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Abstract: We introduce a generative Bayesian switching dynamical model for action recognition in 3D
skeletal data. Our model encodes highly correlated skeletal data into a few sets of low-dimensional
switching temporal processes and from there decodes to the motion data and their associated action
labels. We parameterize these temporal processes with regard to a switching deep autoregressive
prior to accommodate both multimodal and higher-order nonlinear inter-dependencies. This results
in a dynamical deep generative latent model that parses meaningful intrinsic states in skeletal
dynamics and enables action recognition. These sequences of states provide visual and quantitative
interpretations about motion primitives that gave rise to each action class, which have not been
explored previously. In contrast to previous works, which often overlook temporal dynamics, our
method explicitly model temporal transitions and is generative. Our experiments on two large-
scale 3D skeletal datasets substantiate the superior performance of our model in comparison with
the state-of-the-art methods. Specifically, our method achieved 6.3% higher action classification
accuracy (by incorporating a dynamical generative framework), and 3.5% better predictive error
(by employing a nonlinear second-order dynamical transition model) when compared with the
best-performing competitors.

Keywords: 3D skeletal motion; bayesian inference; biologically valid interpretation; deep generative
models; human action recognition; latent state modeling; motion capture; switching dynamical
modeling; variational inference

1. Introduction

Analyzing 3D motion capture datasets, illustrating dynamical motions of a subject
and inferring their actions is the key processing step in many applications, including
highlighting movement patterns of an athlete to optimize their performance, probing
behavior of an endangered animal, and monitoring mobility of a patient in a rehabilitation
study, to name a few [1]. In all these applications, body pose data contained in the motion
capture sequence describes temporal evolution of specific phenomena or action and is
switching between potentially limited number of states each representing a specific regime.

The efforts in quantifying complex kinematics of biological mechanisms in a lower di-
mensional subspace have led to the successful design of bio-inspired robots that can mimic
their biological counterparts to a great extent [2–4]. For instance, it is shown that more
than 80% of the variance of static grasping data in humans could be described by the first
two postural synergies [5]. Skeleton-based human action recognition, on the other hand,
has been extensively studied in the context of deep learning using convolutional neural
networks [6,7], recurrent neural networks [8,9], and graph convolutional networks [10–12].

However, there are still some limitations with the existing body of works. (I) A
vast majority of previous state-of-the art models perform action classification on motion
segments that only include a single action. In other words, they predict a single action
label for the entire motion segment. This substantially decreases their applicability in
practice for real-world applications because in most cases (if not all) we are not given
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single-action segments and the action recognition model has to determine action segments
itself. A practical algorithm should be able to provide per-time point action labels and
update these labels accordingly in real-time. (II) Although some previous works capture
temporal correlations in motion data (e.g., through temporal smoothness regularization),
there are very few methods that explicitly model temporal dynamics/transitions. For the
task of human action recognition, most of the existing models are deterministic, specifically
designed for action recognition, and inherently do not model temporal dynamics or learn
data distribution, and therefore are not generative. (III) Most of the previous methods
cannot handle missing entries in motion data (which may happen frequently) because they
are not predictive. Their common practice is to simply set missing entries to zero or remove
their corresponding time points entirely. (IV) Most of the previous works do not provide
any interpretations or intuitions for their predictions of action labels in terms of intrinsic
dynamical processes in motion data or motion primitives.

The strong spatio-temporal correlation among joints of a human’s skeleton captured by
3D motion capture data as well as its clear sparseness motivate the utilization of dynamical
probabilistic models that can learn underlying interpretable states from data and extract
their low-dimensional motion patterns. To this end, we propose a Bayesian state switching
model for dynamical action recognition that is both generative and predictive. Specifically,
we employ a low-dimensional deep generative latent model to encode highly correlated
skeleton data into a few set of switching autoregressive temporal processes. This model
then decodes from these low-dimensional representations to the skeletal data and their
associated action labels. This results in a flexible model that accommodates multimodal and
higher-order nonlinear inter-dependencies, parses meaningful temporal modes in 3D pose
data, and enables action recognition. Specifically, we make the following contributions:

• In contrast to previous works which merely classify motion sequences into action
labels and are not generative, our method, sketched in Figures 1 and 2, in addition
to action recognition, (I) segments motion data from a dynamical perspective by
explicitly modeling temporal dynamics in a Bayesian approach, hence, (II) it allows
dynamical prediction of skeletal motion from low-level representations. Specifically,
(III) it welcomes multimodal, higher-order, and nonlinear temporal relations in motion
data by employing a deep switching auto-regressive latent model.

