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Abstract: Bedside imaging of ventilation and perfusion is a leading application of 2-D medical
electrical impedance tomography (EIT), in which dynamic cross-sectional images of the torso are
created by numerically solving the inverse problem of computing the conductivity from voltage
measurements arising on electrodes due to currents applied on electrodes on the surface. Methods
of reconstruction may be direct or iterative. Calderón’s method is a direct reconstruction method
based on complex geometrical optics solutions to Laplace’s equation capable of providing real-time
reconstructions in a region of interest. In this paper, the importance of accurate modeling of the
electrode location on the body is demonstrated on simulated and experimental data, and a method
of including a priori spatial information in dynamic human subject data is presented. The results of
accurate electrode modeling and a spatial prior are shown to improve detection of inhomogeneities
not included in the prior and to improve the resolution of ventilation and perfusion images in a
human subject.

Keywords: electrical impedance tomography; inverse problems; Calderón’s method; pulmonary
imaging

1. Introduction

Electrical impedance tomography has been demonstrated to be a promising technique
for pulmonary imaging at the bedsides of critically ill patients and for those with chronic
lung disease. Recent survey articles on clinical applications of EIT include [1,2] and the
reader is also referred to the articles [3–9] for an introduction.

Calderón’s method is a direct reconstruction method based on complex geometrical
optics (CGO) solutions to Laplace’s equation. The method was outlined by Calderón in his
1980 paper On an inverse boundary value problem [10], in which he proved that the linearized
problem has a unique solution and proposed a direct method of reconstruction. The method
can be viewed as a linearization of the D-bar method [11,12] based on the 1996 global
uniqueness proof by Nachman [13]. While the D-bar method makes use of a certain type of
nonlinear Fourier transform known as the scattering transform as an intermediate function
in the solution of a ∂̄ (D-bar) equation to directly compute the conductivity, Calderón’s
method relies on computing the inverse Fourier transform of a bilinear form involving
the data and CGO solutions to obtain the conductivity. Both methods require knowledge
of the Dirichlet-to-Neumann or voltage-to-current density map. Calderón’s method was
first implemented numerically in [14] for experimental EIT data collected on a saline-filled
tank and on a healthy human subject reconstructed on a circular domain. In [15], this was
extended to noncircular but symmetric domains. A real-time implementation in 2-D on
subject-specific domains was presented in [16,17]. A “higher-order” Calderón’s method
and a method of including a spatial prior was presented in [12] with demonstrated results
from data collected on a circular saline-filled tank with agar and vegetable targets. A 3-D
Calderón-based method was provided in [18] in the planar geometry and [19] for a cylinder.
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In this paper, an implementation in which the exact locations of the electrodes are
known is provided. Previous work on a subject-specific domain [16,17] assumed that the
electrodes were equally spaced in their angular positions around the boundary, leading to
some simplification in the computational formulas. A further novel contribution of this
paper is a method of including a static prior derived from CT scans and a preliminary
reconstruction to compute dynamic images of ventilation and perfusion. The relevant
medical application for this scenario would be a case when a CT scan and EIT scan are
performed upon hospitalization, and then the patient is monitored with EIT for pulmonary
complications, such as a pneumothorax or pleural effusion, both of which are conditions
that may develop, for example, in patients with acute respiratory distress syndrome (ARDS)
receiving mechanical ventilation.

The use of a spatial prior to improve the resolution of reconstructed EIT images
has proved to be effective in iterative methods [20–29] and in the D-bar method [30–33].
In the D-bar method, the scattering transform computed from the data is appended with
a scattering transform computed from a conductivity prior. In [34], a statistical approach
using the Schur complement was used to construct a prior for the D-bar method. In [12],
the Fourier transform of the prior conductivity distribution is appended to the bilinear
form before inverting. Dynamic images of the human chest prove more challenging in the
construction of a prior conductivity distribution. In [35] a dynamic prior was constructed
for the D-bar method applied to ventilation data from inspiratory and expiratory CT scans
of the patient. In this work, a static prior is constructed by segmenting a CT scan of a
patient with cystic fibrosis, and the conductivity values for the lung, heart, and background
are assigned from a preliminary reconstruction with Calderón’s method.

