerging, such as the two-dimensional highly
sensitive fiber-optic inclinometer proposed by [18], which can provide long-term contin-
uous monitoring of inclinations or real-time feedback control of tilt angles, especially in
harsh environments with violent temperature variations. Microelectromechanical (MEMS)
inclination sensors are also being developed to enhance the properties of design, fabrication,
and signal measurement precision [19].

Prior to being deployed in the field, inclinometers are efficiently calibrated in a labora-
tory setting. Because of vibrations and subsequent thermal fluctuations, the orientation of
the inclinometer assembly degrades over time, requiring re-calibration methods to properly
account for new measurement errors. Reference [20] proposes a new inclinometer assembly
error calibration and horizontal image correction method utilizing plumb lines, where the
horizontal correction is derived by a homography matrix.

The monitoring of possible road subsidence is proposed using a combination of
theodolite measurements and inclinometers [21] to detect ground motion near critical
infrastructure during excavation in the vicinity. The proposed method, validated by
Monte Carlo simulation, is formulated as a covariance weighted Hermite approximation
problem. On the contrary, this paper addresses the problem of the best estimation of the
gravity direction by non-approximated (analytical) derivations for a pair of inclinometers
only. The proposed method can then be adopted in almost all the scenarios involving
two inclinometers.

This study considers the classic system of two non-orthogonal inclinometers affected
by zero-mean Gaussian error (hypothesis) to measure the gravity direction, and it provides
the non-approximated mathematical tools to best estimate the gravity direction for any
static and/or dynamic scenario (objective). In particular, we provide:

1. The analytical tools to best estimate the gravity direction. These tools consist of: (a) an
exact estimate of the gravity direction when inclinometer measurements are affected
by zero-mean Gaussian noise, and (b) the associated gravity covariance matrix. These
tools can be used in static and filtered dynamic scenarios to accurately estimate the
actual gravity direction and to model the local subtle gravity variations.

2. A continuous mathematical model to describe the true gravity direction deviation
with respect to the latest (1984) revision of the approximated World Geodetic System
(WGS-84) ellipsoidal model. Two deflection correction models are proposed for the
north–south and east–west deflection variations. These models are expressed using
combinations of a set of N linearly independent orthogonal surfaces that are derived
from Chebyshev orthogonal polynomials of the first kind.

These tools and models find relevance in a variety of gravity measurement tasks and
associated use, especially in filtered systems, such as the one developed for geo-technical
monitoring in [22].

System Definition

The system under consideration in this study is shown in Figure 1, which describes
the axes of the two non-orthogonal inclinometers, [Ix, Iy], and an orthonormal inclinometer
reference frame, {x, y, z}. The Ix-axis of the inclinometer frame is assumed to be coincident
with the x-axis reference frame, and the plane defined by the two inclinometers axes is
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also coincident with the [x, y]-plane. The relative orientation of the two inclinometer axes
deviates from the nominal/optimal orthogonal displacement by an angle ε. This angle,
which takes into account the small deviation from orthogonality due to mounting errors,
can be estimated during lab calibration and, possibly, re-calibrated later to account for
variations caused by vibrations and/or thermal expansions.

The gravity direction in the [x, y, z] frame is

g =


gx
gy
gz

 =


cos ϑx

cos ϑy − cos ϑx sin ε

cos ε

−
√

1− g2
x − g2

y

, (1)

where the third component enforces the unit-norm constraint. The inclinometer measure-
ment angles, ϑx and ϑy (see Figure 1), allow the estimation of the gravity direction in the
reference frame.

Figure 1. Geometry of the inclinometer system and associated reference frame.

2. Gravity Direction Estimation

This section contains the covariance analysis of the gravity direction estimated by two
identical inclinometers, as shown in Figure 1. The analysis is performed for the generic
case of a non-orthogonal mounting, where the inclinometer axes differ from orthogonality
by the angle ε.

Let the two measured angles, ϑx and ϑy, be affected by Gaussian noise

ϑx ∼ N
(

µx, σ2
)

and ϑy ∼ N
(

µy, σ2
)

.

where µx and µy are the mean values and σ2 is the measurement variance, identical for the
two inclinometers. The mean values, µx and µy, constitute the two main components of the
EKF state vector. The quantities ε and σ2 are initially estimated by lab calibration methods.
However, vibrations and/or thermal expansions will likely change their values over time.
In this case, these parameters should be re-calibrated and their values re-estimated by
adding them as new variables to the EKF state vector (see the Discussion section).