• Our method can easily fill in missing entries in motion data due to its predictive
nature which models transitions between time points and between action labels.

• Our method provides action labels per time point and can handle varying-length
sequences.

• Our method uses a nonlinear second-order dynamical model to better capture skeletal
dynamics, because first-order models are less effective in modeling acceleration (i.e.,
second-derivative of location) in motion data.

• The sequence of discrete latents in our method enables multi-modal dynamical model-
ing and at the same time provides visual/qualitative and quantitative interpretations
about motion primitives that gave rise to each action class, which were not possible
with previous methods.

• Our method is probabilistic and provides confidence intervals for its estimations
and predictions.
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Figure 1. (a) Graphical representation of our generative model given N motion datasets Xn and their
action labels Ln. The low-dimensional continuous latents Zn = {Zn,t}T

t=1 are generated with regards
to a nonlinear autoregressive prior switched by their associated discrete states Sn = {Sn,t}T

t=1. The
discrete states themselves are determined according to a Markovian prior conditioned on their
preceding continuous latents, i.e., Zt−1. (b) In the inference model, discrete and continuous latents
are estimated from motion sequences Xn in an amortized fashion (denoted by dashed red arrows).

Figure 2. Visual framework of our proposed method. Our model encodes an input motion sequence
{X1, · · · , XT} into a sequence of hidden features {h1, · · · , hT} using a bidirectional LSTM. The
resulting hidden features are fed to two separate MLPs for estimating variational distribution
parameters of discrete latents {S1, · · · ,ST} and continuous latents, {Z1, · · · , ZT}. These posterior
distributions are then sampled to obtain their latent values. We decode to the input motion sequence
{X̂1, · · · , X̂t} by feeding continuous latents Z to an MLP. We also decode to the associated action
labels {L̂1, · · · , L̂T} by feeding probability vectors of the discrete latents S to a bidirectional LSTM.
We estimate the priors for the discrete latents p(St) and continuous latents p(Zt) from the values of
sampled latents using two separate MLPs.

We demonstrate superior performance of our model on two large-scale 3D skeletal mo-
tion datasets in terms of action classification and dynamical prediction accuracy. The source
code is available at github.com/ostadabbas/ActionDSARF (accessed on 16 August 2021).

https://github.com/ostadabbas/ActionDSARF
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2. Related Works

Here, we give a short overview of the recent advancements in dynamical system
modeling as well as human action recognition using skeletal data, two fundamental aspects
of our proposed approach.

2.1. Dynamical Systems Modeling

Switching linear dynamical systems (SLDS) have long been investigated in the liter-
ature [13–18]. These models decompose time series data into series of simpler, repeated
dynamical modes represented by discrete and continuous latent states. In SLDS frame-
work, the transitions between discrete states are independent of their associated contin-
uous values. This problem is addressed in recurrent switching linear dynamical system
(rSLDS) [19–21], by allowing the discrete state transition probabilities to depend on their
preceding continuous states. The rSLDS dynamical capacity is however limited as it as-
sumes first-order linear dynamics. A recent work [22], extends these models by adopting
nonlinear and higher-order multimodal dependencies through a deep switching autore-
gressive framework. We build our model on top of this framework and customize that for
dynamical action recognition. This makes our model flexible for complex auto-regressive
relations in motion sequences.

From another perspective, dynamical matrix factorization is used in [23–27] for mod-
eling linear dynamics in their low-dimensional temporal factors. Several studies have
also employed neural networks for non-linear state-space modeling [28–33], which are
restricted to first-order Markovian dependencies, and for time series prediction [34–39],
most of which are non-probabilistic.

