
sensors

Case Report

A Novel Approach to Global Positioning System Accuracy
Assessment, Verified on LiDAR Alignment of One Million
Kilometers at a Continent Scale, as a Foundation for
Autonomous Driving Safety Analysis

Janusz Bedkowski *,†, Hubert Nowak †, Blazej Kubiak †, Witold Studzinski †, Maciej Janeczek †, Szymon Karas †,
Adam Kopaczewski †, Przemyslaw Makosiej †, Jaroslaw Koszuk †, Michal Pec † and Krzysztof Miksa †

����������
�������

Citation: Bedkowski, J.; Nowak, H.;

Kubiak, B.; Studzinski, W.; Janeczek,

M.; Karas, S.; Kopaczewski, A.;

Makosiej, P.; Koszuk, J.; Pec, M.; et al.

A Novel Approach to Global

Positioning System Accuracy

Assessment, Verified on LiDAR

Alignment of One Million Kilometers

at a Continent Scale, as a Foundation

for Autonomous Driving Safety

Analysis. Sensors 2021, 21, 5691.

https://doi.org/10.3390/s21175691

Academic Editor: Maorong Ge

Received: 15 June 2021

Accepted: 15 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

TomTom International BV, 1011 AC Amsterdam, The Netherlands; Hubert.Nowak@tomtom.com (H.N.);
Blazej.Kubiak@tomtom.com (B.K.); Witold.Studzinski@tomtom.com (W.S.); Maciej.Janeczek@tomtom.com (M.J.);
Szymon.Karas@tomtom.com (S.K.); Adam.Kopaczewski@tomtom.com (A.K.);
Przemyslaw.Makosiej@tomtom.com (P.M.); Jaroslaw.Koszuk@tomtom.com (J.K.); Michal.Pec@tomtom.com (M.P.);
Krzysztof.Miksa@tomtom.com (K.M.)
* Correspondence: Janusz.Bedkowski@tomtom.com
† Current address: Stefana Zeromskiego 94C, 90-550 Lodz, Poland.

Abstract: This paper concerns a new methodology for accuracy assessment of GPS (Global Position-
ing System) verified experimentally with LiDAR (Light Detection and Ranging) data alignment at
continent scale for autonomous driving safety analysis. Accuracy of an autonomous driving vehicle
positioning within a lane on the road is one of the key safety considerations and the main focus of
this paper. The accuracy of GPS positioning is checked by comparing it with mobile mapping tracks
in the recorded high-definition source. The aim of the comparison is to see if the GPS positioning
remains accurate up to the dimensions of the lane where the vehicle is driving. The goal is to align
all the available LiDAR car trajectories to confirm the of accuracy of GNSS+INS (Global Navigation
Satellite System + Inertial Navigation System). For this reason, the use of LiDAR metric measure-
ments for data alignment implemented using SLAM (Simultaneous Localization and Mapping) was
investigated, assuring no systematic drift by applying GNSS+INS constraints. The methodology was
verified experimentally using arbitrarily chosen measurement instruments (NovAtel GNSS+INS,
Velodyne HDL32 LiDAR) mounted onto mobile mapping systems. The accuracy was assessed
and confirmed by the alignment of 32,785 trajectories with a total length of 1,159,956.9 km and a
total of 186.4 × 109 optimized parameters (six degrees of freedom of poses) that cover the United
States region in the 2016–2019 period. The alignment improves the trajectories; thus the final map is
consistent. The proposed methodology extends the existing methods of global positioning system
accuracy assessment, focusing on realistic environmental and driving conditions. The impact of
global positioning system accuracy on autonomous car safety is discussed. It is shown that 99%
of the assessed data satisfy the safety requirements (driving within lanes of 3.6 m) for Mid-Size
(width 1.85 m, length 4.87 m) vehicles and 95% for Six-Wheel Pickup (width 2.03–2.43 m, length
5.32–6.76 m). The conclusion is that this methodology has great potential for global positioning
accuracy assessment at the global scale for autonomous driving applications. LiDAR data alignment
is introduced as a novel approach to GNSS+INS accuracy confirmation. Further research is needed to
solve the identified challenges.

Keywords: global positioning; SLAM; GNSS+INS; road survey; mobile mapping; autonomous
driving safety
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1. Introduction

Problem statement: The goal of the presented research is to measure the impact of
the global positioning system on the autonomous driving safety. The challenge of the
research is to assess the positioning accuracy of cars moving onto limited-access highways
in the USA. Localization accuracy requirements for US freeway operation are discussed
in [1]. Due to the nature of the measurement, it is difficult to perform repeatable data
collections since cars never follow the same trajectories. The actual coverage limits the
possibility of repetitive measurements and introduces an important challenge being the
lack of the ground truth data. Thus, accuracy assessment is the main focus of the paper,
and it requires a new approach that is formulated as a novel measurement methodology.
Safety of autonomous driving is addressed as an alert limit for the defined geometry of
the problem, where the aim is to maintain knowledge that the vehicle (its bounding box)
is within its lane. Horizontally, this is expressed as lateral (side-to-side) and longitudinal
(forward–backward) components. Vertically, the vehicle must know what road level it is on
(location among multi-level roads). The relationship between the road width and curvature
and the bounding box around the vehicle is shown in Figure 1.

Figure 1. Bounding box geometry during a turn maneuver. This shows the allowable maximum
position error of the vehicle to ensure it is within the lane known as the alert limits [1].

The relationship between the lateral x and longitudinal y bounds and road geometry
w is defined in Equation (1).
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The authors of [1] define alert limits related to the vehicle length lv and width wv as 2:

Lateral Alert Limit = x−wv
2

Longitudinal Alert Limit = y−lv
2

(2)

For the impact of GNSS positioning on safety, the following aspects are considered: vehicle
type, a mean distance between lanes of 3.6 m (limited access highways in the United States
of America), Lateral Alert Limit and Longitudinal Alert Limit. Reference alert limits of
relative positioning for different types of vehicle versus map are shown in Table 1 [1].