Since Calderon’s method has attracted attention as a direct real-time reconstruction
method, we aim to show its potential for practical implementation, which has both ad-
vantages and shortcomings. Other methods may result in higher resolution images, some
with significant trade-offs, such as computation time. Gauss–Newton methods require a
forward model for the iterative updates, which to date precludes real-time reconstruction.
However, careful modeling also contributes to improvements in resolution. Including a
prior further improves performance [20–26,28,29]. The D-bar method is a direct recon-
struction method for which spatial priors have been included by appending the scattering
transform computed from the measured data with the scattering transform of the prior.
The D-bar method also can be implemented in real time, although Calderón’s method
produces reconstructions even faster [16]. Shape reconstruction methods [36–39] have the
advantage that they can incorporate geometry and prior information directly and preserve
sharp edges, also reducing the computational burden of the full reconstruction problem,
which also shows promise for lung imaging.

The paper is organized as follows. In Section 2, the mathematical model of EIT is
provided. In Section 3, Calderón’s method and our numerical implementation with exact
electrode modeling and the inclusion of a spatial prior are presented. The results of the
method on experimental data collected on a chest-shaped tank, simulated data with several
simulated pulmonary pathologies, and human data collected on a patient are provided in
Section 4. The conclusion is presented in Section 5.

2. Background
2.1. Modeling of EIT

Let γ(x) ≥ γ0 > 0 be the electrical conductivity with a positive constant lower bound
γ0, u(x) be the electrical potential and Ω ∈ R2 be a bounded domain. The governing
equation of EIT is

∇ · γ(x)∇u(x) = 0, x ∈ Ω. (1)

The applied current density j on the boundary corresponds to the Neumann bound-
ary condition

γ(x)
∂u
∂ν

(x) = j(x), x ∈ ∂Ω, (2)
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where ν is the outward normal vector to ∂Ω. We denote the voltage distribution on the
boundary by f so that

u(x) = f (x), x ∈ ∂Ω, (3)

is the corresponding Dirichlet boundary condition for (1). If γ(x) and one of the boundary
conditions (2) or (3) are given, the forward problem is to solve for u(x) in Ω. The in-
verse problem is to find the unknown γ(x) from knowledge of the Neumann-to-Dirichlet
(ND) map,

Rγ : γ(x)
∂u
∂ν

(x) −→ u(x), x ∈ ∂Ω,

which is also called the current density-to-voltage map. However, in most of the mathe-
matical literature, the theory is developed using the Dirichlet-to-Neumann (DN) map

Λγ : u(x) −→ γ(x)
∂u
∂ν

(x), x ∈ ∂Ω, (4)

or voltage-to-current density map.

3. Methods
3.1. Calderon’s Method

For completeness, we summarize Calderón’s method from [10]. Assume that γ(x)
is a small perturbation δ(x) ∈ L∞(Ω) from a background conductivity of 1 so that
γ(x) = 1 + δ(x). Calderón’s method uses a special type of harmonic function known
as complex geometrical optics (CGO) solutions defined by

f (x; k, a) = eπi(k·x)+π(a·x), g(x; k, a) = eπi(k·x)−π(a·x),

where k, a ∈ R2 are nonphysical frequency variables with |k| = |a|, k · a = 0. Next, let ωi
be defined on Ω as

ωi = ui + vi in Ω, i = 1, 2,

where ω1 = f and ω2 = g on ∂Ω, ui ∈ H1(Ω), and vi ∈ H1
0(Ω) for i = 1, 2. Here, H1(Ω)

denotes the Sobolev space of functions with one weak derivative in L2(Ω) and H1
0(Ω) the

Sobolev space H1(Ω) with trace zero [40]. Then, by (1) and integration by parts,∫
∂Ω

f (x, k)Λγg(x, k)ds(x) = −2π2|k|2
∫

Ω
γ(x)exp[2πix · k]dx + R̃(k), (5)

where R̃(k) is considered to be a remainder term. Rearranging terms results in∫
Ω

γ(x)exp[2πix · k]dx = − 1
2π2|k|2

∫
∂Ω

f (x, k)Λγg(x, k)ds(x) + R̂(k),

where R̂(k) = R̃(k)
2π2|k|2 . Assuming γ(x) is constant outside of Ω, the left-hand side is the

Fourier transform of γχΩ, which we denote by γ̂(k). We denote the first term on the
right-hand side by