The angles, ϑx and ϑy, can be represented by a zero-mean Gaussian angle, δ, as{
ϑx = µx + δ

ϑy = µy + δ
, where δ ∼ N

(
0, σ2

)
.

To estimate the gravity direction, Equation (1) requires the evaluation of E{cos ϑx}
and E{cos ϑy}. Dropping the axis-specific subscript, we can write,

E{cos ϑ} = E{cos(µ + δ)} = cos µ · E{cos δ} − sin µ · E{sin δ}. (2)



Sensors 2021, 21, 5727 4 of 19

The term sin δ is an odd function. Therefore, its expectation is zero. Hence, Equation (2)
simplifies to

E{cos ϑ} = cos µ · E{cos δ}.

To compute E{cos δ}, let us expand it by Maclaurin series [23]:

E{cos δ} = E

{
∞

∑
k=0

(−1)k

(2k)!
δ2k

}
=

∞

∑
k=0

(−1)k

(2k)!
E
{

δ2k
}

. (3)

Reference [24] provides the following identity:

E
{

δ2k
}
= 1 · 3 · 5 · . . . · (2k− 1) σ2k =

(2k)!
2k k!

σ2k. (4)

Substituting Equation (4) into Equation (3), the exact expectation of the cosine of the
zero-mean Gaussian angle, δ, is

E{cos δ} =
∞

∑
k=0

(−1)k

2k k!
σ2k =

∞

∑
k=0

(−1)k

k!

(
σ2

2

)k

= e−σ2/2.

Therefore, we obtain {
E{cos ϑx} = e−σ2/2 cos µx

E{cos ϑy} = e−σ2/2 cos µy
. (5)

This result allows us to find the expected values of the first two components of the
gravity direction:

ĝx = E{gx} = e−σ2/2 cos µx (6)

ĝy = E{gy} = e−σ2/2
(cos µy

cos ε
− cos µx tan ε

)
. (7)

Figure 2 provides a geometrical interpretation of why the expectation of the cosine
is lower than the cosine of the mean when the measured angle is affected by zero-mean
error. If the inclinometer is not biased, then the error of the inclinometer can be described
by a small cone whose axis is coincident with the inclinometer axis. This implies that
inclinometer measurements affected by errors will fall within this cone. If the true angle
with respect to the gravity direction is ϑ, then all measurements providing the true angle
belong to the surface of a cone whose axis is the gravity direction and aperture is the angle
ϑ. This cone intersects the measurement error cone by splitting it into two spherical areas
that, as shown in Figure 2, are identified as “A” and “B.” All measurement angles falling
in the “A” area provide an angle greater than the true value, while all the measurement
angles falling into the “B” area provide an angle lower than the true value. Since the “A”
area is greater than the “B” area, a zero-mean inclinometer will provide an angle greater
than the true value. This means that a zero-mean inclinometer provides biased angles. This
phenomenon is generated by our three-dimensional spherical world, and only vanishes
under two situations: (a) when the measurement angle is perfectly ϑ = 90◦, and (b) when
the inclinometer standard deviation (dictating the aperture of the measurement error cone)
is σ = 0◦ (idealized inclination sensor).
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Figure 2. Geometrical explanation justifying the result provided by Equation (6).

This bias effect is actually very small, even for poorly accurate commercial inclinome-
ters. However, since the inclinometer axis direction is normally placed perpendicular to
the gravity direction, this effect is even smaller, because the inclinometer works around the
nominal orthogonality displacement of ϑ = 90◦.

3. Gravity Direction Covariance Matrix

The gravity direction covariance matrix is

P = E{(g − ĝ)(g − ĝ)T} =

E{g2
x} − ĝ2

x E{gxgy} − ĝx ĝy E{gxgz} − ĝx ĝz
(sym) E{g2

y} − ĝ2
y E{gygz} − ĝy ĝz

(sym) (sym) E{g2
z} − ĝ2

z

.

To compute the P(1, 1), P(1, 2), and P(2, 2) terms of this matrix, the following estima-
tions are required:

E{g2
x} = E

{
cos2 ϑx

}
E{gx gy} = E

{
cos ϑx cos ϑy

} 1
cos ε

− E
{

cos2 ϑx
}

tan ε

E{g2
y} =

E
{

cos2 ϑy
}
− 2E

{
cos ϑx cos ϑy

}
sin ε + E

{
cos2 ϑx

}
sin2 ε

cos2 ε

(8)

The term E{cos ϑx cos ϑy} can be expressed as

E{cos ϑx cos ϑy} = E{cos ϑx} E{cos ϑy} = cos µx cos µy e−σ2
, (9)

because cos ϑx and cos ϑy are statistically independent, while the computation of the
E{cos2 ϑ} terms requires the estimation of E{cos2 δ} and E{sin2 δ}. We have

E{cos2 ϑ} = E{(cos µ cos δ− sin µ sin δ)2} = cos2 µ E{cos2 δ}+ sin2 µ E{sin2 δ}.