Table 1. Localization requirements for US freeway operation with interchanges. This assumes
minimum lane widths of 3.6 m and allowable speeds up to 137 km/h (85 mph).

Vehicle Type Lateral Alert Limit[m] Longitudinal Alert Limit[m]

Mid-Size 0.72 1.40
6-Wheel Pickup 0.40 1.40

Problem formulation: The problem is to confirm the global positioning system accuracy
assessed in our case by state-of-the-art NovAtel algorithm and relate it with the autonomous
driving safety. We investigated how to use LiDAR metric measurements to align all
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available trajectories. Data were collected using a mobile mapping road survey performed
at a continent scale. Based on this data collection, many challenges were determined and
addressed in the paper. Some of the challenges are the following: large area coverage,
the impact of environmental conditions, and dynamic changes of road geometry like
roadworks. The most important requirement for calculating alignment is to ensure no
systematic drift of aligned trajectories. Thus, the alignment method should work by
means of Least Squares using assessed trajectories as constraints. Another problem is
to maintain the shape of aligned trajectories; thus, the motion model must constrain all
relative consecutive poses. Bearing in mind the requirements for aligned trajectories, the
result is optimal; therefore, the confirmation of the assessment accuracy of the trajectories
can be applied. It can only be achieved by means of massive data processing performed to
obtain quantitatively correct results.

Problem assessment: A new methodology is proposed for global positioning system
accuracy assessment to analyze the impact on autonomous driving safety. It is composed
of six elements:

• Mobile mapping system minimal setup;
• Global positioning data processing;
• LiDAR data processing;
• Alignment algorithm;
• Accuracy assessment confirmation;
• Autonomous driving safety analysis.

The scheme of the experimental verification is shown in Figure 2.

Figure 2. The scheme of GNSS+INS accuracy assessment for autonomous driving safety analysis.

The GNSS+INS accuracy of fast-moving vehicles was measured at a large scale, covering as
much of the limited-access highways in the USA as possible, as realistic dynamic conditions
are considered a core requirement. GNSS+INS NovAtel was chosen as a reference global
positioning measurement instrument mounted on mobile mapping systems equipped with
a single Velodyne HDL32 3D LiDAR. GNSS receivers are integrated with mobile mapping
systems, and the measurements are post-processed using a combination of NovAtel PPP
(Precise Point Positioning) and PPK (Post-Processed Kinematic) algorithms, thus obtaining
the most accurate positioning from the point of view of an applied measurement instru-
ment. To reach satisfactory results, it was decided to use mobile mapping data covering
most of the limited access highways in the USA. The aim of experimental verification of the
proposed methodology is to use GNSS+INS trajectories as objects of accuracy assessment, align them
using LiDAR data, confirm the accuracy and perform autonomous driving safety analysis. This is
possible only if it is ensured that the alignment does not introduce any systematic drift. For
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this reason, the use of the state-of-the-art LiDAR SLAM algorithm was investigated. The al-
gorithm is based on the Weighted Nonlinear Least-Square Method capable of aligning these
trajectories based on LiDAR observations, motion model and GNSS+INS constraints. Based
on this investigation, some deviations in the accuracy of GNSS+INS are demonstrated.
It is a very important research topic since the era of autonomous driving is approaching.
The challenges related to the proposed methodology are as follows. The first challenge is
that there is no ground truth for such a scope of data. Moreover, accurate tracking of the
fleet of fast-moving mobile mapping systems is impossible considering the continent-scale
coverage. The second challenge is enuring no systematic drift in the aligning procedure.
The third challenge is related to many factors affecting the alignment algorithm relying
on LiDAR measurements. The fourth challenge is related to dynamic conditions of the
data collection and many environmental changes (e.g., roadworks, weather conditions)
that could affect LiDAR-based alignment.

The main requirement is to collect large-scale, mobile mapping data (LiDAR, GNSS+INS)
covering as large area as possible to ensure LiDAR data overlapping. It is advised to use
multiple mobile mapping systems with the same setup of the measurement instruments. Thus,
the results of the experiments are not affected by the bias of using only one measurement
instrument. This paper addresses an approach for the continent-scale SLAM experiment, which
is a contribution to the Mobile Robotics domain where the large scale is an interesting research
topic. This is an important research topic from the perspective of recent developments in the
localization of autonomous cars [2,3]. It is evident that autonomous cars can collect data and
contribute to global map updates; thus, it is a large-scale problem that inspires many researchers.

The term SLAM [4] corresponds to a “chicken and egg dilemma”. It is therefore
necessary to have a proper map representation that is compatible with observations derived
from sensors to localize the vehicle within the map, and accurate localization is needed to
build the map. The core concept is the pose that represents position and orientation at a
given time. A set of consecutive poses makes up a trajectory. Attaching measurements to the
trajectory as relative poses gives an opportunity to reconstruct a map of raw measurements,
e.g., the point cloud in the case of using LiDAR technology. The calibration parameters
also must be considered to ensure proper transformation from the trajectory pose to the
sensor origin.