F̂abs
γ (k) ≡ − 1

2π2|k|2
∫

∂Ω
f (x, k)Λγg(x, k)ds(x). (6)

Calderón showed that when ||δ(x)||L∞(Ω) is small, |R̂(k)| is small for small values
of |k|. Since γ(x)χΩ is zero outside of Ω, |γ̂(k)| has to decrease to zero as |k| becomes
larger. Therefore, by multiplying a mollifying function η̂(k) such that η̂(0) = 1, η̂ ∈ C∞

and that decreases fast to zero as |k| becomes larger, F̂abs
γ η̂ approximates γ̂, and it is shown

in [10] that the inverse Fourier transform of R̂(k)η̂(k) is negligible when ||δ||L∞ is small.
The use of the mollification is equivalent to applying a low-pass filter to F̂abs

γ . This low-pass
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filtering can be carried out alternatively by truncating F̂abs
γ (k) into a disk of radius R1. We

call R1 the truncation radius. Therefore, we obtain an approximation of γ(x) by

γabs(x) ≡
∫
|k|≤R1

F̂abs
γ (k)η̂(k/t)e−2πix·kdk, (7)

where η̂(k/t) is a mollifying function with η̂(0) = 1 and t is the mollfication parameter. We
call the reconstruction from (7) the absolute image of γ.

Let Λ1 denote the Dirichlet-to-Neumann map corresponding to a constant conduc-
tivity distribution of γ = 1. By subtracting F̂abs

1 (k) from F̂abs
γ (k), defined in Equation (6),

we define
F̂diff

hom(k) ≡ − 1
2π2|k|2

∫
∂Ω

f (x, k)(Λγ −Λ1)g(x, k)ds(x), (8)

Inverting (8) on the truncated domain |k| ≤ R1 results in an approximation of the
perturbation δ(x), which we denote by

δdiff
hom(x) ≡

∫
|k|≤R1

F̂diff
hom(k)η̂(k/t)e−2πix·kdk, (9)

and call the difference image of δ with respect the homogeneous data.
Note, however, that the computation of the difference image requires knowledge of

Λ1, which in most practical applications such as in medical imaging, cannot be measured.
On the other hand, the action of Λ1 on g(x, k) can be computed analytically,∫

Ω
f (x, k)Λ1g(x, k)dx = −2π2|k|2

∫
Ω

e2πik·xdx,

and Equation (8) can be replaced by

F̂abs
δ (k) ≡ − 1

2π2|k|2
∫

∂Ω
f (x, k)Λγg(x, k)ds(x)−

∫
Ω

e2πik·xdx. (10)

We define
δabs(x) ≡

∫
|k|≤R1

F̂abs
δ (k)η̂(k/t)e−2πix·kdk, (11)

and call it the the absolute image of δ.
While one can compute γ(x) directly by using (7), the use of (9) or (11) avoids the

Gibbs phenomena near ∂Ω, which is introduced by the sharp discontinuity in γ(x)χΩ
along ∂Ω. Under the assumption that δ(x) is zero and therefore flat near ∂Ω, there are no
Gibbs phenomena in the reconstructed images. Gibbs phenomena in the absolute images
of γ can be observed in [12,14].

Another possibility that is particularly relevant to medical imaging is to choose one
frame in a dynamic sequence of images as a reference image. For ventilatory images, this
is often the frame corresponding to maximal exhalation and for perfusion images, this
could correspond to peak systole, peak diastole, or a time point in between. Denoting the
Dirichlet-to-Neumann map for the reference frame by Λγref , subtracting F̂abs

γref
for γref from

Equation (6) results in

F̂diff
ref (k) ≡ − 1

2π2|k|2
∫

∂Ω
f (x, k)(Λγ −Λγref)g(x, k)ds(x), (12)

Taking the Fourier transform to (12) in the region |k| ≤ R1, we obtain an approximation
to γ− γref which we will denote by δdiff

ref (x) and call it the difference image of δ with respect
to the reference frame. We will make clear whether we are using a homogeneous data as
in (8) and (9) or a specific frame in a dynamic sequence of data as in (12) when we refer to
the difference image.
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3.2. Numerical Implementation

