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Abstract: The detection of concrete spalling is critical for tunnel inspectors to assess structural risks
and guarantee the daily operation of the railway tunnel. However, traditional spalling detection
methods mostly rely on visual inspection or camera images taken manually, which are inefficient
and unreliable. In this study, an integrated approach based on laser intensity and depth features
is proposed for the automated detection and quantification of concrete spalling. The Railway
Tunnel Spalling Defects (RTSD) database, containing intensity images and depth images of the
tunnel linings, is established via mobile laser scanning (MLS), and the Spalling Intensity Depurator
Network (SIDNet) model is proposed for automatic extraction of the concrete spalling features. The
proposed model is trained, validated and tested on the established RSTD dataset with impressive
results. Comparison with several other spalling detection models shows that the proposed model
performs better in terms of various indicators such as MPA (0.985) and MIoU (0.925). The extra depth
information obtained from MLS allows for the accurate evaluation of the volume of detected spalling
defects, which is beyond the reach of traditional methods. In addition, a triangulation mesh method
is implemented to reconstruct the 3D tunnel lining model and visualize the 3D inspection results. As
a result, a 3D inspection report can be outputted automatically containing quantified spalling defect
information along with relevant spatial coordinates. The proposed approach has been conducted
on several railway tunnels in Yunnan province, China and the experimental results have proved its
validity and feasibility.

Keywords: spalling defects inspection; laser intensity; depth image; tunnel lining defect; mobile
laser scanning; deep convolutional neural network; 3D reconstruction

1. Introduction

During the past two decades, there has been a rapid expansion of the transportation
infrastructure system in China, and as a result the number of railway tunnels has greatly
increased. As tunnel service time increases, the tunnel linings inevitably deteriorate and
develop various structural defects, such as cracks, leakages, spalling, and deformation.
Of these, concrete spalling is one of the most common defects on the surface of railway
tunnel linings [1–3]. Concrete blocks may fall into the tunnel during train operations if
spalling defects are not identified in time, which can cause serious accidents and significant
economic losses [4]. In order to ensure the safe operation of railway tunnels, spalling defect
inspection needs to be performed regularly to prevent concrete falling accidents.

To date, as a common practice in the field, the spalling regions of railway tunnel linings
are inspected by certified personnel walking along the tunnel and manually documenting
the descriptions of the spalling defects in a report file. However, spalling information
obtained in this way is highly subjective and often relies on the engineering knowledge
of the inspectors. A manual inspection report cannot provide quantitative measurement
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of concrete spalling defects. Furthermore, to ensure the continuity of train services, the
inspection time for the railway tunnel is often limited to a few hours in the middle of the
night [5,6]. Hence, the manual inspection process is inefficient and it is difficult to meet the
growing inspection demands. There is an urgent need for an advanced method to detect
and evaluate spalling defects in tunnel linings automatically and accurately.

In the search for automated methods to improve the efficiency of spalling defects
inspection, two vision-based techniques for tunnel inspection have gained popularity.
Photogrammetry-based approaches use photographic equipment such as cameras to cap-
ture and extract features of the structural defects from the obtained images [7–9]. However,
the 2D lining images obtained from the photographic equipment do not contain the depth
and spatial location information of the detected defects in the tunnel. Furthermore, the
quality of the obtained images is affected by the tunnel environment (e.g., illumination
conditions, or the distance from the lining to the camera lens). As an alternative, mobile
laser scanning (MLS) has become popular for performing automated inspection of the
tunnel lining [6,10,11]. Based on light detection and ranging technologies (LIDAR), MLS
can obtain stable 3D point cloud data. The spatial position and surface texture features of
the tunnel lining are both available in the high precision 3D coordinates and the intensity
values of point cloud data [5,12]. By implementing image processing (IP) [1] and roughness
description [13] algorithms, the spalling targets can be segmented and the depth features
of the detected spalling defects can be obtained. The localization and quantification in-
formation (e.g., area and depth) of spalling defects can be subsequently acquired [13,14].
However, such approaches fail to learn the semantic features of concrete spalling, and lack
robustness and accuracy [3,15].

Deep convolutional neural network (DCNN), a significant branch of deep learn-
ing methods, has gained state-of-the-art performance in feature detection and segmen-
tation [16,17]. By employing multiple convolution layers, DCNN models with various
backbone networks (VGG [18], ZFNet [19], GoogleNet [20], ResNet [21], etc.) have been
developed to extract object features in a semantic manner. Focusing on three major tasks
(classification, object detection, and segmentation), various DCNN-based end to end mod-
els (DeepLab [22], FCN [23], Mask R-CNN [24], YOLO [25], etc.) have been proposed for
detecting target objects to meet the needs of each specialized application. For inspection
tasks during tunnel operation, scholars have conducted many studies into the automated
detection of concrete spalling [3,26], lining cracks [27–29], water leakages [30–32], and
rock mass evaluation [33–35] based on the DCNN models. Relying on the colour feature
differences, the DCNN-based models show superior performance in distinguishing target
objects from the context of the images.