This paper concerns the concepts and methods known from Mobile Robotics and
Geodesy domains. These domains introduce a methodology for map building based on
computing the absolute pose of measurement instruments assuming raw information
typically transformed into feature space [5]. It addresses how to fill the gap between these
domains, which is also discussed in [6]. Therefore, the problem of fusing GNSS+INS
and LiDAR observations to align all trajectories ensuring no systematic drift is the main
research topic discussed in this paper. The result of this research is a new methodology of
GNSS+INS accuracy assessment. The paper is organized as follows: Section 2 discusses
the state of the art related to mobile mapping approaches and available data sets. Sec-
tion 3 concerns an experimental verification of the proposed methodology and defines
the minimal setup of mobile mapping systems, GNSS+INS data processing, LiDAR data
processing, SLAM algorithm ensuring no systematic drift of aligned trajectories and im-
pact on autonomous driving safety. Section 4 addresses real-world challenges affecting
data alignment, providing important feedback for the research community. In Section
5, experimental validation details are provided, and the results are discussed in Section
5.2. The impact of GNSS+INS positioning on autonomous driving safety is elaborated in
Section 6. Final conclusions are given in Section 7.

2. State of the Art

Trajectory, sensor readings and map are terms commonly used in Mobile Robotics
in the context of SLAM. The trajectory can be expressed as consecutive 6-DOF poses [7].
Collecting consistent 3D laser data using a moving mobile mapping system is often difficult
because the precision of collected data is related to motion estimation. For this reason,
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the trajectory of the sensor during the scan must be taken into account while constructing
3D point clouds. To address this issue, many researchers use the stop-scan fashion—they
stop a moving platform and take stationary scans [8,9]. On the contrary, in recent research
advances, continuous-time mapping is favored [10,11]. Continuous-time mapping relates
to the new term of the time calibration method [12], and it introduces a continuous-time,
simultaneous localization and a mapping approach for mobile robotics. In comparison,
mobile mapping systems used in geodesy use synchronized sensor readings.

Mobile Mapping Systems are composed of proprioceptive, exteroceptive and inte-
roceptive sensors. Proprioceptive sensors measure the internal state of the system in
the environment such as position, velocity, acceleration and temperature. Exteroceptive
sensors measure parameters external to the system such as pressure, forces and torques,
vision, proximity and active ranging. Vision sensors include monocular, stereo/multiple
cameras, equirectangular/spherical cameras and structured lighting (e.g., so-called RGBD
cameras). There are active ranging systems laser line scanners, such as LiDAR, RADAR
and SONAR. Interoceptive sensors measure electrical properties (voltage, current), tem-
perature, battery charge state, stress/strain and sound. All above-mentioned sensors are
connected to the dedicated electronics that synchronize all inputs with the GNSS receiver;
thus all raw data can be transformed into global reference systems. There is a need to
cope with GNSS-denied environments; thus, recent developments show the progress of
mobile mapping technologies that also use SLAM algorithms. A mobile mapping device
capable of building the map was introduced in [13]. Such devices use the advantage of a
rotating LiDAR to perceive full 360-degree distance measurements. Further developments
introduce equirectangular cameras that can augment metric information with spherical
images. Many mobile mapping applications incorporate equirectangular camera FLiR
Ladybug5/5+ to perceive 360-degree spherical images [14]. High-end mobile mapping
systems [15,16] use more precise measurement instruments, which involve a higher cost.

2.1. Large-Scale Data Sets

In recent research since mobile mapping systems became more affordable, many
open-source large data sets have appeared. The GNSS-specific data set [17] contains GNSS
data from two sensors recorded during real-world urban driving scenarios. A mass-market
receiver is used, and the ground truth is derived from a highly accurate reference receiver.
The complex urban data set [18] provides LiDAR data and stereo images with various
position sensors targeting a highly complex urban environment. It captures features in
urban environments (e.g., metropolitan areas, complex buildings and residential areas).
The data of 2D and 3D of LiDAR is provided. Raw sensor data for vehicle navigation and
development tools are given in a ROS file format.

Authors of the Multi Vehicle Stereo Event Dataset [19] provide a collection of data
helpful in the development of the 3D perception algorithms for event-based cameras. An
interesting data set [20] includes data from the AtlantikSolar UAV (Unmanned Aerial
Vehicle), which is a small-sized, hand-launchable, solar-powered device optimized for
large-scale aerial mapping and inspection applications. Authors of [21] provide the Oxford
RobotCar data set that contains over 100 repetitions of a consistent route through Oxford,
United Kingdom, captured throughout over a year. Additionally, the authors provide
RTK Ground Truth [22]. The authors of [23] provided the Málaga Stereo and Laser Urban
Data Set, which was gathered in urban scenarios with a car equipped with a stereo camera
(Bumblebee2) and five LiDARs. The KITTI-360 data set [24], which is well-known in Mobile
Robotics and Machine Vision domains, include data from an autonomous driving platform
called Annieway.

2.2. Long-Term Data Sets

Long-term data sets include multi-season data. The purpose is to address the impact
of multi-season, varying weather and other disturbances into localization algorithms. The
authors of [25] provided the KAIST multi-spectral data set that covers regions from urban
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to residential for autonomous systems. They claim that this data set provides different
perspectives of the world captured in coarse time slots (day and night) in addition to fine
time slots (sunrise, morning, afternoon, sunset, night and dawn). The interesting Visual-
Inertial Canoe data set [26] includes data from a canoe along the Sangamon River in Illinois.
The authors state that the canoe was equipped with a stereo camera, an IMU and a GPS
device, which provide visual data suitable for stereo or monocular applications, inertial
measurements and position data for the ground truth. University of Michigan North
Campus Long-Term (NCLT) Vision and LiDAR Dataset [27] consists of omnidirectional
(equirectangular) imagery, 3D LiDAR, planar LiDAR, GPS and proprioceptive sensors
for odometry collected using a Segway robot. The authors conducted this research to
allow researchers to focus on long-term autonomous operation in changing environments.
Lyft’s [28] Level 5 Perception Dataset 2020 is relevant as both a large-scale and long-term
data set. It is maintained by autonomous vehicles that collect raw sensor data on other cars,
pedestrians, traffic lights and more. This data set features raw LiDAR and camera inputs
collected by the autonomous fleet within a bounded geographic area.

