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Abstract: The ability to exploit data for obtaining useful and actionable information and for providing
insights is an essential element for continuous process improvements. Recognizing the value of data
as an asset, marine engineering puts data considerations at the core of system design. Used wisely,
data can help the shipping sector to achieve operating cost savings and efficiency increase, higher
safety, wellness of crew rates, and enhanced environmental protection and security of assets. The
main goal of this study is to develop a methodology able to harmonize data collected from various
sensors onboard and to implement a scalable and responsible artificial intelligence framework, to
recognize patterns that indicate early signs of defective behavior in the operational state of the vessel.
Specifically, the methodology examined in the present study is based on a 1D Convolutional Neural
Network (CNN) being fed time series directly from the available dataset. For this endeavor, the
dataset undergoes a preprocessing procedure. Aspiring to determine the effect of the parameters
composing the networks and the values that ensure the best performance, a parametric inquiry is
presented, determining the impact of the input period and the degree of degradation that our models
identify adequately. The results provide an insightful picture of the applicability of 1D-CNN models
in performing condition monitoring in ships, which is not thoroughly examined in the maritime
sector for condition monitoring. The data modeling along with the development of the neural
networks was undertaken with the Python programming language.

Keywords: deep learning; condition monitoring; maritime; Convolutional Neural Network (CNN);
fault detection

1. Introduction

The maritime industry is one of the most crucial pillars of modern economy. To sub-
stantiate the level of impact, in 2015, 80% of merchandise trade [1] and 90% of the European
Union’s (EU) external trade were transported by ships, illustrating the importance of the
marine sector for both the European and global markets [2]. An essential requirement
of the maritime industry is the reliability and availability of vessels. Safety-oriented and
environmental regulations have become more stringent during recent years, demanding
increasingly higher regulation for the condition and operation of ships to achieve higher
safety standards. As a result, efficient, precise, and timely maintenance is becoming of
paramount importance [3]. One of the most critical problems in the maritime industry is
the adoption of the maintenance schedule.

Initially, corrective maintenance policies were adopted, in which maintenance was
performed after the occurrence of breakdowns. Inevitably, this approach incurs high costs,
downtime, and in some cases, hazardous operations. A more sophisticated approach,
and currently the most common, is Preventive Maintenance (PM). In PM, a component
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is replaced when it is considered to have reached the end of its useful lifetime. The most
widely adopted and conservative technique is to estimate the mean time to failure of a
component according to experience with components of the same type. Despite a safer
approach, it can result in unnecessary costs as well, particularly if a very conservative
estimation is used. Moreover, this method does not guarantee a decrease in the number
of breakdowns in a fleet, as the replacement of equipment can still be performed too late.
Naturally, this method is based on a tradeoff between the number of failures and the
lifetime estimation of the components on board. However, a favorable balance between
the two is not easy to achieve, mainly due to the different operating conditions between
any two vessels. For the maritime domain, a rather new approach is Condition Based
Maintenance (CBM), where the actual condition of an asset (vessel) is monitored in real-
time to decide the level of required maintenance [4]. While being able to achieve significant
maintenance cost reductions, CBM has strict requirements, such as the use of a multisensor
monitoring approach for each component onboard, due to the multiple failure modes that
are manifested using different monitoring technologies [5]. As such, successful adoption
of CBM is strongly connected with the use of sophisticated models that can diagnose the
health status of a component based on data from sensor networks onboard. Following rapid
development progress, it has been proved that Artificial Intelligence (AI) and machine
learning models have numerous applications in all engineering fields [6–11], producing
remarkable results. More specifically, one prominent field in which AI-based solutions have
been producing reliable and accurate results, surpassing other methodologies, is the failure
detection and classification domain [12–15]. Following this trend, the maritime industry
is evaluating different AI-based solutions for improving the quality of their operations
both in terms of performance efficiency and safety assurance [16]. Considering the wide
variety of systems on-board, Machine Learning (ML) approaches that apply to the maritime
sector are practically endless. Data-driven techniques and ML-related research in marine
engineering are mainly featured on subjects such as energy and performance optimization
of the vessel [17], albeit there are studies in which emphasis has been given on solutions
regarding the task of fault detection approaches [18,19]. Several studies have demonstrated
the successful employment of ML-based approaches in maritime maintenance, to improve
the maintenance strategy of marine diesel engines [20], hull condition assessment [21], or
the combination of the propeller, hull, gas turbine, and gas turbine compressor [5,22]. The
use of ML for fault detection and isolation on gas turbines (prevalent in naval applications)
has been extensively studied [23]; rolling element bearings are among the most well-studied
components in the literature [24], asynchronous [25], and synchronous [26] motors, and
batteries [27], have seen successful applications of ML. ML applications will play a key
role in the maritime sector during the coming decades for the estimation and degradation
modeling of assets [28,29].