Facing challenges such as complicated lining backgrounds, lighting conditions and
shadow changes, improvements in the precision and accuracy of defects detection still need
to be addressed [36]. Existing DCNN datasets involved in the detection of spalling defects
are based on the RGB information, while the spalling depth information is missing [3,26].
For instance, concrete spalling on the tunnel lining surface may have similar colour/RGB
information to the surrounding lining surface, and DCNN models often underperform
in the target feature extraction process based on image datasets [37]. Moreover, utility
pipelines and wires can also become obstacles in front of the spalling, which can make it
impossible for models to identify the defects.

In view of the current limitations of the DCNN methods and the image datasets, a
state-of-the-art approach to solve such an issue is to employ depth images, where the pixel
values present the distance information between the target point and the camera lens. RGB
information combined with the depth value (RGB-D) can increase the capability of the
DCNNs to detect and segment the target objects. As the first attempt at combining RGB-D
and DCNNs, Lang et al. [38] discussed the performance improvement of salient object
detection by including the depth information. In recent years, various RGB-D and DCNN
based methods have been introduced into the field of object recognition [39–44]. Among
them, D3Net [45] and UC-Net [46] are two representative state-of-the-art models that show
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promising performance. To the authors’ knowledge, no research has been made into the
detection of concrete spalling defects using colour and depth combined information. There-
fore, this paper shall explore the improvement and practicability over existing methods by
using colour information together with depth features based DCNN approach.

In order to utilize the obtained inspection data, digital processes should be conducted
to visualize and locate the detected defects on the tunnel lining surface. Image stitch-
ing/mosaicking is a common method that aids the inspector by providing an overall view
of the tunnel linings [47,48]. Another popular approach is to construct a 3D tunnel model,
which provides an intuitional visualization of the tunnel environment. Structure from
motion (SfM) is a powerful technique for registering the individual images and construct a
3D tunnel model [49–51]. However, the reconstruction performance greatly depends on
the illumination conditions and the quality of the tunnel lining images. Using the 3D point
cloud data via MLS, the inspection result can be projected into 3D space and a high preci-
sion 3D surface model can be efficiently reconstructed [52]. Poisson reconstruction [53,54]
and triangulation mesh [3,55] are two common methods to generate 3D tunnel models,
which help inspectors contextualizing the location of defects in a 3D manner. Nevertheless,
none of the previous studies can visualize the depth feature of the spalling defects from the
constructed 2D/3D tunnel model, which should be improved by the subsequent studies.

Inspired by the above-mentioned studies, in this study, an integrated approach based
on the MLS, intensity and depth information, and DCNN techniques is proposed for the
automated feature detection and quantification of spalling defects on the railway tunnel
lining. The intensity feature obtained from the MLS system is used as the colour information
during the spalling defects detection. The depth value of a spalling defect is defined as
the distance from the spalling region to the lining surface. Field experimentation has been
conducted, and the spalling defects inspection results demonstrate sound performance.
Figure 1 shows the schematic workflow of the proposed approach, which contains five
steps. An MLS system is first adopted for the acquisition of point cloud data, which
obtains the spatial geometry and surface texture information of the tunnel linings. The
dataset of spalling defects is then established by processing the point cloud data into
2D intensity images and depth images. To achieve automated detection of the spalling
defects, a DCNN-based model named Spalling Intensity Depurator Network (SIDNet) is
proposed to train the dataset. The segmentation results of the spalling defects can thus be
obtained from the validated SIDNet model, and the spalling defects can be quantified by
combining the segmented features with depth information. Finally, a triangulation mesh
method is implemented to provide the inspectors with an intuitive 3D view of the detected
spalling defects, and a 3D inspection report can also be outputted automatically containing
quantified spalling defect information and its spatial coordinates.
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Figure 1. Schematic workflow of the proposed method for spalling defects inspection.

2. Data Acquisition and Dataset Establishment
2.1. Point Cloud Data Acquisition

In order to obtain both tunnel lining features (Figure 2a) and depth information of the
spalling defects, an integrated MLS system [56,57] was adopted to collect the point cloud
data of railway tunnel linings in Yunnan province, China (Figure 2b). The MLS system
used in this study comprises a Z+F PROFILER 9012 laser scanner, an electrical motor
driven trolley, a laptop, two batteries (24VDC), and other necessary accessories (Figure 2c).
The PROFILER 9012 laser scanner operation is controlled by the laptop, powered by the
batteries, and supported by the trolley platform.

The tunnel is a longitudinal linear structure; therefore, the 3D tunnel point cloud data
can be recorded by moving the MLS along the railway track. To ensure that the inspection
process does not affect the normal operation of the railway system, the inspection time was
limited from midnight to 4 a.m. The data acquisition process lasted for 14 days, and 120
Gb of MLS point cloud data were collected from 22 railway tunnels over a total length of
more than 25 km.