Let {Ti} be a set of linearly independent current patterns, i = 1, . . . , L− 1, applied to L
electrodes. For i = 1, . . . , L− 1, l = 1, . . . , L, let Ti

l denote the ith current pattern on the lth
electrode and Vi

l the measured voltage. By Kirchhoff’s law, the elements of Ti must satisfy
∑L

l=1 Ti
l = 0, and for a unique choice of ground we require ∑L

l=1 Vi
l = 0. Let ti denote the

normalized current ti = (Ti)/(||Ti||2) and vi the normalized voltage vi = (Vi)/(||Ti||2),
where ||Ti||2 =

√
∑L

l=1(T
i
l )

2. In this work, the adjacent current patterns were applied on
the electrodes and are given by

Ti
l =


M, l = i,
−M, l = i + 1 mod L,
0, otherwise.

We model the current density j(x) on the boundary by the gap model,

j(x) =

{
Il
A , x ∈ el

0, otherwise,

where el denotes the lth electrode and A is the area of an electrode, which is assumed to be
the same for all electrodes.

Assume the locations of the centers of each of the electrodes is known, and let
x|∂Ω = (x1(θ), x2(θ)) = r(θ)(cos θ, sin θ) be a parameterization of the boundary of Ω by

θ, and the line element ds =
√
(x′1)

2 + (x′2)
2dθ =

√
r2 + r′2dθ. Denote the angle that the

center of the lth electrode makes with a reference point chosen to be 0 degrees by (θl)
l=L
l=1 ,

and the angle between the center of the lth and l + 1st electrode by ∆θl = θl+1 − θl . For
functions r, s of θ such that r, s : RL → R, let (r(·), s(·))L denote the discrete inner product
defined by (r(·), s(·))L = ∑L

l=1 r(θl)s(θl).
Expand f (xl , k) and g(xl , k) with respect to the normalized current patterns and the

measured voltages as follows:

f (xl , k) =
L−1

∑
i=1

f i
kti

l , (13)

g(xl , k) =
L−1

∑
j=1

gj
k,γvj,γ

l , (14)

and let fk =
{

f i
k
}L−1

i=1 and gk,γ =
{

gj
k,γ

}L−1

j=1
be the coefficient vectors, where the subscripts

k and γ indicate the dependence of the coefficients on the variable k and the conductivity γ.
Since the applied normalized current patterns and the measured voltages are not orthogonal
in general, in order to compute fk and gk,γ, we need to solve systems of linear equations as
follow. Taking the inner product with vi,γ (i = 1, 2, ..., L− 1) on both sides of (14), we obtain
Vγgk,γ = ck,γ, where Vγ(i, j) = (vi,γ, vj,γ)L and ck,γ(i) =

(
g(xl , k), vi,γ

l

)
L
. Therefore,

gk,γ = V−1
γ ck,γ. Similarly, fk = T−1dk, where T(i, j) = (ti, tj)L and dk(i) =

(
f (xl , k), ti

l
)

L.
Now, with (13) and (14),
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∫
∂Ω

f (x, k)Λγg(x, k)ds(x) =
∫ 2π

0

L−1

∑
i=1

f i
kti(θ)

[
Λγ

L−1

∑
j=1

gj
k,γvj,γ(·)

]
ds(θ)

=
L−1

∑
i=1

L−1

∑
j=1

f i
kgj

k,γ

∫ 2π

0
ti(θ)

[
Λγvj,γ(·)

]
ds(θ)

=
1
A

L−1

∑
i=1

L−1

∑
j=1

f i
kgj

k,γ

L

∑
l=1

ti
lt

j
lew,

=
ew

A
fT

k Tgk,γ,

where ew is the width of one electrode, where all are assumed to be equal, and fT
k is the

transpose of fk. Notice that the coefficients fk and gk,γ encode the information about
the location of electrodes and therefore the boundary shape provided that we use the
exact values of f (xl , k) and g(xl , k) in (13) and (14). From (8), (10), and (12), and by the
similar calculation,

F̂diff
homo(k) = −

ew

2π2 A|k|2 fT
k T(gk,γ − gk,1), (15)

F̂abs
δ (k) = − ew

2π2 A|k|2 fT
k Tgk,γ −

∫
Ω

e2πik·xdx, (16)

and
F̂diff

ref (k) = − ew

2π2 A|k|2 fT
k T(gk,γ − gk,ref). (17)