Working toward the same direction, in our previous work we investigated how
different Deep-Learning (DL) models could provide enhanced information for the support
of decision-making [30] within the maritime industry, based on deep learning algorithms.
It was shown that the method could accurately predict issues that are caused by long-
term degradation (e.g., hull performance) but its effectiveness when instantaneous faults
occurred was limited. In this study, our primary focus is to transcend our previous work
and progress one step further in the preventive maintenance spectrum implementing
condition-based monitoring aspiring to detect failure proneness. It is aspired to develop
a CBM scheme to monitor the state of the vessel under study and identify suspicious
patterns that indicate failure proneness. More specifically, the signals of the temperature
of the main engine’s cylinders are monitored, trying to identify patterns in the signals
that signify proneness to failure of the monitored part of the machinery. The type of
degradation aspired to detect is either caused by trigger events, such as impacts, or by
fracture propagation. These types of degradation are demonstrated in the monitored signal
by the inflated jittering in the signal. Figure 1 demonstrates the type of deficiency we
aspire to detect with our methodology, illustrating the occurrence of a trigger, even to
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the actual signal collected from the Diesel Generator (D/G) Lube Oil (LO) pressure over
approximately 2 days, as the impairment manifests itself through the inflated volatility
due to a crack in the crankshaft. The blue circle in the figure shows the commencement
of damage. According to the vessel operator, the fault was not visible by the instruments
onboard and the root cause was found only after costly unscheduled maintenance.
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Figure 1. Demonstration of a trigger event from an actual signal collected from the D/G LO pressure parameter onboard a
bulk carrier.

The proposed implementation employs a unidimensional (1D) Convolutional Neural
Network (CNN) that monitors of the condition of the main engine, which inspects the
signal of the temperature of the main engine’s cylinders (Figure 2). This CBM system
facilitates the implementation of a short-term approach, as the time series can be divided
into smaller batches without affecting adversely the performance of the model. In this
instance, we attempt to classify the signal obtained from the exhaust gas temperature of
the six cylinders of the ship’s main engine, detecting divergence from the healthy state,
caused by degradation and wear, assuming that in the context of our study case, the cases
examined refer to occasions with only up to one cylinder being degraded. This form of
deficiency is typically expressed as increased jitter of the monitored signal. The networks
receive as inputs time series batches of the six signals of the exhaust gas temperature
of the six cylinders representing the same time interval. The output is the probabilities
of the validity for each possible state of the seven distinct states. Let the available label
range be 0–6, then the label 0 signifies a well-functioning vessel, or equivalently, the label
i expresses that the respective cylinder i is defective (i.e., 1–6). Therefore, it is aimed to
not only identify the operational condition of the ship through the classification of time
series batches derived from the dataset, but also, in case of deficiency, to explicitly localize
the damage. In this regard, the prominence of CNNs in pattern recognition is examined
through their capacity to extract and represent features at high levels of abstraction. To the
knowledge of the authors, no similar effort has been presented in the maritime industry.
The remainder of the paper is structured as follows: In Section 2, the theoretical background
of the model is provided along with a description of the evaluation metrics adopted. In
Section 3, a presentation of the data collection and preprocessing procedures are provided.
Both steps are required in almost every data-driven analysis, assuring optimal quality of
the data utilized. In Section 4, a descriptive overview of the function of CNNs is provided
followed by the results yielded in the parametric inquiry. Benchmarking with different
optimization models is also provided in this section. Concluding remarks and future steps
are discussed in Section 5.
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Figure 2. Overview of the 1D-CNN proposed in this study.

2. Theoretical Background of Convolutional Neural Networks
2.1. Model Overview

CNNs are a class of deep learning neural networks that display great capabilities
in the task of pattern recognition. They are analogous to traditional Artificial Neural
Networks (ANN), in the sense that they are composed of neurons learning in a self-
optimizing fashion, updating the weights assigned to these neurons through a back-
propagation algorithm, trying to emulate biological processes. Their most significant
trait is unequivocally their ability to extract regional features, enabling researchers and
developers to deal with complex tasks that are not possible with classic ANNs. Figure 3
illustrates the conceptualization of a CNN and its operations.
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Figure 3. Conceptualization of a CNN.