The E{cos2 δ} and E{sin2 δ} expectations can also be computed by Maclaurin series:

E{cos2 δ} = E

{
1
2
+

1
2

∞

∑
k=0

(−1)k22k

(2k)!
δ2k

}
=

1
2
+

1
2

∞

∑
k=0

(−1)k22k

(2k)!
E
{

δ2k
}

=
1
2
+

1
2

∞

∑
k=0

(−1)k 22 k

(2 k)!
· (2k)!

2k k!
· σ2k =

1
2
+

1
2

∞

∑
k=0

(−1)k 2k

k!
· σ2k

=
1
2

(
1 + e−2 σ2

)
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and, similarly,

E{sin2 δ} = E

{
1
2
− 1

2

∞

∑
k=0

(−1)k22k

(2k)!
δ2k

}
= · · · = 1

2

(
1− e−2 σ2

)
.

Therefore,

E{cos2 ϑ} = cos2 µ

2

(
1 + e−2 σ2

)
+

sin2 µ

2

(
1− e−2 σ2

)
=

2 cos2 µ− 1
2

e−2 σ2
+

1
2

,

and, specifically, 
E{cos2 ϑx} =

2 cos2 µx − 1
2

e−2 σ2
+

1
2

E{cos2 ϑy} =
2 cos2 µy − 1

2
e−2 σ2

+
1
2

. (10)

Equations (9) and (10) allow us to obtain the following expectation expressions:

E{g2
x} =

2 cos2 µx − 1
2

e−2 σ2
+

1
2

(11)

E{gx gy} =
cos µx cos µy e−σ2

cos ε
−
[

2 cos2 µx − 1
2

e−2 σ2
+

1
2

]
tan ε (12)

E{g2
y} =

1
cos2 ε

[
2 cos2 µy − 1

2
e−2 σ2

+
1
2

]
− cos µx cos µy e−σ2 2 sin ε

cos2 ε

+

[
2 cos2 µx − 1

2
e−2 σ2

+
1
2

]
tan2 ε (13)

Using Equations (6) and (11), the term, P(1, 1) = E{g2
x} − ĝ2

x, of the covariance matrix
can be written as

P(1, 1) =
2 cos2 µx − 1

2
e−2 σ2

+
1
2
−
(

e−σ2/2 cos µx

)2

This expression can be simplified into the following more compact form:

P(1, 1) =

(
1− e−2 σ2

2

)
−
(

e−σ2 − e−2 σ2
)

cos2 µx (14)

To derive the analytical expression of the term, P(2, 2) = E{g2
y} − ĝ2

y, we make use of
Equations (7) and (13):

P(2, 2) =
1

cos2 ε

[
2 cos2 µy − 1

2
e−2 σ2

+
1
2

]
− cos µx cos µy e−σ2 2 sin ε

cos2 ε

+

[
2 cos2 µx − 1

2
e−2 σ2

+
1
2

]
tan2 ε− e−σ2

(cos µy

cos ε
− cos µx tan ε

)2

After some simple manipulations and simplifications, the previous equation can be
written in the more compact form

P(2, 2) =
1 + sin2 ε

cos2 ε

(
1− e−2 σ2

2

)
+

cos2 µx sin2 ε− cos2 µy

cos2 ε

(
e−σ2 − e−2 σ2

)
(15)

Note that, as a sanity check, if the two inclinometers were perfectly orthogonal,
meaning if ε = 0, then Equation (15) becomes formally identical to Equation (14).
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As for the term P(1, 2) = E{gxgy} − ĝx ĝy, we have

P(1, 2) =
cos µx cos µy e−σ2

cos ε
−
[

2 cos2 µx − 1
2

e−2 σ2
+

1
2

]
tan ε

− e−σ2
(cos µx cos µy

cos ε
− cos2 µx tan ε

)
which can be simplified to

P(1, 2) =

[(
e−σ2 − e−2 σ2

)
cos2 µx −

(
1− e−2 σ2

2

)]
tan ε, (16)

This equation highlights an unexpected result: the covariance term, P(1, 2), is not a
function of µy. This result, which has been numerically verified by extensive Monte Carlo
tests, remains with no explanation. Note also that, if the two inclinometers were perfectly
orthogonal (ε = 0), then we would obtain P(1, 2) = 0.