The point cloud data collected from the MLS system include two parts: the high
precision 3D coordinates and an intensity value which restores the texture of the tunnel
lining. In the principle of the data acquisition, the point cloud data is collected line by
line. Each scan line consists of a set of points across the transverse section of the tunnel
lining. During the data acquisition, the trolley is set to move at a constant speed (0.5 m/s)
and the rotation speed of the scanner is set to 100 r/s. As a result, 100 scan lines of point
cloud data are recorded per second. As the rotation speed is relatively fast, the scan line of
each rotation can be considered perpendicular to the Y axis. As a result, the scan lines are
assumed parallel (Figure 3a) and the gap width between two adjacent scan lines can be
computed as 5 mm using the equation:

Gap =
V
F

, (1)

where V denotes the velocity of the trolley and F indicates the rotational frequency of the
laser scanner.
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2.2. Intensity and Depth Images Conversion

After the point cloud data collection, the 3D high precision coordinates of each point
can be obtained to represent the spatial location of the tunnel lining. The laser intensity
value of each point is also collected for use in restoring the tunnel lining surface features.
As a result, the point cloud data is saved as an n by 4-column matrix (X, Y, Z, I). In this, X
and Z represent the coordinates of the tunnel transverse section, the Y axis represents the
longitudinal direction of the tunnel (Figure 3a), and I represents the intensity value with a
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range of 0 to 255 (8 bits of data). The point cloud data can be divided into a series of lines
(transverse sections) with the same Y coordinates.

The tunnel lining images can be generated via the image conversion process in two
steps. The first step is to unroll the 3D spatial point cloud data to a 2D plane using the
coordinates transformation [58]. The obtained 3D point cloud data is based on the origin
at the position of the laser scanner lens, which leads to an uneven distribution of the 2D
point cloud on the transverse section after the unrolling process. In order to solve this issue,
the centre of the tunnel transverse section should be set prior to the unrolling process as
the origin of the coordinates system [55] (Figure 3b), which can be obtained by the ellipse
fitting method [59] and RANSAC algorithm [60]. The interpolation method is also used
to fill in the data in the areas where the point cloud is sparse. These two approaches can
effectively solve the problem of 2D point cloud distortion.

The second step is to convert the 2D plane point cloud to 2D intensity (greyscale)
images. In the field of computer vision, greyscale images can be considered as a 2D matrix
with each value denoting the grey value of the image ranging from 0 to 255. As a result, the
2D point cloud data with a specific number of lines can be assigned in order to a 2D matrix
with the same number of columns (Figure 3c). In this regard, the longitudinal resolution of
the obtained images should be the same as the distance between scan lines (5 mm/pixel).
Hence, for the sake of resolution consistency, the height direction (representing the tunnel
transverse section) of the obtained images shall also be set to 5 mm/pixel resolution. For
each pixel in the greyscale image matrix, the intensity value in the point cloud is set as the
grey value of the images.

The obtained intensity images can represent the surface texture of the tunnel lin-
ings, but the depth information is missing. In order to obtain the tunnel lining depth
images, the depth value of the spalling defects should be firstly computed through the
following criterion:

D =


0 D < 0√

(x− xc)
2 + (z− zc)

2 − R

1 D > 1

, (2)

where the depth value D denotes the absolute depth value between the spalling defects to
the fitting ellipse lining surface. It is assumed that the transverse section of a deformed
circular-tunnel can be considered as an ellipse [61], (x, z) is an arbitrary point from the
point cloud data, (xc, zc) is the centre point of the tunnel section, and R denotes the distance
between (xc, zc) to the fitting ellipse surface (Figure 4). The interference objects on the
surface of tunnel linings with depth values less than 0 are set to 0 and the depth values of
the anomaly points are set to 1.

To enhance the texture of depth images, the power-law transformation is adopted in
this paper [62]. As a result, the final grey value of the depth images can be computed by
Equation (3):

Gd = (1− D)4 × 255, (3)

where Gd denotes the final grey value in the depth images. Using this grey value conversion,
the spalling region in the depth image moves towards black, and the lining surface has
a mid-range grey value (Figure 5). As a result, the concrete spalling defects can be easily
distinguished from the depth images. Parts of the concrete spalling region may be blocked
by interference (e.g., utility cables, lights, monitoring instruments) on the tunnel lining
surface (Figure 5b). Based on Equations (2) and (3), the depth values of the interference
regions are all set to 0, and the corresponding grey values are computed as 255, and thus
take on a white appearance in the depth image (Figure 5c). However, the white coloured
region may bring obstacles to the boundary recognition and depth value quantification
of spalling defects. As a result, the area and volume value calculation of the spalling
defects may be inaccurate. To solve this issue, linear interpolation is used to estimate the
depth value of the spalling region beneath the interference objects (Figure 5d), and the
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corresponding grey values of those regions shall be assigned by interpolating the adjacent
non-interference pixels of the depth image.
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2.3. Intensity and Depth Dataset for Spalling Detection