As shown, having inserted the input into the neural network, the feature extraction-
related elements of the architecture are actuated. First, convolutional layers undertake
the task of feature regional recognition. Subsequently, the output of the convolutional
layers is received by the activation functions that introduce nonlinearity in the feature
learning task. This sequence can be repeated M times before the pooling layers receive
the output of the final activation function, which reduces the dimensionality of the tensor
that propagates through the network, attempting to decrease the computational cost. In
turn, the process of Convolution–Activation–Pooling is plausibly repeated N times before this
pattern of alternating convolutional and pooling layers is concluded with the output of the
last set of layers flattened into a 1D array vector, to be passed into a fully connected dense
multilayer perceptron consisted of K layers, executing the classification. The operations of
these procedures are described with greater detail in the following paragraphs.

Input: While the great benefits of CNN utilization are well known when processing
2D data, such as images, it has been shown in industrial and academic applications that a
modified version of CNN can handle 1D data as well (e.g., in the classification of financial
time series or natural language processing).

Feature extraction: As the name of the network suggests, the convolution layer is a
fundamental component of a CNN, with multiple linear and nonlinear operations taking
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place, contributing to the feature extraction. First, the convolution is characterized as
a linear element-wise multiplication, with a small array called the kernel, which glides
through the input tensor of the layer and convolves the value of each time step of the time
series. The elements of the array, which occurred from the element-wise multiplication of
the portion of the input tensor with the weights of the kernel, are summed to obtain the
value of the output tensor in the corresponding position. Convolution on a time series is
taking place as follows:

F(x) = K◦S(x) =
N

∑
i=−N

K(i)S(x− i) (1)

The output tensor is called a feature map. Subsequently, the output of the convolu-
tion operation is fed into a nonlinear activation function. For many years, sigmoid and
tanh were mainly chosen as they emulate the behavior of a biological neuron. However,
problems caused in the back-propagation regarding the gradient diminishing when the
architecture of the network is deep, prompted researchers to adopt a different activation
function to introduce nonlinearity. Recently, the rectifier linear unit (ReLU) has started to
gain popularity.

Typically, in CNN models, pooling layers alternate with convolutional layers. Pooling
layers undertake to downsample, reducing in-plane dimensionality of feature maps, thus
diminishing the complexity for the forthcoming layers. The pooling procedure renders the
model’s translational invariant, and also offers immunity to small shifts and distortions.
There are several types of pooling, the most popular form is max pooling. A window
functioning similarly to the kernel mentioned in the convolutional layer glides through the
feature map and keeps the maximum value from each patch, whereas all other elements
are discarded.

Classification: After this pattern of alternating convolutional and pooling layers is
concluded, the output feature map of the last set of layers is flattened into a 1D array vector,
which serves as the input of a traditional Feed-Forward Neural Network (FFNN) that is
used to execute the classifications.

The last notable part of the information in the forward propagation journey is the
loss function. The main objective of the optimization procedure is the minimization of the
loss function. The Categorical Cross-Entropy (CCE) loss function is introduced to better
conceptualize and comprehend how the proximity between predicted and real values is
quantified. The selection of the aforementioned loss function was made due to the nature of
our application, which is a multilabel classification problem. Assuming that the total number
of classes is M and the observations contained in the dataset are N, then accept that the vector
containing the target values from the dataset is denoted as y = [y1, y2, . . . , yn]. Plausibly, the
predicted values of the network are the output values of the last layer. Assuming that the
network has L layers, and following the notation previously used, we express the predicted
values as a[L] =

[
a[L]1 , a[L]2 , . . . , a[L]n

]
. Accepting CCE as our loss function then gives:

E = CCE
(

y, a[L]
)
= –

M

∑
i=1

yi log
(

a[L]i

)
(2)

Training a network is a process in which the model is self-improving. After several
epochs, the output predictions and ground-truth labels should converge, hence minimizing
the loss function. After the conclusion of the forward pass, the backpropagation takes place,
where through the calculation of the gradient of the loss between the output estimations
of the model, the model updates its learnable parameters, namely weights and biases,
attempting to minimize loss by implementing gradient descent, which is used to update
the learnable parameters of the model to minimize the loss, hence achieving better accuracy.
Mathematically, a gradient is a partial derivative; we calculate the partial derivative of the
loss function concerning each of the learnable parameters, and then the respective learnable
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parameter is updated with an arbitrary step size dictated by the learning rate, which is
a hyperparameter:

p = p− a
∂L
∂p

(3)

where p represents any learnable parameter and α denotes the learning rate of the opti-
mizer of the model. In Appendix A, Table A1 presents a comprehensive overview of the
operations and the learning procedure of a 1D-CNN, demonstrating both the forward and
back-propagation components of the network.

2.2. CNN Evaluation Metrics

Different metrics have been used to evaluate and assess the models after the com-
pletion of the tuning procedure in the framework of this study. Receiver Operating Char-
acteristic curves (ROC) along with the respective Area Under Curve (AUC) values are
employed as they facilitate comparisons among multiple models. Since the models provide
not only the condition of the vessel, but in the case of deficiency the location of the defective
cylinder as well, this problem is considered as a multilabel classification task. However, the
creation of the ROC curves required a reduction to binary classification regarding whether
the network managed to assign the correct label.