2.3. Large-Scale Surveying and Mapping

Large-scale surveying and mapping relate to the shape of the Earth and spatial rela-
tions between objects near its surface. It is evident that global and local coordinate systems
are useful for calculations. To describe the position in the global reference system (global
geocentric terrestrial system), the coordinates are defined with respect to center of the
Earth. Spatial relations between objects can be described using a local reference system.
3D Cartesian geocentric coordinates are not very convenient for describing positions on
the surface of the Earth. It is more convenient to project the curved surface of the Earth
onto a flat plane, which is related to map projections. Usually, the local coordinate system
has the y-axis pointing in the North direction, the z-axis in the up direction, and the x-axis
completing the pair and therefore pointing in the East direction. This type of system is
referred to as a topocentric coordinate system. For the coordinates, it is common to use
the capital letters ENU instead of x, y, z [29], and these are called Local Tangent Plane
Coordinates. The alternative way of expressing the z-coordinate as a positive number
(convenient for aeroplanes) is NED. All observation equations described in this paper
are expressed in the right-handed local 3D Cartesian coordinate system; therefore, it is
important to keep in mind the transformation function from the local to global coordinate
system looking at the GPS data used for georeferencing [30].

Rigid transformation in SE(3) can be separated into two parts: translation and rigid
rotation. There are plenty ways to express rotations [31,32] such as using Tait–Bryan and
Euler angles, Quaternions [33], Rodriguez [34–36] and, e.g., Cayley formula [37]. Further
information on how to construct transformation matrices can be found in [38–40]. The
information on how to compute derivatives for rotations can be found in [41,42].

3. Experimental Verification of the Methodology
3.1. Mobile Mapping System Minimal Setup

The minimal setup of the mobile mapping system is at least one 3D LiDAR, GNSS+INS
positioning system and odometry. To assess positioning systems other than GNSS+INS,
an additional measurement instrument should be integrated with the mobile mapping
data acquisition pipeline. All data should be synchronized. An example of such a mo-
bile mapping system is the MoMa (Mobile Mapping) van—TomTom B.V. proprietary
technology—is shown in Figure 3. It is composed of NovAtel ProPak6®/PwrPak7 GNSS
receiver, NovAtel VEXXIS GNSS-850 GNSS antennas, ADIS 16488/KVH 1750 Inertial Mea-
surement Unit, DIY odometer, Velodyne Lidar HDL-32E and FLiR Ladybug 5/5+ LD5P.
All data are synchronized, and the relative poses of all sensors are obtained from in-house
calibration procedure.
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Figure 3. MoMa van—a TomTom B.V. Mobile Mapping proprietary technology—providing cali-
brated data.

3.2. Gnss+Ins Data Processing

GNSS+INS measurements are post-processed using a combination of NovaTel PPP
(Precise Point Positioning) and PPK (Post-Processed Kinematic) algorithms shown in
Figure 2 (left). All data are processed by NovaTel Waypoint Post-Processing Software SDK
(Software Development Kit) 8.90 [43]. PPK and PPP methods incorporate information from
GLONASS Satellite Constellation, Satellite Constellation, Geostationary Satellite (GEO) and
Reference Stations [44]. The expected accuracy is shown in Figure 4 (right). Due to fact that
PPK relates to RTK (Real-Time Kinematic), this method can reach much higher precision
compared to PPP. NovAtel introduces six classes of accuracy, as shown in Figure 2. For the
experiment purpose, all post-processed GNSS+INS data were transformed to ITRF2008
epoch 2019.0000.

Figure 4. Diagram from “Precise Positioning with NovAtel CORRECT Including Performance
Analysis” released in 2015 by NovAtel Inc.

3.3. Lidar Data Processing

3D data derived from Velodyne HDL-32 utilize 32 LiDAR channels aligned from
+10.67 to −30.67 degrees to provide an unmatched vertical field of view and a real-time
360-degree horizontal field of view. They generate a point cloud of up to 695,000 points
per second with a range of up to 100 m and typical accuracy of ±2 cm. Reflectivity is
used (values 0–255), and 3D coordinates of the measured points in Euclidean space are
represented as (x, y, z). In this particular application, 3D data are downsampled for equal
3D points distribution and filtered for traffic noise reduction. The remaining point cloud
is distinguished into basic primitives (point, cylindrical, plane) and assigned semantic
labels related to reflectivity. Therefore, the result is a set of points with high reflectivity,
points with low reflectivity, lines with high reflectivity, lines with low reflectivity, planes
with high reflectivity, and planes with low reflectivity. This segmentation allows matching
similar primitives as corresponding landmarks. To distinguish primitives of high and
low reflectivity, and empirically estimated threshold is used; thus, based on empirical
experiments, 3D points with reflectivity of more than 40 are considered as highly reflective
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and others as having low reflectivity. Traffic noise is a challenging aspect, since most of
the road surveys were performed in realistic conditions; thus, RANSAC (Random Sample
Consensus) [45] was applied for extracting surface planes. This method efficiently identifies
surface planes even for a large volume of noisy traffic data (Figure 5-left) and the relevant
implementation is available in PCL (Point Cloud Library) [46].

Figure 5. (Left)—point cloud affected by noise from traffic; (Right)—filtered and classified Li-
DAR data.