Computation of the P(1,3), P(2,3) and P(3,3) Terms via Covariance Law

The analytical expressions for the three missing terms of the covariance matrix,
P(1, 3), P(2, 3) and P(3, 3), were not found. However, a highly accurate estimation of
these terms can be obtained using the covariance law [25,26], sometimes called the error
propagation law.

The covariance law connects the two covariance matrices that are expressed in terms of
two different (but equivalent) parameterizations by the Jacobian, J , of the transformation
between parameterizations. In this specific case, the covariance law connects the 3× 3
covariance matrix of the gravity unit-vector, P, with the 2× 2 covariance matrix written in
terms of the cosine of the measurements, C. This relationship consists of the identity

P ≈ J CJ T (17)

where the analytical expressions of the covariance matrix terms ,

C =

[
E
{

cos2 ϑx
}
− E{cos ϑx}2 E

{
cos ϑx cos ϑy

}
− E{cos ϑx}E

{
cos ϑy

}
(sym) E

{
cos2 ϑy

}
− E

{
cos ϑy

}2

]

can all be computed using Equations (5), (9) and (10), while the Jacobian of the transforma-
tion between the two parameterizations is

J =



∂gx

∂ cos ϑx

∂gx

∂ cos ϑy

∂gy

∂ cos ϑx

∂gy

∂ cos ϑy

∂gz

∂ cos ϑx

∂gz

∂ cos ϑy


.

The first four elements of the Jacobian can be computed from Equation (1). Their
expressions are 

∂gx

∂ cos ϑx
= 1,

∂gx

∂ cos ϑy
= 0

and


∂gy

∂ cos ϑx
= − tan ε,

∂gy

∂ cos ϑy
= − 1

cos ε
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while the last two elements can be computed using the chain rule as
∂gz

∂ cos ϑx
=

∂gz

∂gx
· ∂gx

∂ cos ϑx
+

∂gz

∂gy
·

∂gy

∂ cos ϑx
=

∂gz

∂gx
− ∂gz

∂gy
tan ε

∂gz

∂ cos ϑy
=

∂gz

∂gx
· ∂gx

∂ cos ϑy
+

∂gz

∂gy
·

∂gy

∂ cos ϑy
= − ∂gz

∂gy
· 1

cos ε

where

∂gz

∂gx
=

gx√
1− g2

x − g2
y

=
cos ϑx cos ε√

cos2 ε− cos2 ϑx − cos2 ϑy + 2 cos ϑx cos ϑy sin ε
(18)

∂gz

∂gy
=

gy√
1− g2

x − g2
y

=
cos ϑy − cos ϑx sin ε√

cos2 ε− cos2 ϑx − cos2 ϑy + 2 cos ϑx cos ϑy sin ε
(19)

Finally, the expression of the Jacobian of the transformation is

J =



1 0

− tan ε − 1
cos ε

∂gz

∂gx
− ∂gz

∂gy
tan ε − ∂gz

∂gy
· 1

cos ε


where the expressions of the two partials,

∂gz

∂gx
and

∂gz

∂gy
, are provided by Equation (18) and

Equation (19), respectively.
The covariance law can actually be used to estimate all the elements of the covariance

matrix. However, this law has been used here only to estimate the three missing elements
of the covariance matrix, P(1, 3), P(2, 3) and P(3, 3). The main reason is that the covariance
law is based on a linear Taylor expansion of the transformation and is therefore an approxi-
mated method , even if it provides a highly accurate estimation of the covariance matrix.
On the contrary, the terms P(1, 1), P(2, 2) and P(1, 2), provided by the Equations (14)–(16),
are analytically exact.

It is easy to derive them by setting Q = C(1, 2) J(3, 1) + C(2, 2) J(3, 2). In doing so,
the expressions of the last three terms of the covariance matrix can be written as

P(1, 3) = C(1, 1) J(3, 1) + C(1, 2) J(3, 2)

P(2, 3) = J(2, 1) P(1, 3) + J(2, 2) Q

P(3, 3) = J(3, 1) P(1, 3) + J(3, 2) Q

(20)

4. Covariance Analysis Numerical Validation

The numerical validation of the covariance matrix was performed by Monte Carlo
tests using the R2016b version of MATLAB software . All of the tests were carried
out using two identical inclinometers affected by zero-mean Gaussian error with stan-
dard deviation 1σ = 0.1 deg., and with axes differing from orthogonality by the angle
ε = 5 deg. A set of 107 Monte Carlo tests were performed on 1000 gravity directions,
uniformly generated in a cone with 30 deg. (π/6 rad. ) aperture around the nominal
gravity direction g = {0, 0, −1}T. The uniformly distributed gravity directions were
generated as

g =


sin φ cos λ
sin φ sin λ

cos φ

 where

{
λ ∼ U [0, 2π]

cos φ ∼ U [−1, cos(π − π/6)]
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where U [a, b] indicates a uniform distribution in the [a, b] range. The gravity direction
components, (gx, gy, gz), and the two angles, (ϑx, ϑy), generated by this distribution have
the histograms reported in Figure 3.