Furthermore, the introduction of a diverse set of metrics is recommended, as this
practice provides a more thorough understanding of our models’ performance, avoiding
the pitfall of being misled in the case of consulting only one metric. The basis of all the im-
plemented metrics is the confusion matrix, used to describe the performance of a classifier.
The confusion matrix of a multiclass classification task with n output classes is defined as
an n × n array that tracks the correct evaluation of the model and the misclassifications.

The abbreviations TP, TN, FP, and FN mean True Positive, True Negative, False
Positive, and False Negative, respectively. What we must do is find TP, TN, FP, and
FN for each class. More specifically, concerning each class the TP quantity refers to the
observations where the model successfully identified the true label; the TN quantity
refers to the observations where the model successfully avoided assigning the given
observation to the label we examine; FP quantity refers to the occasions where the model
mistakenly assigned the observation to the class we audit; lastly, the FN quantity refers to
the observation that should have been assigned to the label we examine.

For instance, in our case, a confusion matrix for the needs of our study is defined as a
7 × 7 matrix; to deduce the performance of the model in the multilabel task, we consider
each label distinctively, as shown in Figure 4, where indicatively two different labels are
considered. Thus, the metric scores of the model in identifying each label are devised,
namely, each metric of Table 1 occurs seven times, once for each label, since the notion of
the True Positive, True Negative, False Positive, and False Negative changes, as illustrated
in Figure 4.
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Table 1. Metrics definition.

Metric Definition Meaning

Accuracy = TP+TN
TP+FP+TN+FN The ratio of correctly evaluated samples

Precision = TP
TP+FP The rate of correctly labeling a sample as positive

Recall = TP
TP+FN The rate of identifying correctly a positively labeled observation

Speci f icity = TN
TN+FP The ratio of correctly identifying a negatively labeled observation

F1 = 2·TP
2·TP+FP+FN The harmonic mean of precision and recall

3. Data Collection and Preparation
3.1. Data Acquisition

The ship employed in the study is a bulk carrier and its characteristics are listed in
Table 2 The initial dataset reflected an operational period of 32 months while the sampling
period was set to be 1 min, accumulating approximately 1.5 million measurements.

Table 2. Ship characteristics.

Parameter Value

Length 300.00 (m)
Breadth (Moulded) 55.00 (m)
Depth (Moulded) 25.00 (m)

For the data collection task, the LAROS™ Continuous Monitoring System (L-CMS)
was used [31]. The L-CMS allows the synchronized and reliable signals and data collection
from any type of sensor, measuring device, instrument, or control system, following the
process presented in [32]. Figure 5 presents the overall system architecture.
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More specifically, a secure wireless mesh network (IEEE 802.15.4 MESH) is installed
inside each floor of the vessel, based on LAROS™ Smart Collectors. After acquisition,
the data are further processed to the gateway periodically and are easily selectable by
the end user. Additional layers and payload encryption are used to ensure both quality
of service and cyber security at the edge level. This architecture enables the scalability
and extendibility of the system together with efficient operations within the vessel’s harsh
environment. The preprocessed data are further delivered to the onboard server where
they are stored locally for a predefined period (normally 6 months) and are also transferred
via normal satellite communication to the next processing level (cloud). At this level,
fleetwide data are collected and processed based on dedicated data analytical software
tools. Figure 6 presents the signal sources and the specific parameters of interest to our
work. With exception of the signals pertinent to the exhaust gas temperature of the main
engine’s six cylinders, the purpose of the other parameters was to facilitate the data
preprocessing phase of our study, for instance, through the filtering process.
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3.2. Data Preprocessing

As illustrated in Figure 7, the data preprocessing procedure implemented to ensure
optimal quality of the data consisted of five steps: (i) filtering, (ii) outlier removal, (iii)
data smoothing, and (iv) segmentation. A detailed description of the three first steps is
presented in [30].
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According to the procedure described above, two indicative filters are illustrated in
Figure 8, with observations lying in the red regions being discarded. Furthermore, in
Figure 9, the outlier removal procedure is illustrated, removing extreme values of the fuel
oil consumption and exhaust gas temperature at cylinder 1, concerning the main engine’s
rpm as a primary parameter, with the samples in orange being discarded, whereas the
remainder of the data points appears in blue. Furthermore, regarding the signal smoothing
for this study case, it was determined that the 15 min averaging window was adequate,
removing most of the noise while also managing to limit the information loss and being