This section establishes and introduces a dataset for the spalling segmentation task,
the Railway Tunnel Spalling Defects (RTSD) with intensity and depth information. To
improve the image processing efficiency, each original intensity image or depth image that
contains a spalling region is cropped to a smaller size. During the cropping procedure,
the coordinates of the four vertexes of the cropped depth image are recorded and used
to crop the intensity images. These steps are processed by an algorithm to ensure the
same position and size cropping is used for both types of images. Subsequently, the
ground truth (GT) image of the spalling is then annotated manually by the annotation
tool named LabelMe [63]. The labelling process is based on both the depth image and
the intensity image information. The original RSTD dataset includes 1156 depth images
and 1156 intensity images of the spalling region. Owing to the limited number of spalling
images in this research, horizontal flipping, vertical flipping, random cropping, elastic
twisting, local amplification, and brightness transformation are implemented to enlarge
the dataset of spalling defects. The completed dataset contains 8092 intensity images, 8092
depth images, and 8092 GT images with respect to the same spalling defects (Figure 6).
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The grey value of the depth images represents the depth value of concrete spalling
in the actual environment, while the intensity image contains no quantitative depth infor-
mation of the spalling defects (Figure 6a). For a concrete spalling defect with a shallow
depth, a maintenance measure with epoxy resin coating may better highlight the spalling
region in the intensity image than in the depth image (Figure 6b). Therefore, both the
intensity image and the depth image are important for the evaluation of the spalling de-
fects. The most significant feature of the RTSD dataset is to provide the missing depth
information of the spalling defects compared with a traditional dataset which consists of
only intensity/RGB images.
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3. SIDNet for Spalling Inspection

In accordance with the RTSD dataset, a DCNN-based model named SIDNet for
automated segmentation and quantification of spalling defects is proposed in this study. It
was developed based on the D3Net model [45], which consists of two major components:
a feature learning module (FLM) and a depth depurator unit (DDU). The FLM model
concludes three encode-decode modules for the semantic feature extraction. The DDU is
used to remove the negative influence from low-quality depth images. For most samples
in the RTSD dataset, the depth information contains more reliable spalling defects features
than the intensity images. Therefore, in the proposed SIDNet, the original DDU in the
D3Net model was replaced by a similar function module named the intensity depurator
unit (IDU), which can adaptively filter the low-quality (Figure 6a) intensity images. In other
words, the proposed SIDNet contains the FLM and the IDU modules. Figure 7 depicts the
entire model, which can be divided into the training phase and the test phase. The IDU is
only used in the test phase.
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3.1. Three-Stream Feature Learning Module

The FLM consists of three parallel DCNNs named IntenNet, IDNet, and DepthNet,
which have the same structure but a different input channel number. As shown in Figure 8,
each DCNN of the FLM contains the input, encoder module, decoder module, and output.
These three subnetworks receive and process three different input images (Iinten, Iid, Idepth)
each with a resolution of 224 × 224 rescale pixels (i.e., the number of input channels
is 1, 2 and 1). As a result, three independent prediction images (Sinten, Sid, Sdepth) are
outputted from these three subnetworks. The two-channel input Iid consists of two types of
images (intensity images and depth images) and the Sid contains only normal one-channel
output images.
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During the training and testing phase, the DCNNs are used to extract features at
multiple scales through a bottom-up pathway. The encoder module is modified on the base
of VGG16 through a bottom-up pathway, which includes five convolutional stages and four
pooling layers. To extract a deeper semantic feature in a deeper layer, a sixth stage is added
at the end of the VGG16 structure with two 3 × 3 convolution kernels. The resolution
of output in the first five stages corresponds to the VGG16 network (i.e., 64 × 224 × 224,
128 × 112 × 112, 256 × 56 × 56, 512 × 28 × 28, and 512 × 14 × 14), and the resolution is
32 × 7 × 7 in the sixth stage.

After the six convolution stages, six feature maps are captured with multi-level seman-
tic information. Inspired by the feature pyramid network (FPN) [64], a similar module is de-
signed for a multi-level semantic information extraction in a pyramid manner. For a specific
coarse feature map, nearest neighbour operation is employed to achieve 2× up-sampling.
To re-use the higher-resolution feature maps for richer information, the up-sampled feature
maps are subsequently concatenated with the shallower feature maps using a lateral con-
nection. During the decoder process, multi-scale feature maps (32 × 14 × 14, 32 × 28 × 28,
32 × 56 × 56, 32 × 112 × 112, and 32 × 224 × 224) are generated from the top-down
pathway and the lateral connection. As a result, the prediction maps are correspondingly
outputted from the end of the subnetworks using a 3× 3 convolution layer. For the training
phase, the widely used cross-entropy loss function is adopted to evaluate the difference
between the GT image and the prediction image:

L = − 1
N

N

∑
i=1

(gi log(si) + (1− gi) log(1− si)), (4)

where gi and si are the pixels of the GT images and the prediction images, respectively,
and N represents the total number of pixels. For the test phase, three independent output
prediction images are inputted into the subsequent IDU module to get an optimized result.

3.2. Intensity Depurator Unit

Despite the supplementary information provided by the depth images, the open-
source RGB-D datasets still struggle at outputting high precision segmentation results
due to the low quality of the depth images. Therefore, after obtaining three independent
output maps (Sinten, Sid, Sdepth) from the FLM, the original D3Net includes a DDU module
to generate an optimal prediction image by setting a filter to remove the effect of the
low-quality depth images. Similarly, the purpose of IDU is to filter the low-quality intensity
images. To evaluate the quality of the intensity image, the IDU in the proposed SIDNet
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firstly assesses the similarity between Sinten and Sid by calculating the mean absolute error
(MAE) metrics.