Figure 3. Monte Carlo tests: histograms of the angles and the gravity components.

Since the three terms P(1, 1), P(1, 2) and P(2, 2) are mathematically correct (meaning,
not approximated), the Monte Carlo numerical validation tests were performed simply to
quantify the accuracy of the three elements of the covariance matrix, P(1, 3), P(2, 3) and
P(3, 3), whose expressions were obtained by the covariance law.

The validation was performed by comparing the three elements of the covariance
matrix, T(1, 3), T(2, 3) and T(3, 3), numerically estimated by the Monte Carlo tests, and
their approximated analytical expressions, P(1, 3), P(2, 3) and P(3, 3), obtained using
Equation (20).

The top three plots of Figure 4 show the histograms of T(1, 3), T(2, 3) and T(3, 3),
while the bottom three plots show the histograms of the differences with the three terms
estimated using Equation (20). The results of these Monte Carlo tests highlight the accurate
estimation of the approximated terms, P(1, 3), P(2, 3) and P(3, 3), computed via covariance
law. The values of the terms T(1, 3) and T(2, 3), numerically estimated by the Monte Carlo
tests, fall within the [−10−6,+10−6] range. The differences with the terms P(1, 3), P(2, 3),
estimated via the covariance law, are in the [−10−9,+10−9] range, a difference better than
three orders of magnitude with respect to the numerically estimated values. The same
accuracy error level is experienced for the P(3, 3) term with respect to the numerically
estimated T(3, 3) term, whose values fall within the [0,+10−6] range.
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Figure 4. Monte Carlo validation for the P(1, 3), P(2, 3) and P(3, 3) terms.

4.1. Extended Kalman Filter (EKF) Validation

The variable to estimate is represented by the gravity direction, i.e., by a three-
component vector. However, since the third component of the gravity vector, gz, is not
independent (actually, it is derived from gx and gy), then a reduced two-state EKF estimator
must be developed and used. In order to quantify the accuracy gain obtained using the
closed-form expression of the covariance matrix, a static scenario was selected to validate
the EKF estimator. This choice does not depend on the dynamics under consideration or
the accuracy of the adopted dynamical model. The EKF summary is provided as follows:

• State model:

xk =

{
gx
gy

}
k
= xk−1 + wk−1

• Observation model:

yk =

{
ϑ̃x
ϑ̃y

}
k
= h(xk) + vk = cos−1

[
e σ2/2

{
gk

gk cos ε + gk sin ε

}
k

]
+ vk

• Initialization: Given initial state vector, x−0 , and initial covariance matrix, P−0 , and
assuming no process noise, Qk = E{wkwT

k} = 02×2, the measurement’s covariance is

Rk = E{vkvT
k} = σ2 I2×2 (21)

The initial state, which is given by Equation (1), can be computed using the first
measurements, ϑ̃x and ϑ̃y,

x−0 =


cos ϑ̃x

cos ϑ̃y − cos ϑ̃x sin ε

cos ε

 =

{
x0
y0

}
(22)
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while the state covariance matrix is

P−k =

[
Pk(1, 1) Pk(1, 2)
Pk(1, 2) Pk(2, 2)

]
(23)

where Pk(1, 1), Pk(1, 2) and Pk(2, 1), are provided by Equation (14), Equation (16) and
Equation (15), respectively. Specifically, they can be written in terms of the state vector, x−k ,

Pk(1, 1) =
(

e−2 σ2 − e−σ2
)

x2
k +

1
2

(
1− e−2 σ2

)
Pk(1, 2) =

[(
e−σ2 − e−2σ2

)
x2

k −
1
2

(
1− e−2σ2

)]
tan ε

Pk(2, 2) =
(

y2
k + 2 xk yk tan ε + 2x2

k tan2 ε
)(

e−2 σ2 − e−σ2
)
+

+

(
2− cos2 ε

cos2 ε

)
1
2

(
1− e−2 σ2

)
• Predictor: Since the problem under analysis is static,

x+k = x−k−1 (24)

P+
k = P−k−1 (25)

• Corrector:

Kk = P+
k JT

h(xk)
(

Jh(xk) P+
k JT

h(xk) + Rk
)−1 (26)

x−k = x+k + Kk
(
yk − h

(
x+k
))

(27)

P−k = [I − Kk Jh(xk)] P+
k (28)

where the Jacobian, Jh(xk), of the observation is given by

Jh(xk) =
∂h(xk)

∂xk
=


− 1√

1− x2
k e σ2

0

− sin ε

dk
−cos ε

dk

 e σ2/2, (29)

where
dk =

√
1− e σ2(xk sin ε + yk cos ε)2. (30)

4.2. Numerical Tests

The true direction of the gravity in the inclinometer reference frame has been se-
lected as

gtrue = −


sin α cos β
sin α sin β

cos α

 where

{
θ = 30 deg
β = 135 deg

The inclinometer measurements are corrupted by a zero-mean Gaussian noise with a
standard deviation of σ = 0.1 deg., which is a common value for commercial inclinometers.
In addition, the deviation from orthogonality was selected as ε = 2 deg.

Figure 5 shows the results obtained using 200 samples. In particular, the top-left figure
shows for the gx component: (1) the noisy measurements (black markers), (2) the true value
(solid black line), (3) the filtered estimates (solid blue line) and (4) the ±3 σ error bounds
(dotted red lines). The top-right figure shows the same quantities for the gx component.
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Figure 5. Extended Kalman Filter test results.

The bottom left and right plots show the absolute errors for the gx and gy components,
respectively. These error plots highlight, thanks to the analytically exact expressions of the
covariance matrix terms, a very fast convergence of the EKF estimator.

5. Continuous Gravity Description

The irregular Earth shape (and mass distribution) has presented significant challenges
to surveyers and cartographers throughout history. The early map makers considered
the Earth to be a perfect sphere prior to Isaac Newton positing an oblate spheroid shape
model. The axial–symmetric ellipsoid description of Earth, which has been formalized as
the World Geodetic System (WGS-84) [27], is reliably used as the standard shape model
for most of today’s GPS applications. The WGS-84 is defined by estimates of the Earth’s
equatorial (RE) and polar (RP) radii, and a flattening factor ( f ){

RE = 6, 378, 137 m
RP = 6, 356, 752.3 m

and f =
RE − RP

RE
.

Describing a point on the Earth’s surface can be done by Cartesian coordinates (x, y, z)
or by spherical coordinates, using geocentric (θ) or geodetic (φ) latitude and longitude (λ).
Figure 6 shows the two definitions of latitude for an ellipsoid-shaped model.
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Figure 6. Geocentric (θ) and geodetic (φ) latitude angles.

The relationship between these two latitude definitions is [28]:

tan θ = (1− f )2 tan φ. (31)

The greatest angular difference between geocentric and geodetic latitudes is, for the
WGS-84 model, approximately 700 arcseconds, a difference that would introduce over
21 km of position error on Earth. However, even if the WGS-84 ellipsoidal model describes
the gravity direction better than the sphere model, the actual gravity direction is dictated
by the geoid model [29].

The geoid was first described by Gauss as the shape that the ocean’s surface would
take if the only acceleration forces acting on it were Earth’s gravitational field and the
rotational dynamics of the planet. In reality, this is still a simplification of the surface
always orthogonal to the gravity direcion. The geoid is particularly useful for describing
the effect that mass anomalies (such as mountain ranges or caverns) have on the local
pointing direction of gravity, which can deviate from the reference ellipsoid by tens,
hundreds or even thousands of arcseconds. Figure 7 shows the main parameters defining
the relationship between the geoid surface and the WGS-84 ellipsoid. P is a point on the
Earth’s surface that is located at altitude h normal to the ellipsoid and altitude H normal
to the geoid. This point on the geoid surface is located at altitude N with respect to the
WGS-84 ellipsoid. The angle between the true gravity direction (normal to the geoid and
provided by the inclinometers) and the fictitious gravity direction (normal to WGS-84
reference model) is the geoid correction.

Figure 7. Gravity description with respect to geoid and reference ellipsoid surfaces.

It is also worth pointing out that, unlike the WGS-84 axial–symmetric ellipsoid model,
the geoid cannot be described by a simple equation because it is a function of the Earth’s
mass distribution. However, the geometry of the geoid surface can be derived with respect
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to the WGS-84 model using the derivatives of the Earth’s gravitational potential. The
Earth’s gravitational potential can be described in terms of spherical harmonics:

V(r, φ, λ) =
GM

r

{
1 +

∞

∑
n=0

(
RE
r

)n n

∑
m=0

Pm
n (sin φ)[Cnm cos(mλ) + Snm sin(mλ)]

}
, (32)

where GM = 3.986013× 1014 m3/s2 is the Earth gravitational constant, (r, φ, λ) are the
spherical coordinates at which the evaluation is made, Pm

n (sin φ) are the associated Legen-
dre polynomials of degree n, order m and argument sin φ, and Cnm and Snm are spherical
harmonic coefficients.