When data are downsampled and filtered, the grouping of points into basic primitives
as lines, cylinders and planes is introduced, assuming a low–high reflective threshold
(Figure 5: right). The result of this classification is the semantic label l assigned for each
query point. In that sense, the impact of perceptual aliasing confusion [47] is addressed;
thus the issue related to outlier observations (incorrectly matched landmarks) is addressed.
In the literature, there are many techniques for automatic classification of point clouds such
as semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods [48]
that uses local features for classification. Another interesting technique—contour detection
in unstructured 3D point clouds—was elaborated in [49]. In our application, an additional
basic primitive as the direction of the line and the normal vector of the plane are calculated
and used for constructing observation equations. For calculating the direction of the line
and the normal vector of the plane, the following covariance matrix is used:

C(NR) =
1
N ∑

p∈N
(p− p̄)(p− p̄)T (3)

Its eigen-values λ1 > λ2 > λ3 ∈ R and corresponding eigenvectors e1, e2, e3 ∈ R3, and N is
the number of points p found in certain radius R and p̄ is the centroid of the neighborhood
NR (all points inside the sphere of radius = R). The eigen-values and eigen-vectors are
used for local shape description (linearity—Equation (4); planarity—Equation (5)) similar
as in [7].

Linearity = (λ1 − λ2)/λ1 (4)

Planarity = (λ2 − λ3)/λ1 (5)

The implementation details are available in the form of point cloud processing tutorial
available in [50].

3.4. Alignment Algorithm

The goal is to find an optimal solution for the desired poses of all GNSS+INS tra-
jectories acquired with MoMa vans assuming information from LiDAR. The problem is
formulated using the Weighted Nonlinear Least Square method, a special case of General-
ized Least Squares, known, e.g., in photogrammetry [51] and LiDAR data matching [52].
The SLAM problem is nonlinear [5] due to rotations; therefore, a first-order Taylor expan-
sion is used to construct the design matrix A. More information concerning observations
and the Least Square method can be found in [53,54]. It is assumed that observational
errors are uncorrelated; thus the weight matrix P is diagonal, and the problem becomes(

ATPA
)

∆x = ATPb (6)
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Larger values of elements in P determine the higher impact of the observation equation on
the optimization process. A similar approach can be found in work on continuous 3D scan
matching [11], where authors additionally incorporated a Cauchy function applied to the
residuals b to cope with outliers. To solve a single iteration such as

∆x =
(

ATPA
)−1(

ATPb
)

(7)

the sparse Cholesky factorization [55] is used. More implementation details concerning
semantic data registration are available as Lesson 16 of the tutorial [50].

Rotation matrix representation such as Tait–Bryan angles [40] is used. Angles asso-
ciated with the sequence (x, y, z) correspond to (ω, ϕ, κ) as (roll, pitch, yaw). They are
commonly used in aerospace engineering and computer graphics. In the three-dimensional
space, the following rotations via each axis are given:

Rx(ω) =

(
1 0 0
0 cos(ω) −sin(ω)
0 sin(ω) cos(ω)

)
, Ry(ϕ) =

(
cos(ϕ) 0 sin(ϕ)

0 1 0
−sin(ϕ) 0 cos(ϕ)

)
, Rz(κ) =

(
cos(κ) −sin(κ) 0
sin(κ) cos(κ) 0

0 0 1

)
(8)

Therefore, rotation matrix R is expressed as:

Rωϕκ =

(
cos(ϕ)cos(κ) −cos(ϕ)sin(κ) sin(ϕ)

cos(ω)sin(κ)+sin(ω)sin(ϕ)cos(κ) cos(ω)cos(κ)−sin(ω)sin(ϕ)sin(κ) −sin(ω)cos(ϕ)
sin(ω)sin(κ)−cos(ω)sin(ϕ)cos(κ) sin(ω)cos(κ)+cos(ω)sin(ϕ)sin(κ) cos(ω)cos(ϕ)

)
(9)

Finally, the optimization problem concerns finding updates ∆xij for all trajectory poses
composed of six parameters including translation part (x, y, z) and rotation part (ω, ϕ, κ)

∆xij =
(
∆xij, ∆yij, ∆zij, ∆ωij, ∆ϕij, ∆κij

)
(10)

where i corresponds to the ith trajectory and j corresponds to the jth pose.
In the proposed methodology, the required observation equations forming the SLAM

alignment are defined as follows

• Semantic point-to-point (Section 3.4.1).
• Semantic point-to-projection (Section 3.4.2).
• Motion model and GNSS+INS as relative poses constraints (Section 3.4.3).

Similar approaches can be found in [7,11,56–59] and the implementation of SLAM [60].
It is worth mentioning another family of observation equations that corresponds to local
geometric features-called surfels in [11]. This particular application of SLAM has to
ensure no systematic drift of aligned trajectories. For this reason, assessed GNSS+INS
input trajectories are treated as constraints implemented using relative pose observation
Equation (Section 3.4.3). This means that the desired relative pose Pt(x,y,z,ω,ϕ,κ) between
the input GNSS+INS trajectory node and aligned one is Pt(0,0,0,0,0,0). Another important
aspect of the proposed methodology requires no change in the shape of aligned trajectories;
thus the motion model (as consecutive relative poses of GNSS+INS input trajectories) is
used as a constraint and is also implemented as relative pose observation equation. In
this case, the desired relative pose between consecutive nodes of aligned trajectories is
calculated from GNSS+INS input trajectories and constrains the optimization process. This
approach guarantees a similar shape of aligned trajectories to the input data, which is
crucial for our application. In this sense, the optimization process will try to maintain the
shape, positions and orientations of all input trajectories. All the LiDAR-based observation
equations can affect the above-mentioned constraints to minimize the displacement of
corresponding landmarks observed from different viewpoints. The idea is presented in
Figure 6, and an example of data alignment is shown in Figure 7.
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(a) GNSS+INS input trajectories.

(b) Aligned trajectories.

Figure 6. The idea of aligning trajectories assuring no systematic drift by incorporating GNSS+INS
input data as the constraints. Springs visualize the constraints.

(a) GNSS+INS and processed LiDAR data.

(b) Aligned data.

Figure 7. Result of the alignment, green—accurate data, red—inaccurate data.