MAE(Sid, Sinten) =
1
N
|Sid − Sinten|, (5)

where N denotes the total number of pixels. In theory, if the quality of the intensity image is
low, the output of Sinten will be quite different from Sid as the latter has considered the more
reliable depth feature. As a result, Sdepth shall be selected as the final prediction; otherwise,
Sid shall be considered as the optimal output of the model. A fixed threshold value, tinten,
is used to determine the quality of the intensity images, and the prediction of the SIDNet
model can be concluded as:

P =

{
Sid, MAE(Sid, Sinten) ≤ tinten

Sdepth, MAE(Sid, Sinten) > tinten
, (6)

By using the IDU module, the network can adaptively select the optimal result as
output. The optimal tinten value will be determined in Section 4.2. To better understand the
difference between the IDU module and the DDU module, the main principle of the DDU
is shown using following equation:

P =

{
Sid, MAE(Sid, Sdepth) ≤ tdepth

Sinten, MAE(Sid, Sdepth) > tdepth
, (7)

where the parameter tdepth is an evaluation index to the quality of the depth images, which
filters the depth image information. For the established RTSD, most depth images contain
more reliable spalling defects features than the intensity images. In this study, it is more
important to filter the low-quality intensity images rather than the depth images. Hence,
the proposed IDU module is more suitable for the spalling defects segmentation task. The
performance comparison between the IDU module and the DDU module shall be discussed
in Section 4.2.

3.3. Network Evaluation Metric

For the semantic segmentation task, mean pixel accuracy (MPA) and mean intersection
over union (MIoU) are the common metrics for evaluating the performance of the trained
model. To calculate these two pixel-level segmentation metrics, four important parameters
are firstly introduced: true negative (TN), true positive (TP), false negative (FN), and false
positive (FP). Among these, TP and FP indicate the number of correctly segmented and
falsely segmented pixels, and TN and FN denote the correctly unsegmented and falsely
unsegmented pixel numbers, respectively. The correlation between TN, TP, FN, and FP is
shown in Figure 9. In order to show the relationship between evaluation metrics and these
four parameters, the calculation formula is shown as follows:

MPA =
1
2
(

TP
TP + FP

+
FN

TN + FN
), (8)

MIoU =
1
2
(

TP
TP + FP + FN

+
TN

TN + FN + FP
). (9)

3.4. Quantitative Evaluation of Spalling Defects

After segmentation via the SIDNet model, it can be determined whether the pixels
in the images belong to spalling defects. The depth value between each spalling defect
point and the lining surface can be calculated by reversing the depth projection process in
Equation (3). As a result, the area of the spalling defects can be also obtained by counting
the detected pixels from the segmentation results using the following equation:

A = nh2, (10)

where h2 denotes the actual area for each pixel (25 mm2 in this study), and n represents
the number of pixels in this defect. Subsequently, the volume of the spalling defect can be
computed by the following equation:
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V = ∑
spalling

Dih2, (11)

where Di denotes the depth value of pixel i in the defects.
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4. Experiment and Results

Before the training process, the RTSD dataset was first randomly divided into three
parts (training, validation, and test) with relative proportions of 70%, 20%, and 10%,
respectively. As a summary, the image distributions in the RTSD dataset are listed in Table 1.
The training and validation dataset was put into the model training phase for tuning the
model parameters and avoiding overfitting. The testing dataset was used in the test phase
to evaluate the segmentation robustness and accuracy of the trained model. In this study,
the training and testing were carried out on a self-assembled desktop PC with an Intel
Core i7-9700k CPU and an Nvidia GTX 2080Ti GPU with 12 GB of memory. The software
environment was set with PyTorch framework on the Ubuntu 18.04 operating system.

Table 1. The images distribution of the RTSD dataset.

Category Training Validation Testing Total Number

Intensity 5664 1619 809 8092
Depth 5664 1619 809 8092

GT 5664 1619 809 8092

4.1. Training and Test Results

Three DCNNs were trained using 5664 depth images and 5664 intensity images. There
were 1619 images used in the validation process. Among the three DCNNs, the hyper-
parameters were set as the same with a batch size of 8, total epoch number of 40, and a
learning rate of 104 in the first 20 epochs, and 105 in the remaining 20 epochs. During the
training and validation phases, both the training and validation loss function curves of
the three subnetworks showed a downward trend by updating the network weight. After
10 epochs, the validation loss values illustrated a rising trend, which suggests the networks
were overfitting (Figure 10). To obtain the optimal performance, the network saved in the
10th epoch was outputted for the detection and evaluation of the spalling defects.
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Figure 10. The learning curve of the subnetworks (a) IntenNet, (b) IDNet, and (c) DepthNet.