Sensors 2021, 21, 5658 9 of 19

capable of following local trends satisfactorily. Figure 10 depicts the smoothed signal as
produced by the SMA algorithm contrasted with the original, much more volatile signal.
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As a final step, the samples fed into the network must be converted into time series
batches. They were generated by segmenting the initial dataset by using a specific time
window. In our study, to generate more samples, overlapping between adjacent samples
was applied; the overlap percentage was kept at a constant value. The essence of the time
window dictates the amount of information depicted by one time series batch, through the
period to which it is referring. In our study case, the 1D convolutional model was used to
inspect the temperature of the six cylinders of the main engine in an attempt to identify
suspicious patterns indicating failure. Indicative time series for the average among the
six cylinders are shown over 8 h (Figure 11.). After performing dataset segmentation, in
this instance, the finalized dataset array containing the samples could be perceived as a 3D
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array, whose first dimension refers to the number of available input batches, the second
dimension refers to the number of time points that each time series sample contains, and
the third dimension equaling the number of features per batch, namely the temperature of
the six inspected cylinders.
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Finally, after experimentation, data normalization was found to improve dramatically
the performance of our models. The normalization algorithm implemented on this occasion
was the Standard Scaler from the Scikit-Learn Library, which is expressed as follows:

z =
(x− µ)

s
(4)

where µ and s is the sample mean and the sample standard deviation for the measurements
of each standardized variable

4. Experimental Results
4.1. Application

Convolutional neural networks consist of diverse parameters that profoundly affect
the efficiency of the models. Every genre of the deep learning model receives an input,
which in our study cases is the input time series, and by properly adjusting internal train-
able parameters, such as the neuron weights and biases, generates an output. Nevertheless,
training a deep learning model also entails parameters whose values need to be set a
priori, called hyperparameters, whose configuration significantly affects the efficacy of the
model. Deducing to the optimal hyperparameter configuration is not a straightforward
endeavor, requiring experimentation through trial and error. The genre of inspected and
tuned hyperparameter along with the audited values, which in essence are the candidate
optimal values, are tabulated in Table 3. The multitude of combinations, as can be inferred
by the data in Table 3, suggests that finding the optimal configuration with a manual in-
vestigation for the best configuration, where various arrangements are randomly selected,
is implausible. Therefore, an automated algorithm is required for this endeavor. For that
matter, the grid search is selected since it was deemed computationally affordable after
experimentation. More specifically, this algorithm exhaustively searches for the optimum
across the entire hyperparameter plane.

In our study, a parametric inquiry is presented, aspiring to determine not only whether
CNNs are applicable for CBM schemes in marine engineering, but also to examine the
effect of significant factors, such as the degree of detected degradation and the input time
frame, to the efficacy of the models developed [33].
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Table 3. Hyperparameter inspected values.

Hyperparameter Name Values Audited

Number of conv. layers 2, 3, 4
Number of kernel per layer 6, 8, 10, 12, 15

Kernel size 2, 3, 5, 7
Number of Fully Connected (FC) layers 1, 2

Number of nodes per FC layer 3, 5, 7
Learning rate 10−3, 7.5·10−4, 5·10−4, 2.5·10−4, 10−4, 7.5·10−5, 5·10−5, 2.5·10−5, 10−5

Batch size 64, 128, 256, 512,1024
Epochs 50, 100, 150, 200, 300, 400, 500

Dropout rate 0, 0.1, 0.2

4.1.1. Time Window

The first inspected parameter is the time window of the input samples. More specifi-
cally, the time window defines dataset segmentation into smaller samples reflecting the
operational profile over the specific timeframe, dictating the number of samples each input
time series batch comprises, along with the final number of available samples to train and
assess the model. Indicatively, Figure 12 illustrates the division of a random signal into
10 segments.
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Figure 12. Demonstration of segmentation.

In this regard, it is investigated whether having fewer but wider input time series
results in more effective models or vice versa. Figure 13 tabulates the instances with the
different inspected time intervals of the input samples, keeping constant the degradation
degree induced; information regarding the degradation is presented in the next paragraph.
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First, data segmentation, using an overlap of 90% between adjacent samples, according
to the 8 h window results in 10,205 input time series with a length of 475 data points, the
1-day time window leads to the generation of 3930 batches of time series of 1440 data
points, and lastly, using the 3-day window results in the creation of 1280 time series
samples, each containing 4320 time stamps. It should be noted that the overlap percentage
was implemented to generate more samples.
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Moreover, it is very significant to ensure that the dataset contains observations reflect-
ing equally each of the seven possible operational states, so that the dataset is not skewed,
thus ensuring that the model is trained equivalently upon all possible conditions. For that
reason, the original dataset corresponding to the well-functioning vessel is concatenated
with six other similar datasets, with the only difference based in the fact that the artificial
damage inducement is undertaken evenly across all the cylinders, ensuring that all seven
conditions are equivalently represented in the final dataset. Therefore, comparing with
what was explained above, the final number of time series samples generated from each
time window was multiplied by seven: the 8 h, 1-day, and 3-day time frames comprised
71,435, 27,510, and 8,960 input time series batches, respectively.