3.4.1. Semantic Point-To-Point Observation Equation

The raw LiDAR measurement is represented as source point Ps(xs,ys,zs) in Euclidean
space as point in a local reference frame. The matrix [R,T] is the transformation of source
point Ps into target point Pt(xt,yt,zt) in global reference frame; thus

ΨR,T(xs, ys, zs) = Pt = [R, T]Ps (11)

The transformation [R,T] has a unique representation as a pose (x, y, z, ω, ϕ, κ), composed
of position (x, y, z) and orientation (ω, ϕ, κ). Orientation corresponds to Tait–Bryan angles,
respectively, ω : x − axis, ϕ : y − axis, κ : z − axis and the x-y-z convention for [R,T]
building is incorporated. Formula 12 denotes the point-to-point observation equation used
in optimization, where there are C pair-correspondences of source point to the target point.

min
R,T

C

∑
i=1

(
(xt

i , yt
i , zt

i)−ΨR,T(xs
i , ys

i , zs
i )
)2 (12)
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Semantic point-to-point observation equation is defined by Equation (13), where there
are Cl correspondences of neighboring points with the same semantic label l.

min
R,T

Cl

∑
i=1

(
(xt

i,l , yt
i,l , zt

i,l)−ΨR,T(xs
i,l , ys

i,l , zs
i,l)
)2

(13)

Semantic labels are assigned during LiDAR data processing (Section 3.3).

3.4.2. Semantic Point-To-Projection Observation Equation

Classification into planes and lines enables incorporating the point-to-projection
observation equations. These observations are derived from matching points having the
same semantic label. It means that observations are built from points with the same local
shape characteristics. It is evident that once these projections are calculated using the above
described point-to-point approach, they can be used as the observation equations. Look
at the projection of point Psrc,l(xsrc,l , ysrc,l , zsrc,l), which can be transformed to the global
coordinate system as point Psrc,g(xsrc,g, ysrc,g, zsrc,g) using matrix [R,T]. Thus,xsrc,g

ysrc,g

zsrc,g

 = ΨR,T(xsrc,l , ysrc,l , zsrc,l) = [R, T]

xsrc,l

ysrc,l

zsrc,l

 (14)

to find point Psrc,g to line projection as Pproj,g in the global reference system, line repre-
sentation is used as target direction vector Vtrg,ln(xtrg,ln, ytrg,ln, ztrg,ln) and target point
on line Ptrg,g(xtrg,g, ytrg,g, ztrg,g) is expressed in global reference system. Therefore, the
point-to-line projection is as follows:

Pproj,g = Ptrg,g +
a · b
b · b b, a =

xsrc,g − xtrg,g

ysrc,g − ytrg,g

zsrc,g − ztrg,g

, b =

xtrg,ln

ytrg,ln

ztrg,ln

 (15)

where (·) is a dot product.
To find point Psrc,g to plane projection as Pproj,g, the following plane equation is consid-

ered:
ax + by + cz + d = 0,

∥∥[a b c
]∥∥ = 1 (16)

Vpl = (a, b, c) is the unit vector orthogonal to the plane, and d is the distance from the
origin to the plane. It satisfies the following condition with the point in 3D space

[
a b c d

]
x
y
z
1

 = 0 (17)

Therefore, projection Pproj,g can be computed with:

Pproj,g =

xsrc,g

ysrc,g

zsrc,g

−
xsrc,g

ysrc,g

zsrc,g

 ·Vpl

Vpl (18)

where (·) is a dot product. To build point-to-line projection or point-to-plane projection,
observation Equation (13) can be incorporated.

3.4.3. Relative Pose Observation Equation

Relative pose observation equation concerns a relative pose P (x,y,z,ω,ϕ,κ) from pose
A f rom to pose Bto (P = A−1

f romBto) and a desired pose Pt; therefore optimization will

converge by moving poses A f rom and Bto to reach the desired relative pose Pt. To construct
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the observation equation, the function m2v is incorporated to compute vector (x,y,z,ω,ϕ,κ)
from matrix P assuming Tait–Bryan angle convention. Therefore, the optimization problem
is defined in Equation (19), where (xt

i ,y
t
i ,z

t
i ,ω

t
i ,ϕ

t
i ,κ

t
i ) is a target relative pose (the desired

one) that the optimization is supposed to converge with.

min
RA ,TA ,RB ,TB

C

∑
i=1

(
(xt

i , yt
i , zt

i , ωt
i , ϕt

i , κt
i )−m2v(A−1

f romBto)i

)2
(19)

3.5. Gnss+Ins Accuracy Assessment

Figure 2 shows the implementation of the proposed methodology for GNSS+INS
accuracy assessment using LiDAR SLAM data alignment as a confirmation tool. Once
mobile mapping data covering the expected region are collected, they are processed using
methods described in Sections 3.2 and 3.3. GNSS+INS data processing provides trajectories
and accuracy assessment for each node of trajectory as one of the following classes (Class 1:
0–0.15 m, Class 2: 0.05–0.4 m, Class 3: 0.2–1.0 m, Class 4: 0.5–2.0 m, Class 5: 1.0–5.0 m, Class
6: 2.0–10.0 m). To confirm this accuracy assessment, LiDAR SLAM alignment is performed
for all of these trajectories. This method provides an optimal solution guaranteeing no
systematic drift by minimizing the distance between landmarks in aligned trajectories.
Relative poses are calculated for all corresponding nodes between the input trajectories
and the aligned ones. These relative poses are concatenated into histograms in Section 5.2;
therefore, it is possible to quantitatively verify the percentage of the data set satisfying
certain accuracy conditions defined as Classes 1–6. It was experimentally proven that the
accuracy assessment provided by the NovAtel GNSS+INS processing tool is very similar to
the SLAM output. This confirmed accuracy assessment can be used to consider the impact
GNSS+INS positioning has on safety, as discussed in Section 6. The cause of SLAM errors
is discussed as a real-world challenge in Section 4. Due to the volume of processed data
and manual verification, SLAM errors are considered to have a minor impact on the overall
confirmation of the accuracy assessment.