4.2. Segmentation Performance of the SIDNet

The test dataset contains 809 intensity and depth images. Three output feature maps
are generated from the three DCNNs. Subsequently, the optimal prediction will be deter-
mined by comparing the similarity (MAE value) of Sinten and Sid with the threshold tinten.
With the IDU module, the high-quality intensity features (MAE value greater than tinten)
retained (Figure 11, row 1 and 2), and low-quality intensity features (MAE value less than
tinten) filtered out (Figure 11, row 3 and 4). The value of tinten thus affects the selection of
the final output image. A set of tinten values (11 uniformly distributed values between 0.01
and 0.03) are further tested in this paper, and the model performance of each threshold is
evaluated. Figure 12 shows that when tinten is 0.018, both the MPA and MIoU values of the
model reach a maximum (0.985 and 0.925), which indicates that the model achieves the
best performance.
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To verify the effectiveness of the IDU module, the performances of three DCNNs
(IntenNet, IDNet, and DepthNet) were compared with the performance of the SIDNet and
the D3Net. As shown in Table 2, the IDNet (0.970 and 0.911) performed slightly better than



Sensors 2021, 21, 5725 14 of 24

the DepthNet (0.957 and 0.905) in MPA and MIoU, and much better than the IntenNet (0.904
and 0.838). The D3Net with the DDU module shows a better performance than the IntenNet
but a lower performance than the IDNet and the DepthNet. The relative low performance
of the D3Net is caused by filtering the depth feature. Therefore, the depth feature is more
reliable than the intensity information in the semantic task of segmenting tunnel spalling
defects. Meanwhile, the SIDNet model with the IDU module shows the best performance
compared to the three DCNNs. The IDU’s ability to discard the low-quality intensity
feature and choose an optimal path (Sid or Sdepth) contributes to its superior performance.
The metrics of SIDNet and D3Net also prove the IDU’s superiority to the DDU.
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Table 2. Statistical results of different algorithms for segmenting spalling defects.

IntenNet DepthNet IDNet SIDNet D3Net UC-Net DeeplabV3+ OTSU

MPA 0.904 0.957 0.970 0.985 0.935 0.971 0.881 0.519
MIoU 0.838 0.905 0.911 0.925 0.874 0.907 0.792 0.409

To examine the segmentation results of the proposed method, the traditional Otsu
segmentation algorithm is used in this paper for comparison. The performance of the
SIDNet is also compared with two widely accepted DCNN-based segmentation algorithms:
DeepLabV3+ and UC-Net. These two semantic segmentation models are end-to-end
frameworks that can perform high precision semantic segmentation at the pixel level.
For consistency, the training dataset and basic training parameters of DeepLabV3+ and
UC-Net are the same as those of the RTSD model. UC-Net is a state-of-the-art semantic
segmentation algorithm considering both intensity and depth information of the target
feature, and DeepLabV3+ is a classic DCNNs model based on only the intensity information
of the images. Hence, the depth information is not used in the DeepLabV3+ and Otsu
models. The metric results of the three models are also listed in Table 2. The MPA and
MIoU values of the proposed method (0.985 and 0.925) were slightly higher than those of
UC-Net (0.971 and 0.907). With the benefit of the extra depth information, the proposed
SIDNet model showed much higher values in MPA and MIoU than the DeepLabV3+ (0.881
and 0.792) and Otsu (0.519 and 0.409) algorithms.

By selecting seven testing samples, the proposed SIDNet model showed a much more
effective performance than DeepLabV3+ (Figure 13), and the Otsu algorithm achieved
the worst performance at recognising spalling defects and noise reduction. Compared to
D3Net and UC-Net, the IDU module can help the proposed SIDNet model to explicitly
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eliminate the effect of low-quality intensity images and extract only the most effective
depth information (Figure 13, sample 4 to sample 7).
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4.3. Evaluation of the Detected Spalling

As mentioned in Section 3.4, the spalling quantification information (area and volume)
can be obtained by counting the predicted pixels and summing the actual depth values
belonging to the spalling region. Using six test samples as an example, Figure 14 shows the
detection and the statistical quantification results of the detected defects. The input images
(intensity and depth images) are presented, and the spatial shape of the spalling defect is
plotted using a colour distinction (blue to red) to represent the actual depth value (0 to
0.5 m). The computed area and the volume value are also given.
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To further explore the relationship between the area and volume values of the spalling
defects, the predicted and the actual spalling (GT region) areas of all the test images are
plotted in Figure 15a. The statistical results suggest that the gradient and the R2 of the
linear regression line are equal to 1.025 and 0.998, respectively, which indicates a high
accuracy of the proposed model. Similarly, Figure 15b demonstrates the statistical result
of the actual area and the volume of the spalling defects. Since the ground truth volume
values of the spalling defects are not available, the computed volume can be regarded as
the reference. There is a weak linear relationship between the values of area and volume
(R2 of 0.733).

The results in Figure 15b suggest that, in most cases, a larger defect area means a
larger volume, but in a considerable number of cases, if the actual spalling depth value is
too large or too small, the opposite conclusion should be reached. Although the acquisition
of depth images has become more convenient with the increasing application of depth
sensors (such as Microsoft Kinect and smart phones), the relative low precision of the
obtained depth value is still an unsolved issue. Traditionally, the photogrammetry-based
inspection methods mainly focus on the 2D evaluation information (segmentation result
and area value) of the defects. The missing of high precision depth value may lead to the
tunnel inspectors overestimating a spalling defect when it has a large area but shallow
depth. In fact, the volume reflects the quantitative index of structural damage caused by
the spalling defects. The deep depth of spalling often means that the steel in the precast
reinforced concrete lining is exposed to the environment, making it more susceptible to
corrosion (Figure 13, row 3). At the same time, the obtained volume value can provide
reference for the required amount of materials needed for tunnel lining maintenance, which
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is in turn beneficial for structure health monitoring and maintenance of an operational
railway tunnel.
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4.4. Robustness Test on the Proposed Approach