Taking normalized partial derivatives of Equation (32) with respect to the geodetic
latitude and longitude, we obtain a mathematical definition for the north–south (δN)
and east–west (δE) deflections of the gravity direction with respect to the WGS-84 ellip-
soidal model:

δN = − 1
γr
· ∂V

∂φ
and δE = − 1

γr cos φ
· ∂V

∂λ
(33)

where γ is a scalar representing the theoretical normal gravity, whose value and clear
explanation are provided in Reference [30].

5.1. Continuous Description of Geoid

The analytical complexities associated with the infinite series of Equations (32) and (33)
make them unable to evaluate the gravity direction without introducing truncation error.
From satellite measurement data, a geoid model can be constructed in order to generate
δE and δN deflection reference databases for a specified grid of points on the Earth’s
surface, defined by geodetic latitude (φk) and longitude (λk). To use the geoid database,
interpolation between discontinuous points is needed. The accuracy of this interpolation
is obtained at the expense of carrying a larger database (fine grid geoid description). In
this study, a simple continuous geoid model is derived in order to use geoid corrections in
specific locations and/or in dynamic situations.

The continuous geoid model is provided by expressing the δE and δN deflections as
linear combinations of a set of N orthogonal surfaces:

δE(φ, λ) =
N

∑
k=1

αk Sk(x(φ), y(λ)) and δN(φ, λ) =
N

∑
k=1

βk Sk(x(φ), y(λ)), (34)

where the αk and βk are the unknown coefficients and the Sk(x(φ), y(λ)) are a set of
orthogonal surfaces satisfying∫ +1

−1

∫ +1

−1
Si(x, y) Si(x, y) dx dy = 0, if i 6= j.

These orthogonal surfaces are built using orthogonal polynomials, such as Chebyshev
polynomials, Tk(x), which are orthogonal in the x ∈ [−1,+1] range. This means that, when
dealing with a specific geographical range of interest, φ ∈ [φmin, φmax] and λ ∈ [λmin, λmax],
a mapping between the geographical coordinates [φ, λ] and the Chebyshev variables [x, y]
must be defined. The most simple mapping is the linear

x =
φ− φmin

φmax − φmin
and y =

λ− λmin

λmax − λmin
.

Using Chebyshev orthogonal polynomials, the orthogonal surfaces can be defined as

Sk(x, y) = Ti(x(φ)) Tj(y(λ)) where i, j = 0, 1, 2, · · ·

where any two orthogonal surfaces cannot be associated with the same [i, j] pair of Cheby-
shev polynomials.
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Chebyshev orthogonal polynomials of the first kind can conveniently be computed
in a recursive way. Starting with T0(x) = 1 and T1(x) = x, the subsequent terms are
computed by the recursive relationship,

Tk(x) = 2xTk−1(x)− Tk−2(x), k = 2, 3, · · · . (35)

The problem of fitting the geoid data grids, δE(φi, λj) and δN(φi, λj), consists of two
over-determined linear systems:

δE(φi, λj) =
N

∑
k=1

αk Sk(x(φi), y(λj)) and δN(φi, λj) =
N

∑
k=1

βk Sk(x(φi), y(λj)).

where the total number of the geoid database points is Np > N, for the problem to admit
a solution. The previous equation describes two linear systems that can be written in
matrix form:

SE α = ξ and SN β = η,

where the two coefficient vectors, α and β, can be computed by least squares:

α = (ST
E SE)

−1 ST
E ξ and β = (ST

N SN)
−1 ST

N η.

This continuous description of the geoid is applied in the next subsection to a geo-
graphical region where the geoid gravity direction deviations are particularly significant.

5.2. Example of Continuous Geoid Description: Himalaya Region

The results of a numerical example of this procedure are shown in Figure 8 providing
north–south and east–west deviations, in arcsec, of the gravity direction with respect to the
direction normal to the WGS-84 ellipsoid surface. The region of interest selected is in the
coordinates range [φmin, φmax] = [28.083◦, 28.875◦] and [λmin, λmax] = [83.667◦, 84.458◦].

Figure 8. East–West and North–South geoid deviation (Himalaya region).