4. Real-World Challenges

To reconstruct the map of a continent, e.g., North America, it is necessary to cope
with many challenges caused by the volume of data (Figure 8) and errors related to raw
data acquired at different times. The dominant issue is related to the gap between two
time-intervals where data were acquired; thus, changes in the observed environment could
occur, having a negative impact on SLAM convergence, and finally the result could yield a
suboptimal solution.

Figure 8. Real-world challenge: high volume of data covering the United States. Green rectangles
correspond to visited regions by MoMa cars collecting data.
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Another challenge is related to having a sufficient coverage of the map; thus. it is
evident that many places have to be observed (visited) many times to reduce the possible
impact of factors such as noisy data, low-quality data and heavy traffic (Figure 5). The
area is covered sufficiently when there are many overlaps from the LiDAR measurement
point of view. As in many mobile mapping approaches, it is advised to guarantee at
least 70% coverage (70% of LiDAR data from one trajectory can find correspondences to
LiDAR data of other trajectories). The SLAM techniques require as good correspondences
between observations as possible; thus, any disruptive information can affect the algorithm
convergence, making it a suboptimal solution. After the experiment, it was found that in
some cases, it was almost impossible to automatically find the correspondences between
sessions where geometrical or other changes appeared. Therefore, the observed real-world
challenges were classified into certain classes: (a) a lack of observations (Figure 9), (b)
roadworks (Figure 10), (c) vegetation (Figure 11), (d) repainting (Figure 12) and (e) multi-
level changes Figure 13. Such classification is proposed due to different impacts on the
alignment process. In the current form of the SLAM implementation, these challenges
are addressed by the motion model and GNSS+INS constraints that maintain the poses
of the trajectories. The most challenging problem is the repainting of the lane dividers
since a rather small discrepancy between the old and new paintings can affect alignment.
Fortunately, this issue does not affect the entire accuracy assessment, since a large volume
of data are processed and the probability of repainting all lane dividers in the whole
United States region is rather low. Unknown obstacles are considered point-to-point
observation equations.

(a) Image view. (b) LiDAR view.

(c) Image view. (d) LiDAR view.

Figure 9. Real-world challenge: lack of LiDAR observations caused by environmental conditions;
(a,b)—typical environmental conditions; (c,d)—winter conditions, only high reflective surfaces were
detected by LiDAR.
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(a) Left—year 2017, right—year 2019. (b) Left—year 2017, right—year 2019.

Figure 10. Real-world challenge—roadworks.

(a) Left—year 2017, right—year 2018. (b) Left—year 2017, right—year 2018.

Figure 11. Real-world challenge—vegetation.

(a) Left—year 2018, right—year 2018. (b) Left—year 2017, right—year 2019.
Figure 12. Real-world challenge—repainting.

(a) Left—year 2015, right—year 2019. (b) Left—year 2015, right—year 2019.
Figure 13. Real-world challenge—multi level changes.

5. Experimental Validation
5.1. Scope of Data Set

The scope of data covered by the experiment includes 32,785 trajectories collected
in the USA by MoMa vans between 2016 and 2019. The total length of trajectories is
1,159,956.9 km, and 11,526,543 nodes were used in the analysis. Since calculations per-
formed by SLAM take 200 times more 6DOF nodes, the result of optimizing 186.4 × 109

parameters is reported. In Table 2, there is information collected about the distribution of
the data source from the point of view of reported NovAtel accuracy. It can be observed
that most of the accuracies of the input data are within the range of 0.0–1.0 m.

Table 2. Quality categories distribution in analyzed data.

NovAtel Quality Distance [km] % of Total 3D Accuracy (m)

1 710,958 61.29 0.0–0.15
2 378,453 32.63 0.05–0.4
3 49,335 4.25 0.2–1.0
4 14,132 1.22 0.5–2.0
5 715 0.06 1.0–5.0
6 59 0.01 2.0–10.0
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5.2. Results

The major issue within the context of large scale SLAM systems corresponds to the
availability of the ground truth data. The methodology for evaluating such systems
assuming the existence of the ground truth data source can be found in [61]. Since the
only ground-truth information comes from input GNSS+INS data, it can be justified if
SLAM move poses within a certain interval. In that sense, it is possible to justify how
much SLAM had to move trajectories to reach the more consistent result. In Table 3, the
results are summarized. For each category, the difference between GNSS+INS and SLAM
results was computed as relative pose. These values were summarized in histograms;
therefore, it is possible to justify the percentage of data maintaining the reported quality.
An interesting observation is that results for the 2D error are more optimistic; ,therefore
it is claimed that the post-processed GNSS+INS data are less precise in altitude. It can be
observed in Table 3 that 52.5% of post-processed GNSS+INS data of class 1 are moved not
more than 15 cm by SLAM according to the 3D error, 81.7% of data of class 2 are moved
not more than 0.4 m by SLAM according to the 3D error, and 91.7% of data of class 3 are
moved not more than 1.0 m by SLAM according to the 3D error. As shown by the 2D
error, 84% of data of class 1 are moved by no more than 15 cm by SLAM. Therefore, it
can be seen that the accuracy of altitude is much worse than the accuracy of longitude
and latitude. This observation must be taken into consideration during navigation on
multi-level roads. The most problematic angle is roll, since it corresponds mainly with
long straight trajectories where this angle is difficult to measure by IMU; therefore, SLAM
produces the most significant corrections. An interesting observation is that there are many
situations where the accuracy of post-processed GNSS+INS data is better than reported
by NovAtel. Manual inspection was performed using HD map of the SLAM alignment
and based on the inspection it is concluded that this technique can confirm the accuracy
assessed by NovAtel algorithm, and it can improve trajectories even when some minor
errors of SLAM appear. The causes of these errors were collected as challenges in Section 4.
The investigation of SLAM errors will be the focus of our future research.