Lastly, the training, validation, and test subsets are defined. The incentive of the
training set consists of the time series dedicated for algorithm learning, hence, requiring
the majority of the available samples. The validation set is utilized as means of tracking
the progress of the algorithm during training, and the test set consists of unseen samples,
to examine the ability of our models to generalize and return the desired results. Applying
a 70%–10%–20% percentage distribution in each instance, which is frequently seen in the
machine and deep learning community, the samples each of the inspected time windows
provide are listed in Table 4.

Table 4. Time series samples.

Input Window Total Samples Train Set Validation Set Test Set

8 Hours 71,435 50,005 7143 14,287
1 Day 27,510 19,257 27,510 5502
3 Days 8960 6272 896 1792

Having described the dataset composition, the next part of the model development
course is the experimentation regarding the optimal configuration of hyperparameters.
Considering the entire set of examined models with different configurations of hyper-
parameters, we ranked them concerning their yielded accuracy. The ROC curves of the
models appertained to the 20th, 50th, 80th percentile are plotted along with the curve cor-
responding to the optimal configuration. This process was executed in all three instances
with the different input time windows, as illustrated in Figure 14.
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Observation of the following figures evinces most significantly a remarkable perfor-
mance of the proposed methodology in every instance, as the optimal models on every
occasion appear to achieve AUC values proximate to one. This indicates clearly that the
proposed methodology achieves with great accuracy identification of failure proneness
patterns together with localization of the damage. Additionally, this is further supported
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by the high metric scores, as shown in Table 5. It should be again emphasized that in a
seven-class classification problem, each metric score occurs seven times, for each label, and
in Table 6 the averages of these seven values are presented for each metric.

Table 5. Metric scores across the three developed instances with a variable input window.

Model Accuracy Precision Recall Specificity F1

8 Hours 100 100 100 100 100
1 Day 99.8 99.9 99.9 100 99.9
3 Days 96.6 96.6 96.9 98.6 96.6

Table 6. Metrics scores across the three developed instances with a degradation input window.

Model Accuracy Precision Recall Specificity F1

1% jitter
factor 100 100 100 100 100

2% jitter
factor 99.8 99.9 99.9 100 99.9

5% jitter
factor 96.6 96.6 96.9 98.6 96.6

After further observation, it can be discerned that the shrinkage of the input time
window results in more accurate instances across the entire spectrum, as comparison
among the models appertaining to the same percentiles unequivocally shows that AUC
values increase as the window narrows. Moreover, the histograms of Figure 15 illustrate
the distribution of the average, among the seven classes, yielded accuracy from the various
models at each instance as they occurred during the tuning. Demonstrating that majority
of models with the 8 h input window achieve greater than 90% accuracy, whereas the
distribution in the instance with the three-day input window shows that most of the models
did not present equally remarkable results. This deduction is deemed useful because on
the occasion of designing a similar failure detection system, the hyperparameter tuning
procedure of the models with the smaller input window would plausibly be considerably
less arduous as more configurations achieve remarkable performance. Lastly, as mentioned
earlier, Table 5 presents in detail the average scores, among the seven labels, yielded by the
optimal model from each instance, verifying the aforementioned findings, as all metrics
increase for smaller input windows.
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Figure 15. Distribution of accuracy scores of the numerous models during hyperparameter tuning across the three
developed instances.

4.1.2. Induced Degradation

Subsequently, various degrees of induced degradation were also audited, attempting
to determine how the efficacy of the proposed networks varied regarding the level of
degeneration we aspired to detect. In other words, we examined whether our models could
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successfully identify even subtle deficiencies contributing to timely recognition of failure
proneness. For our study, having available data representing a defective condition of the
vessel was essential for training the network. Nevertheless, the data collected through the
LAROS™ CMS reflected a well-functioning state of the ship with no signs of degradation.
This obstacle was overcome by artificially inducing degradation of the ship by trying to
imitate its behavior at the degraded condition intended for detection. More explicitly, white
noise was convolved with the original signal of the designated cylinder, which would
manifest defective patterns. Regarding the values of the white noise distribution:

• The mean value (µ) of the white noise signal is equal to the respective value of the
well-functioning signal, namely the value that it would have if we did not intervene.
We denote this as I.S (Initial Signal), the vector of the parameter being altered.