The approximations δdiff
homo, δabs and δdiff

ref are computed by taking the inverse Fourier
transform of (15)–(17), respectively. The inverse Fourier transform is computed for |k| ≤ R1,
where R1 is the truncation radius. This radius is unitless, and it depends on the scaling of
the domain. If, for example, the maximum value of |x| is 180 mm, and we scale the domain
to have a maximum of |x| = 1; then, we rescale the truncation radius to R1

180 Simpson’s
quadrature rule is used to compute the integral of the inverse Fourier transform. Once
we compute δdiff

homo, δabs and δdiff
ref , we add the background conductivity to those to get the

conductivity distributions γdiff
homo, γabs and γdiff

ref , respectively.

3.3. Calderón’s Method with a Spatial Prior

In [12], a method of including a spatial prior to Calderón’s method is introduced. We
implement the method in this paper. We assume that we have a priori knowledge for
the boundary of organs and the approximate regional conductivity for each organ. We
denote this a priori conductivity distribution by δpr(x). By adding a high-pass filtered
prior

∫
R1≤|k|≤R2

δ̂pr(k)η̂(k/t)e−2πik·xdk to the reconstructions obtained from (11) and (12),
we define

δabs
pr (x) = δabs(x) +

∫
pri

δ̂pr(k)η̂(k/t)e−2πik·xdk, (18)

and
δdiff

pr (x) = δdiff(x) +
∫

R1≤|k|≤R2

δ̂pr(k)η̂(k/t)e−2πik·xdk, (19)

for some constant R2, where δdiff is either δdiff
homo or δdiff

ref depending on the applications.We
define γabs

pr and γdiff
pr by adding the background conductivity to (18) and (19), respectively.

4. Experimental Results
4.1. Chest Shaped Tank Data

In this section, the improvement in resolution when correct electrode positions are
included in the algorithm is demonstrated. In this section, no spatial prior is used in the
reconstruction algorithm. Data was collected on a chest-shaped tank of with circumference
1.016 m, simulating the shape of a human subject. The tank was filled with saline of
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conductivity of 0.2 S/m to a height of 0.0204 m, and three inclusions featuring two lungs of
conductivity 0.09 S/m and the heart of conductivity 0.45 S/m. The width of the electrodes
was 0.254 m. From the center of the tank, the electrodes are spaced nonuniformly in angle.
For the homogeneous data for the difference images of δ, a data set was collected with only
saline in the tank. The data was taken with the Active Complex Electrode (ACE1) system
(see, [41,42]) in the EIT lab at Colorado State University. The frequency of the system was
125 kHz and the current amplitude was 3.3 mA.

See Figure 1 for a photo of the experimental configuration and reconstructions of
a difference image of δdiff

homo with the algorithm suggested in [16] in which the location
of electrodes is assumed to be spaced uniformly in angle (upper right). Without correct
electrode modeling, absolute images were unattainable. The truncation radius is 1.2 for all
image. The lower left image in Figure 1 is a reconstruction of δdiff

homo with correct electrode
modeling suggested in this paper. The lower right image is an absolute image, δabs with
the same truncation radius. With correct electrodes modeling, the absolute image of δ
is comparable to the difference image The L2 norms of the differences between those
reconstructions and the ground truth are 0.1128, 0.0973 and 0.0981 in order.

Figure 1. Top left: The chest shaped tank filled with saline bath and inclusions simulating two low
conductive lungs and the high conductive heart. Top right: A difference image without modeling
the location of electrodes. Bottom left: A difference image with modeling the location of electrodes.
Bottom right: An absolute image with modeling the location of electrodes. The L2 norms of the
differences between those reconstructions and the ground truth are 0.1128, 0.0973 and 0.0981 in order.