Table 3. Qualities verified using SLAM.

Quality 3D Accuracy (m) % 3D Diff % 2D Diff % Altitude Diff

1 0.0–0.15 52.5 84.0 65.6
2 0.05–0.4 81.7 93.7 88.3
3 0.2–1.0 91.7 97.8 94.5
4 0.5–2.0 96.1 99.0 97.3
5 1.0–5.0 88.6 97.8 91.6
6 2.0–10.0 98.4 99.5 99.2

Figure 14 demonstrates the quantitative results collected in Table 3.

(a) (b) (c)

Figure 14. Histograms of 3D (a), 2D (b) and altitude (c) errors measured as cumulated relative poses
between GNSS+INS and SLAM alignment.
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6. Impact of GNSS+INS Positioning on Safety

For the impact of GNSS positioning on safety, the following aspects are considered: a
hypothetical Mid-Size vehicle type, a mean distance between lanes as 3.6 m (limited-access
highways in the United States of America) and Lateral Alert Limit as 0.72 m and Longitudi-
nal Alert Limit as 1.40 m according to [1] (as a reference, reported values of accuracy and
alert limits of relative positioning for different types of the vehicle versus map are shown
in Table 1). This scenario is the most optimistic one since a small vehicle is considered. It
is assumed that, during an autonomous drive, there is the same GNSS+INS system for
positioning and that the real-time calculations have the same accuracy as in postprocessing
presented in the experiment. From all trajectories (total length: 1,159,956 km), 710,958 km
is class 1 (61.3%), 378,453 is class 2 (32.63%) and 49,335 is class 3 (4.25%). The defined
accuracy by NovAtel for class 1 is (0.0–0.15 m) for class 2 (0.05–0.4) and class 3 (0.2–1.0);
thus, if the entire data set can reach such classes, it can be considered as having a high
probability of satisfying the Alert Limits for Mid-Size (width 1.85 m, length 4.87 m) vehicle
localization moving on limited-access highways in the United States of America. In our
case, it is calculated as 14,132 km of class 4 (1.22%) 715 km of class 5 (0.006%) and 59 km of
class 6 (0.005%). To summarize, 98.17% of processed data belong to classes 1–3, while 1.83%
of data do not belong to classes 1–3 and could cause exceeding the alert limits. To verify
these classes, further calculations are performed related to the alignment of the trajectories
as part of the proposed methodology. Almost 99% of data satisfy NovAtel 1–3 classes;
therefore, this additional calculation confirms the fact of more than 1% of data could cause
hitting alert limits for a Mid-Size vehicle. For the larger vehicles, e.g., for six-Wheel Pickup
(width 2.03–2.43 m, length 5.32–6.76 m), the Lateral Alert Limit is 0.4 m; thus, according to
the proposed methodology only around 95% of data satisfy it.

7. Conclusions

This paper concerns a new methodology for accuracy assessment of a global positioning
system at continent scale for assessing autonomous driving safety. Safety is addressed as an
alert limit for the defined geometry of the problem, where the aim is to maintain knowledge
that the vehicle (its bounding box) is within its lane. Hypothetical Mid-Size and 6-Wheel
Pickup types of vehicles were considered, and the mean distance between lanes as 3.6 m
as representative boundaries of the vehicles moving on the limited-access highways in the
United States of America. A new methodology of the global positioning accuracy assessment
is proposed, incorporating mapping systems performing road surveys covering United States
region in 2016–2019 period. It is composed of six elements: (1) mobile mapping system with
minimal setup, (2) global positioning data processing, (3) LiDAR data processing, (4) alignment
algorithm, (5) accuracy assessment confirmation and (6) autonomous driving safety analysis. It
relates to the main goal of measuring the impact of global positioning on autonomous driving
safety, assessed as calculation of GNSS+INS accuracy confirmed with additional trajectory
alignment. The novelty of the approach is the large-scale evaluation based on massive mobile
mapping data, GNSS+INS processing for accuracy assessment and introducing LiDAR SLAM-
based data alignment to confirm accuracy. The research challenge was to assess the positioning
accuracy of the moving cars assuming full coverage of limited-access highways in the United
States of America. The expected coverage limits the possibility of repetitive measurements
and introduces an important challenge of the lack of availability of the ground truth data.
Therefore, the state-of-the-art methodology is not applicable for this particular application, and
a novel approach is proposed. The idea is to align all trajectories using LiDAR to confirm the
accuracy reported by the state-of-the-art GNSS+INS data processing performed at a large scale.
For this reason, it is investigated how to use LiDAR metric measurements for data alignment
implemented using SLAM (Simultaneous Localization and Mapping) assuring no systematic
drift thanks to applying GNSS+INS constraints. The SLAM implementation uses state-of-the-
art observation equations and the Weighted Nonlinear Least Square optimization technique
capable of integration of required constraints. The methodology was verified experimentally
using arbitrarily chosen measurement instruments (NovAtel GNSS+INS, LiDAR Velodyne
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HDL32) mounted onto mobile mapping systems. The proposed methodology extends the
existing methods of global positioning system accuracy assessment with the focus on realistic
conditions and full area coverage. The impact of the global positioning system accuracy on
autonomous car safety is discussed. It is shown that 99% of the assessed data satisfied safety
requirements (driving within lanes of 3.6 m) for Mid-Size vehicles and 95% for 6-Wheel Pickup.
The conclusion is that this methodology has great potential for global positioning accuracy
assessment at the global scale for autonomous driving applications. Further research is required
to solve challenges affecting data alignment as the reference tool for accuracy confirmation.
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