• Its standard deviation (s) is set equal to the multiple of the standard deviation of the
healthy signal of the respective feature. We denote this as STDI.S (Standard Deviation
of the Initial Signal), the standard deviation of the initial signal.

In other words, the white noise being convolved is governed by a distribution

W.N. ∼ N (I.S., k ∗ STDI.S.),

where k is the factor being multiplied with the standard deviation, which causes the
inflation of the initial signal, as illustrated in Figure 16. The inspected values of the
inflation factor are 1%, 2%, and 5%. Figure 16 shows the instances created with variable
jittering factors.
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In Figure 17, the signal of the well-functioning vessel is shown along with the three
levels of induced degradation. The yellow-colored signal represents the inflated jitter with
the 1% factor and is not easily noticed from the healthy signal with mere observation. The
2% degeneration inducement, shown in darker orange, is slightly easier to distinguish,
whereas the signal with the 5% degeneration, shown in red, is significantly more volatile,
thus easily noticed.

Following the previous pattern, the various models defined by the different hyper-
parameter configurations, at each instance with the diverse degree of degradation, are
ranked according to their efficacy and the ROC curves of the models appertaining to the
20th, 50th, 80th, and 100th (optimal) percentile are plotted, as illustrated in Figure 18.
Additionally, the histogram shown in Figure 19 illustrates the distribution of the average
accuracy achieved, among the seven classes and across the various audited configurations
for the three instances that were developed.

As demonstrated in these figures, the proposed methodology is capable of identifying
and localizing adequately all levels of induced degradation that were examined. However,
it is also evinced that as the jitter factor increases it becomes more facile for the networks
to correctly identify the patterns, which signify defective operational profiles, as more
configurations achieve higher accuracy scores. Conversely, the model aspiring to detect the
most subtle degree of degeneration requires very careful and thorough tuning to achieve
satisfactory accuracy. Lastly, Table 6 tabulates the average metrics, among the seven distinct
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labels the optimal models across the three instances with the variable degree of artificially
induced degradation. The results displayed in this table verify the comments and the
conclusions drawn earlier.
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4.2. Comparison with Benchmark

After having described the parametric inquiry, how the audited parameters affect
the networks and having acquired a better understanding of the behavior of the models
along with their remarkable scores on the test set, we proceed to examine and compare the
efficiency of the proposed methodology in contrast to well-established machine learning
algorithms in the same task and thereupon consider the best performing methodology. For
this matter, the ML algorithms introduced and implemented are:

1. Support Vector Machine Classifier (SVMC or SVC)
2. Random Forest Classifier (RFC)

The implementation with the benchmark classifiers was undertaken by extending the
inspected instances of the parametric analysis described in Figures 13 and 16, according
to the instances shown in Table 7, subsequently developing the respective 1D-CNNs and
matching them with two counterpart benchmark classifiers. The dataset utilized is the
same as the one used for the implementation of the proposed CNN models, and the
percentages of the dataset allocating the input samples to the each subset remain also intact
at 70%–10%–20% for training, validation, and test set, accordingly providing uniformity to
the comparisons being held.

Table 7. Extended parametric inquiry for model benchmarking.

1% Degradation 2% Degradation 5% Degradation

8 hours 1% inflation factor and 8 h, time window 2% inflation factor and 8 h, time window 5% inflation factor and 8 h, time window

1 day 1% inflation factor and 1-day time window 2% inflation factor and 1-day time window 5% inflation factor and 1-day time window

3 days 1% inflation factor and 3-day time window 2% inflation factor and 3-day time window 5% inflation factor and 3-day time window

ROC curve plots and calculation of the respective AUC are employed to facilitate
the comparisons among the different classifiers. First, Table 8 presents the AUC values
corresponding to each classifier for every instance. Subsequently, Figure 20 and Table 9
present indicative ROC curves and the respective AUC values, respectively, from selected
instances, illustrating the defectiveness of the ML classifiers in the task of the 1D signal
classification, in contrast to the near-perfect classification of the proposed 1D-CNNs on
every occasion, with AUC scores constantly in the vicinity of 0.99. Additionally, the metric
scores of the three classifiers in each of the instances developed and inspected are recorded
for verifying the preeminence of the proposed models, achieving near 100% to every metric
across all nine instances. Furthermore, on numerous occasions, the accuracy is proximate
to 15%, which means that the models cannot evaluate the state of the vessel and randomly
predict one out of the seven possible states.

Table 8. AUC values of each classifier in each inspected instance.

8 Hours 1 Day 3 Days

% Induced Damage 1% 2% 5% 1% 2% 5% 1% 2% 5%

Proposed 0.998 1.0 1.0 0.995 0.997 1.0 0.945 0.987 0.991
RFC 0.194 0.271 0.440 0.155 0.208 0.510 0.092 0.164 0.381
SVC 0.459 0.495 0.548 0.460 0.464 0.471 0.436 0.453 0.467
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Table 9. Metrics scores of the three classifiers in three indicative instances.