4.2. Simulated Data on a 2D Chest-Shaped Tank with a Spatial Prior

The purpose of including a spatial prior in the reconstruction algorithm in the clinical
setting is to improve resolution and detection of pulmonary pathology without biasing the
reconstruction towards any particular pathology. With this goal, we take the point of view
that the spatial prior should represent a normal chest with healthy lungs. To study the
effectiveness of this approach, reconstructions from simulated data with 0.1% added noise
representing healthy lungs and four different pathologies were computed using a healthy
lung prior. In all cases, the correct electrode locations were used in the reconstructions. Four
simulated pathologies were studied: a small pneumothorax and a large pneumothorax
in the left lung, a contusion in the right lung, and a pleural effusion in the left lung.
Reconstructions are found in Figures 2–6, respectively. The prior was constructing from
the healthy lung case. The conductivity values for each of the organs and pathologies
are found in Table 1, and were chosen in agreement with the references [43,44]. In the
simulation, data with no inclusions are computed and used for the difference images.



Sensors 2021, 21, 5635 8 of 18

Table 1. Conductivity values for the simulated data by organ.

Organ/Region Conductivity (S/m) True δabs Value

Background 0.8 0

Heart 1.1 0.3

Lung 0.5 −0.3

Spine 0.15 −0.65

Pneumothorax 0.25 −0.55

Contusion 0.6 −0.2

Effusion 1.0 0.2

Figure 2. Healthy heart and lungs. From left: Reconstruction of γabs with no prior, γdiff with no prior,
γabs

pr with the spatial prior, γdiff with the spatial prior. The L2 norms of the difference between those
reconstruction and the ground truth, the first figure, are 0.2952, 0.3119, 0.2920 and 0.3085 in order.

Figure 3. Small pneumothorax. From top left: The true conductivity distribution, reconstruction
of γabs with no prior, γdiff with no prior, γabs

pr with the spatial prior, γdiff
pr with the spatial prior,

a difference image in which the data for the example of healthy heart and lungs in Figure 2 with no
pathology is chosen for γref. The L2 norms of the differences between those reconstructions and the
ground truth are 0.3038, 0.3137, 0.3013 and 0.3112 in order.
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Figure 4. Large pneumothorax. From top left: The true conductivity distribution, reconstruction
of γabs with no prior, γdiff with no prior, γabs

pr with the spatial prior, γdiff
pr with the spatial prior,

a difference image in which the data for the example of healthy heart and lungs in Figure 2 with no
pathology is chosen for γref. The L2 norms of the differences between those reconstructions and the
ground truth are 0.3076, 0.3261, 0.3047 and 0.3232 in order.

Figure 5. Simulated pulmonary contusion. From left: The true conductivity distribution, reconstruc-
tion of γabs with no prior, γdiff with no prior, γabs

pr with the spatial prior, γdiff
pr with the spatial prior,

a difference image in which the data for the example of healthy heart and lungs in Figure 2 with no
pathology is chosen for γref. The L2 norms of the differences between those reconstructions and the
ground truth are 0.2958, 0.3071, 0.2927 and 0.3040 in order.

In each example with a pathology, the pathology is clearly visible in the difference
image created by subtracting the data from the simulated healthy heart and lung case from
the data corresponding to the case with the pathology (the lower right image in each of
these figures). This simulates detection of a pathology that occurs while the patient is being
monitored, and pre-pathology data is available. The images of γabs with no prior, γdiff with
no prior, γabs with the spatial prior, γdiff with the spatial prior have more subtle differences
from one another. In the case of the small and large pneumothoraces, the left lung is visibly
larger, and resistive region near the top of the left lung expands. In the simulation of the
pulmonary contusion, the contusion is arguably invisible in the reconstructions, but clearly
visible in the difference image in the lower right. In the simulation of the pleural effusion,
the effusion is clearly visible in each of the reconstructions, although not well-localized.

The results suggest that the method is best-suited for monitoring for developing
pathologies as opposed to detection of a pathology already present with no reference image
in which the pathology is absent. We are not assuming that we can collect EIT data on both
a healthy and injured lung at the same time. In the case of a contusion, which is caused by
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blunt-force trauma to the lung, the clinical scenario most relevant here would be monitoring
the resolution or healing of the contusion, using the contusion image as reference.

Figure 6. Simulated pleural effusion. From left: The true conductivity distribution, reconstruction
of γabs with no prior, γdiff with no prior, γabs

pr with the spatial prior, γdiff
pr with the spatial prior,

a difference image in which the data for the example of healthy heart and lungs in Figure 2 with no
pathology is chosen for γref. The L2 norms of the differences between those reconstructions and the
ground truth are 0.3000, 0.3065, 0.2966 and 0.3029 in order.