The associated geoid database consists of a 10× 10 grid (Np = 100 points), spanning a
region of 2000 km × 2000 km. The number of orthogonal surfaces used for the continuous
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geoid model was N = 55. This is also the number of unknowns (size of α and β vectors).
The data points of the geoid grid are shown with black markers while the continuous
models are indicated by the surfaces. The L2 norms of the least-squares residuals are
shown in Figure 9. The condition number of the matrix to invert (in the least-squares
process), which is provided in Figure 10 as a function of the number of orthogonal surfaces,
does not exceed 200.

Figure 9. Residual L2 norms.

Figure 10. Least-squares condition number.

By selecting orthogonal polynomials (instead of monomials), the condition number
of the least-squares matrix to invert is reduced and, consequently, the numerical process
becomes more robust and provides a more reliable numerical estimation of the unknown
coefficient vectors, α and β.

6. Discussion

This study introduced the mathematical tools necessary for extracting a highly accu-
rate estimation of the local gravity (plumb-line) direction from a pair of non-orthogonal
inclinometers. The statistical analyses performed herein can be used to quantify the perfor-
mance of static tilt sensors, since the measured direction of gravity is known to be normal
to the reference geoid surface. The next section provides an example use case of these tools
for high-precision continuous gravity direction estimates under static operating conditions.

The static Stellar Positioning System [15–17] introduces a framework for estimating
the geographical position of a vehicle on the surface of a planetary body using a pair
of inclinometers along with an atomic clock and a night-sky camera to observe celestial
directions (e.g., stars, visible planets). This system, which can be used in GPS-denied
scenarios or in locations where the GPS signal is not available (i.e., on Moon or Mars),
assumes that a reliably accurate estimate of the local gravity direction is available, which
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in turn would require a geoid correction. The resulting mathematical estimation prob-
lem is nonlinear and, therefore, can be solved by iterative nonlinear least squares. The
mathematical procedure requires computing the Jacobian of the gravity direction and,
consequently, the first derivatives of Equation (35). The first derivatives can be obtained
using the recursive equation,

dTk(x)
dx

= 2
(

Tk−1(x) + x
dTk−1(x)

dx

)
− dTk−2(x)

dx
.

More accurate models will require the computation of the Hessian or even higher-order
terms. The subsequent derivatives needed in these cases can be computed recursively:

dnTk
dxn = 2

(
n

dn−1Tk−1

dxn−1 + x
dnTk−1

dxn

)
− dnTk−2

dxn , n = 2, 3, · · · .

Future Research Directions

The authors are planning to validate the proposed gravity direction estimation method
using two non-orthogonal inclinometers by:

• Including the mounting angle deviation from orthogonality, ε, as an element of the
EKF state vector. This would keep the system calibrated from variations of ε caused
by vibrations and/or thermal expansions.

• Integrating the proposed system with an Inertial Measurement Unit (IMU) to extend
the use of the static “Stellar Positioning System” to dynamical scenarios. Similar to
the previous point, this will extend the EKF state vector to account for the variations
in the transformation matrix between the inclinometer and IMU reference frames.

• Including in the EKF state estimator , for the static use “Stellar Positioning Sys-
tem,” the transformation matrix between the inclinometer and the night camera
reference frames.

As for the continuous geoid model, the authors are planning to complete the analysis
on the geoid north–south and east–west deflection estimates by:

• Investigating the convergence radius as a function of the geographical coordinates.
• Investigating the accuracy of the convergence as a function of the geoid database

grid resolution.
• Including, in the current nonlinear position estimation algorithm, a divergence identi-

fication algorithm that re-initializes the estimation process using a new random guess
selected within an admissible distance bound.

7. Conclusions

This study introduces a new approach to accurately estimate the gravity direction
using a pair of non-orthogonal inclinometers affected by zero-mean Gaussian errors. The
proposed approach estimates the gravity direction and its 3× 3 covariance matrix, with the
main three terms derived analytically. The accuracy of these statistical parameters is numer-
ically validated by Monte Carlo simulation. The proposed method is then validated using
an Extended Kalman Filter, which highlights a fast convergence to a very accurate solution.

Since the gravity direction is normal to the geoid surface, a continuous geoid model
for the north–south and east–west corrections is provided as a linear combination of a set
of orthogonal surfaces that are derived using Chebyshev polynomials of the first kind. An
example application is provided for a specific region (centered in the Himalayas) to show
the continuous description of the gravity direction deviations with respect to the WGS-84
ellipsoid model.

This covariance analysis, along with the continuous description of the geoid, can be
applied to any static or dynamic scenarios involving the measurement of gravity using a
two-axis inclinometer.
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