Accuracy Precision Recall Specificity F1

Model * 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Proposed 99.9 99.3 99.8 100 99.6 99.9 99.9 99.6 99.8 100 99.7 99.9 99.8 99.6 99.8
RFC 18.3 15.2 23.6 13.8 10.8 17.9 12.9 9.4 15.3 29.1 21.7 31.4 15.6 10.0 16.3
SVC 46.2 46.0 45.9 44.7 43.8 46.2 51.5 25.6 69.6 33.7 66.8 23.6 47.1 32.3 55.6

* 1: 1% inflation factor and 8 h time window. 2: 1% inflation factor and 1-day time window. 3: 2% inflation factor, and 1-day time window.

5. Conclusions

In the current work, an effort was made to investigate how deep learning approaches
can be employed to exploit a heterogeneous source of information coming from data
collected onboard. The model developed was implemented using real case data for the
detection and real-time condition monitoring of the primary systems. The work aimed to
develop a framework for decision support on maintenance activities in short-, medium-,
and long-term time horizons. Furthermore, an in-depth investigation of the effect of
multiple variables on the performance of the models was presented. In this context,
the parametric investigation was undertaken to attempt to determine how accurately
different levels of degradation would be detected, together with the effect of the input
time interval on the proposed network’s efficacy. Additionally, due to the absence of data
reflecting degraded operational profiles of the vessel under study, artificial damage had to
be effectuated, trying to emulate different realistic degradation cases for each methodology
to detect.

Concluding, it was shown that 1D-CNN models can infer the dynamic properties of the
vessel components’ decay and status on different time horizons. It was concluded that the
short-term FD mechanism benefitted from the shrinkage of the input window, profoundly
increasing yielded accuracy in the predictions on the test set. Moreover, regarding the
degradation variable models, results indicated that the proposed methodology was more
potent as the degradation degree increased. However, it could be claimed that all levels
examined were adequately detected, indicating the efficiency of the proposed methodology
contributing to the timely failure detection; in contrast, the benchmark ML classifiers
presented failed to identify adequately defective patterns for small degenerations. Lastly, it
was also evinced that the proposed methodology not only accurately identifies the failure
proneness in the system of the main engine, but also manages to localize the occurrence of
the trigger event with great accuracy.

Moving forward, in our future work we will perform a further parametric investiga-
tion of the CNN models, to evaluate the efficiency of the results with different damage
severity and data sample overlap percentage. Additionally, a parametric study will be
investigated, where multiple cylinders are defective in the same instance. Additionally,
the next step in this direction will be to assess the efficacy of our models by utilizing real
samples that have been pre-established and pre-labeled as defective, since the applicability
of the proposed networks has been evinced successfully. Finally, examination of the appli-
cability of the results of a trained model based on the data of a particular vessel to evaluate
the condition of another ship of similar type or even considerably dissimilar is amongst
our short-term plans.
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Appendix A. Comprehension of CNN Information Flow

The following Table presents a comprehensive overview of the operations taking place
in a 1D-CNN.

Table A1. Metrics scores of the 3 classifiers in 3 indicative instances.

Name Symbols/ Equation Notion

Input to the networks 1D tensor Time series as 1D input tensors X consisted
of mXn pixels

Convolution and Activation function Z(x) = ReLU(K◦S(x))
Kernel sliding through the input tensor
received by each layer. The activation

function introduces nonlinearity.

Max Pooling Layer G(x, y) = max(P◦S(x, y)) Dimensionality reduction decreasing the
computation cost

Multilayer Perceptron
and Activation function z[l] = ReLU

(
WT ·a[l−1] + b

) The 2D tensor from the last convolution or
pooling layer is flattened and inserted into
an MLP to carry out the classification task.

Classification a[L] = So f tmax
(

WT ·a[L−1] + b
)
= ez[L]i

∑M
i=1 ez[L]i

The output of the last Lth layer.

Loss function L = CCE(y, ŷ) = –
M
∑

i=1
yi log a[L])

The main objective of the networks’
optimization concerns the minimization of

the loss function.

Derivation ∂L
∂wi

& ∂L
∂bi

The model learns through
back-propagation. Only learnable

parameters in a 1D-CNN are the weights
and biases from both convolution layers

and MLP.

Self-Optimization wi = wi − a ∗ ∂L
∂wi

bi = bi − a ∗ ∂L
∂bi

Updating the weights and biases as shown.
The term α denotes the learning rate of the

optimizer, signifying how quickly the
algorithm converges.
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