4.3. Human Subject Data

We demonstrate the effectiveness of Calderón’s method with accurate shape and
electrode modeling and a spatial prior on archival data collected as part of a larger study
conducted in accordance with the amended Declaration of Helsinki—Ethical Principles for
Medical Research Involving Human Subjects. Data were collected at Children’s Hospital
Colorado, Aurora, CO, under the approval of the Colorado Multiple Institutional Review
Board (COMIRB) (approval number COMIRB 14-0652). Informed written parental consent
and children’s informed assent was obtained from the subject. Data from one 10-year-old
male cystic fibrosis patient collected during a routine annual exam is considered here.

EIT data were collected during tidal breathing and during breathholding on 22 pe-
diatric Philips EKG electrodes of height 3.33 cm and width 2.22 cm placed around the
circumference of the chest. When the electrodes were removed, fiducial markers were
placed at the center of each electrode, and a CT scan was performed as part of the subject’s
standard care. Bipolar adjacent current patterns were applied with a current amplitude of
2.9 mA on the injecting electrodes. Electrode centers were identified from the inspiratory
CT scans with the slices overlaid. The CT scan slide in Figure 7 was used to approximate the
boundary shape for the domain and the prior as well as the shape and location of the lungs
and heart to create the spatial prior. For the ventilation image sequence, a reference frame
was chosen by finding the minimum value of the first component in a principal component
analysis (PCA) plot of the data. This frame corresponds to maximum exhalation over the
sequence and was the 200th frame. For the breath-holding sequence, the voltage data on
each electrode for a fixed current pattern was averaged over all of the frames to create a
data set representing a data set averaged over all frames.

After running a preliminary difference reconstruction of δdiff with no prior, the max-
imum conductivity value in the region of the heart was assigned to the heart region in
the spatial prior, the minimum conductivity value in the region of the lungs was assigned
to the lung regions in the spatial prior, and the background conductivity was set to zero,
since these are difference images. Difference images of ventilation data with no prior and
truncation radius 1.2 are found in Figure 8. While ventilatory changes are clearly visible,
the spatial resolution is very poor. Difference images with a spatial prior with an inner
truncation radius of 1.2 and outer truncation radius of 3 are found in Figure 9. The spatial
resolution has improved when compared to the CT scan and the ventilatory changes are
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still clearly visible. In Figure 10, time traces of a pixel from the lung region and from the
heart region are superimposed both for the no-prior reconstructions and the reconstructions
with the static spatial prior.

Figure 7. One slice of the CT scan of the subject and the static prior constructed from the CT image.

Figure 8. Difference images of ventilation data with no spatial prior included in the algorithm. Frame
200 is used for the reference image. The truncation radius is 1.2.
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Figure 9. Difference images of ventilation data with the spatial prior included in the algorithm.
Frame 200 is used for the reference image. The truncation radius is 1.2 and the outer truncation
radius is 3.

Figure 10. The time trace plots of a pixel in the right lung region and a pixel in the heart region from
the reconstructions. Two pixels are marked with squares in the first image of Figure 12. Left is the
plot from the ventilation data and the right one is for the breath-holding data. In both plots, from the
top to the bottom, each graph represents the time trace of the pixel in the heart with and without
a prior, and the time trace of the right lung pixel with and without a prior. The plots of the lung
pixels in the perfusion time trace plot are shifted upward by 0.02 in order to better demonstrate the
out-of-phase nature.