To evaluate the robustness of the proposed approach, two sets of point cloud data
were obtained separately via forward and backward measurements along a 500-metre-long
tunnel region. This region contains 21 spalling defects. The root mean square error (RMSE)
is adopted to compare the difference of the depth value from two groups of spalling point
cloud data, which can be defined as the following:

RSME =

√√√√√ n
∑

i=1
∆i

n
, (12)

where n is the number of pixels belonging to spalling region, and ∆ is the difference in
the actual depth values. The RMSE in this paper is 0.9 mm, which is close to the precision
of the laser scanner in theory (0.5 mm@10 m). The relatively low RMSE value reflects a
high internal precision of the MLS system and reliability of the calculated volume of the
inspected spalling defects. The volume values of 21 spalling defects for both datasets are
plotted in Figure 16. The statistical results show that the mean error is 1.66% and the max
error is 4.85%, which suggests a high robustness of the proposed approach.
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5. 3D Visualization and Inspection Report
5.1. 3D Tunnel Model Reconstruction Method

To visualize tunnel structure defects in 3D space, the predicted 2D images must be
visualized in 3D space to allow the inspectors to better assess the spalling defects in the
tunnel linings. An effective solution is 3D tunnel reconstruction based on the obtained
images and adding topological information to the original point cloud data.

Figure 17 shows the main steps of the tunnel 3D reconstruction approach introduced
in our previous work [55]. Based on the predicted images from the SIDNet model, a
custom 2D plane point cloud is first generated by placing a point at the centre of the
corresponding position pixel (Figure 17a–c). To convert from the 2D point cloud to a 3D
surface model, a diagonal triangulation mesh method is used to generate the surface mesh.
Based on the plane point cloud, three nearest neighbouring points are connected to form
a triangular mesh surface (Figure 17d). Through batch processing, all the point cloud
data can be efficiently transformed into a mesh surface of the same size as the images. In
order to reconstruct the 3D tunnel lining surface, the obtained 2D mesh surface should be
transformed into the spatial space. To simplify the reconstruction process and increase the
processing efficiency, the 2D points (including the points on the interference objects) are
mapped on the 3D surface of a fitted ellipsoid tunnel lining (Figure 17e). The assumed
3D ellipse tunnel model has the same coordinates as the fitted ellipsoid tunnel introduced
in Section 2.2. The spalling defect inspection images output from the SIDNet are then
mapped on the surface of the constructed 3D model according to the projection relationship
between 2D pixels and 3D points. As a result, the final 3D tunnel lining model consists of
both spatial location information and colour information (Figure 17f).
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tunnel lining surface reconstruction; (f) mapping defect inspection images on the surface of tunnel model.

5.2. 3D Inspection Results of a Testing Tunnel Section

A 75 m long tunnel section was selected to demonstrate the capability of the proposed
approach. The 3D point cloud data of each 5 m length were first converted into intensity
images and depth images. These images were input into the trained SIDNet model and then
output with the same size. After obtaining numerous individual images with segmented
spalling defects from the SIDNet model, the relatively small output images were stitched
together directly to form a larger one, aiding successive inspection and reducing the number
of images.
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The relationship between the relative positions of the spalling defects can be accessed
in the context of the final mosaic image. Figure 18a is the stitched input intensity image of
the 75 m tunnel region and the actual length of image’s width is 23.5 m. The corresponding
inspection results output from the SIDNet model are shown in Figure 18b. The inspected
spalling defects with different depths (ranging from 0 to 0.5 m) are marked with different
colours (blue to red) to demonstrate the quantification results of the detected defects in
the images. Overall, the spalling defects in this tunnel region are successfully segmented
and quantified.
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local regions and (b) the inspection results output from the SIDNet model and the enlarged spalling defects regions (the
depth value ranges from 0 (blue) to 0.5 m (red)).

A 3D model of the 75 m tunnel region was constructed based on the predicted image
which shows different viewing perspectives of the tunnel lining (Figure 19). The 3D model
also provides an intuitive 3D view of the location and distribution of the detected spalling
defects. By using depth images, the depth of spalling can be visualized in the form of
different colour distinctions. If needed, the interference objects can be also eliminated
in the reconstructed 3D model. A spalling inspection report can also be automatically
generated (Table 3). In this report, the longitudinal location (the mileage according to
the tunnel entrance that can be seen in the Figure 18), the according angle range of each
spalling defect (the start and end angle relative to the x axis, which has been introduced in
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Huang et al. [55]), the area, and the volume of the identified spalling defect are accurately
quantified and outputted. This automated spalling inspection approach can significantly
aid with tunnel structural health monitoring and improve the digital management of
railway tunnels.
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Figure 19. 3D visualization results from several viewing perspective of the detected spalling defects including: (a) overall
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viewing perspective.

Table 3. Inspection report for spalling defects from a 75 m long tunnel section.