Difference images from the breath holding data with no prior and truncation radius
1.2 are found in Figure 11, and reconstructions with the prior are found in Figure 12. In this
case, a reference DN map was computed by averaging the voltages over all frames to
compute an average reference frame. That is, for each fixed current pattern and each
electrode, an average voltage over all frames was assigned to the voltage component in the
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computed reference data. The plotted images correspond to systole and diastole, as selected
manually from the images. A movie of the full reconstruction sequence can be found in
the Supplementary Data. The BIOPAC 3-lead EKG data are plotted in Figure 13. Since the
ACE 1 system with 22 electrodes collects data at 36.28 frames/s, each frame corresponds to
0.276 s of data. Since start time of the BIOPAC data collection was delayed by 1.06 s, frame
100, the first frame found in Figures 11 and 12, correspond to 3.82 s, and we display the
relevant portion of the EKG output. For reference, each small rectangle in the EKG figure
represents 0.04 s or 1.45 frames. Frames from Figures 11 and 12 are marked with arrows,
and the frames corresponding to systole have red box around them. One sees that systole
in the EIT images closely coincides with the QRS complex in the EKG data, as would be
expected. The average heart rate can be seen in the lower half of the figure. From the
images, one also sees that the heart region is less red when the heart ejects blood during
systole, and becomes deeper red during diastole. The lung regions shrink and become less
blue during systole as blood enters the lungs and they become more conductive, and they
become bluer as the heart fills during diastole, as the conductive blood leaves the lungs and
returns to the heart. In Figure 10, we plot the time trace of two pixels which are indicated
with squares in the first image of Figure 12. The left plot is the time trace of the ventilation
data and the right one is for the breath-holding data. In both plots, each graph represents,
from the top to the bottom, the heart region with and without a prior and the lung region
with and without a prior. The two plots show the breath and the beating of the heart clearly.
The left plot shows frames 190 to 450, demonstrating about 15.5 heart beats and five breath
cycles. The right plot shows frames 100 to 196, depicting about 5.5 heart beats and the
perfusion in the lung region. In the plot from the breath-holding data, the time trace of the
lung pixel and the time trace of the heart pixel are out-of-phase, as is expected.

Figure 11. Difference images of breath holding data with no spatial prior included in the algorithm.
Averaged voltage data were used for the reference data. The truncation radius is 1.2.
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The full image sequences of reconstructions for Figures 8, 9, 11 and 12 can be found as
movies on https://youtu.be/0qxE4Aosmtw, https://youtu.be/oHTjZGnWLKQ, https://
youtu.be/1PP7c9E17sM, and https://youtu.be/q_yugxxhdHM all accessed on 13 August
2021, in order.

Reconstructions of ventilation computed on a circular domain of the same perimeter as
the true domain are included in Figures 14 and 15. These images show separation between
the lungs, as may be familiar to the reader for EIT reconstructions, but it is an artifact of the
circular domain, which has the effect of pulling the targets toward the boundary, as has
been previously reported in Figures 14 and 15 for Calderon’s method. Due to the very close
proximity of the lungs to each other near the heart (see the CT scan in Figure 7), the lungs
should not show a large separation. In fact, the reconstructions from the prior show an
indentation near the bottom (at the location of the spine), which is to be expected in a
difference image, and this is further evidence of the improved resolution with the prior.

Figure 12. Difference images of breath holding data with the spatial prior included in the algorithm.
Averaged voltage data were used for the reference data. The inner truncation radius is 1.2 and the
outer truncation radius is 3. The small squares superimposed on the upper left figure indicate the
pixels chosen for the time traces in Figure 10.

https://youtu.be/0qxE4Aosmtw
https://youtu.be/oHTjZGnWLKQ
https://youtu.be/1PP7c9E17sM
https://youtu.be/1PP7c9E17sM
https://youtu.be/q_yugxxhdHM
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Figure 13. EKG data collected with BIOPAC during breath-holding. Frames from Figures 11 and 12 are annotated on the
EKG trace in the upper half of the image. One sees that systole in the EIT images closely coincides with the QRS complex in
the EKG data, as would be expected. The average heart rate is found in the lower half of the figure.

Figure 14. Difference images of ventilation data with modeling the domain to be a circle. No prior is
added. Frame 200 is used for the reference image. The truncation radius is 1.2.
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Figure 15. Difference images of ventilation data with modeling the domain to be a circle. A spatial
prior is added. Frame 200 is used for the reference image. The truncation radius is 1.2.

5. Conclusions

In this work, Calderón’s method in two dimensions was implemented with correct
electrode positions for experimental and simulated data and shown to yield improved
difference and absolute images compared to when the electrodes are assumed to be equally
spaced. In addition, a spatial prior was included in the reconstruction algorithm and
demonstrated to improve spatial resolution and accuracy of conductivity values. Examples
from human data demonstrate the method’s ability to image conductivity changes due to
ventilation and pulsatile pulmonary perfusion.

Supplementary Materials: The original files for Figures 8, 9, 10 and 11 are available online at
https://www.mdpi.com/article/10.3390/s21165635/s1.
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