Spalling No. Mileage (m) Start Angle (◦) End Angle (◦) Area (m2) Volume (m3)
#1 3438 132 134 0.031 0.017
#2 3438 101 120 0.187 0.028
#3 3446 96 103 0.086 0.004
#4 3445 79 82 0.103 0.004
#5 3463 103 122 0.254 0.053
#6 3463 92 94 0.037 0.003
#7 3488 115 121 0.107 0.017
#8 3488 64 73 0.089 0.012
#9 3495 80 85 1.253 0.075

#10 3501 100 121 0.356 0.068
#11 3501 76 80 0.121 0.010
#12 3513 117 119 0.118 0.009
#13 3513 115 116 0.065 0.004
#14 3513 63 85 0.347 0.031

6. Discussion
6.1. The Advantages of the Proposed Approach

To estimate the required amount of material for the maintenance of spalling defects,
both the area and volume of each spalling defect must be accurately quantified. During
the traditional manual inspection of spalling defects, the spalling region is subjectively
sketched or estimated by the inspector, and hence the defect area is roughly estimated.
Total station and Vernier callipers have often been used to acquire the depth information
of the spalling defects. However, both kits are difficult to operate in a railway tunnel and
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can only make single spot measurements. Therefore, the calculated volume of manually
detected spalling defects is not accurate.

In recent years, photogrammetry has developed rapidly as a non-destructive inspec-
tion method for tunnel structure health monitoring [33–35,65]. By mounting high-resolution
linear charge coupled device (CCD) cameras onto a movable inspection platform, pho-
togrammetry can achieve continuous scanning imaging of the tunnel lining surface along
the longitudinal direction. The obtained high-resolution images are used for the detection
and quantification of defects on the tunnel lining (water leakage, cracks, and spalling).
However, only the 2D evaluation information (segmentation result and area value) of the
defects can be obtained. The depth information and 3D spatial coordinates of the spalling
defects are hard to calculate. Therefore, it is difficult to obtain the volume of the detected
spalling defects.

The integrated approach proposed in this paper can calculate the actual depth of
spalling defects through the acquisition of high-precision 3D coordinate values. The depth
channel combining the intensity channel can be imported into the DCNNs to improve the
semantic segmentation accuracy of the model, so that the volume of the spatial spalling de-
fects can be calculated precisely. The point cloud data of 3D tunnel linings can be collected
from the MLS with high efficiency and density, providing a means to capture the depth fea-
tures in a small defects area, and the volume of spalling defects can be computed by means
of accumulation. Moreover, the 3D defects visualization and automated inspection report
generating approach can surely improve the efficiency and enable better documentation of
the tunnel inspection operations.

6.2. Possible Applications of the Proposed Approach

It should be noted that the unrolling step of the proposed approach is restricted to
the cases of circular or ellipsoid tunnel. In general, the railway or metro tunnel linings
can fit well with an ellipse surface. Studies shall be conducted in future work to allow
spalling defects inspection in roadway tunnels with different tunnel lining geometries.
Nevertheless, the proposed approach in this study should be applicable for the detection
of spalling defects in metro shield tunnel linings. The precision of the depth information
from point cloud data will be improved as a metro shield tunnel has a smaller radius. At
the same time, a smaller inner surface means that more point cloud data will be collected
in a certain size spalling region, thus improving the density of depth value estimation.

According to research [14,66], the extra depth information has proved to have positive
effects in structural defect inspection and quantification. In theory, by employing the
proposed approach, it should be able to segment and quantify all the target objects (bolt
holes, segment joints, dislocations, etc.) using depth inconsistency. Adopting the depth
feature can significantly advance tunnel lining inspections by overcoming the problem of
interference objects having similar colours.

7. Conclusions

This paper proposes a novel integrated approach for automated segmentation and
quantification of spalling defects from tunnel lining point cloud data. A dataset for spalling
segmentation named RTSD is established from the point cloud data, comprising 8092 RGB
images and depth images of railway tunnel linings. Owing to the additional depth in-
formation, a DCNN-based model named SIDNet is proposed to achieve multichannel
feature extraction of spalling defects. The depth information helps to quantify the volume
of spalling defects of the tunnel lining. The SIDNet model exceeds the performance of the
other state-of-the-art DCNN-based and traditional models with regards to the MPA (0.985)
and MIoU (0.925). The area and volume values can be quantified from the output images
to evaluate the detected spalling defects.

This study also integrates the 3D reconstruction method to better visualize and quan-
tify the inspected defects in 3D space. A 3D surface model of a tunnel lining can be
generated to create a first-person observation perspective to the detected defects. The
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visualization approach helps an inspector to contextualize the location of the spalling
defects found during inspection in an intuitive manner. A 3D inspection report can also be
generated automatically, to include the spatial location and the quantification values of the
identified spalling defects.

It should be noted that the precision of the depth value measurement and resolution
of the point cloud are limited owing to the point cloud density. In future work, the authors
will consider integrating high-resolution linear CCD cameras with the MLS to achieve
higher accuracy in inspecting tunnel defects. Further advancement of the current spalling
defects inspection practice should include testing the applicability and capability of the
proposed approach in different types of railway tunnels and metro shield tunnels.
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