2.2. Action Recognition

Skeleton-based human action recognition has drawn much attention for its effi-
ciency and robustness compared to the image-based action recognition methods. Earlier
works [40,41] treat joint coordinates as independent features and model the relationship be-
tween them through hand-crafted feature vectors. After the introduction of deep learning,
both convolutional and recurrent networks are used to extract information from skeleton
data after transforming them into pseudo images or a sequence of vectors. In order to
accomplish this transformation both spatially and temporally, Ref. [6] proposed their joint
trajectory maps to represent spatial configuration and joint dynamics using color-coded
texture images. Authors in [7] proposed the shape-motion representation from geometric
algebra, which addressed the importance of both joints and bones and fully utilized the
information provided by skeleton sequence. Recurrent neural network (RNN) structure
can effectively process sequential data, while it has more difficulties for spatial information
modeling. A novel two-stream RNN architecture to model both temporal dynamics and
spatial configurations for skeleton data is proposed in [8]. Human actions can also be
interpreted based on the interactions between body parts. In [9], authors proposed part-
aware long short-term memory (P-LSTM), which divides the entire body dynamics based
on different body parts and learn the final classifier over their concatenation. Common
temporal patterns of the parts are learnt independently and then combined in the global
level representation for action recognition. Recent approaches model the joint movements
of an action with skeleton spatial-temporal graphs. Authors in [10] proposed to model
the skeleton data with the graph convolutional networks (GCNs), in which the spatial
graph convolution and the temporal graph convolution are both utilized. Spatial edges
correspond to the connection of joints at each frame and the temporal edges connect the
same joints across frames. In this configuration, the spatio-temporal information can be
extracted based on the multi-layer graph convolution. To extract discriminative spatio-
temporal features more effectively, [11] proposed a novel graph-based LSTM network to
capture discriminative features by exploring the co-occurrence relationship between spatial
and temporal spaces. Hierarchical architectures are also used to increase the temporal
receptive fields. In [12], the skeleton data are represented as a directed acyclic graph
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(DAG) based on the kinematic dependency between the joints and bones in the natural
human body to combine these two types of data for a better usage. In order to unbiasedly
model long-range joint relationship under multi-scale operators and get unobstructed
cross space-time information flow for capturing complex spatial-temporal dependencies,
Ref. [42] proposed multi-scale aggregation scheme disentangling the importance of nodes
in different neighborhoods for effective long-range modeling.

More recently, Ref. [43] proposed a bi-directional long short-term memory (BiLSTM)
based attention mechanism with a dilated convolutional neural network (DCNN) for
human action recognition in videos. They used DCNN layers equipped with residual
blocks to extract discriminative features from video frames. These features are then fed
into a BiLSTM network to learn temporal dependencies, which is followed by an attention
mechanism to perform action classification. Also, for the task of speech emotion recognition,
Ref. [44] proposed a two-stream deep convolutional neural network with an iterative
neighborhood component analysis (INCA) to learn refined spatiotemporal features. They
used two distinct convolutional neural networks, denoted as two streams, to extract spatial
and spectral features separately. These features are then combined and fed to an INCA for
further refinement. Finally, the jointly refined features are passed from a fully connected
network with a softmax classifier to predict emotion categories.

3. Problem Formulation

We consider a set of N motion datasets {X1, . . . , XN} and their associated action labels
{L1, . . . , LN}, where each Xn ∈ RT×(D×3) contains 3D coordinates of D skeleton joints over
T time points and Ln ∈ {1, · · · , A}T denotes its per-time point action labels from a set of A
action classes. We propose a low-dimensional deep latent model that learns the generative
distribution of these data and infers their latent representations as well as actions labels for
an unseen sequence, which we will explain below as “Generative” and “Inference” models,
respectively.

3.1. Generative Model

We assume that each data pair {Xn, Ln} is generated according to a set of discrete
latent states Sn = {Sn,t}T

t=1 representing motion primitives and their corresponding low-
dimensional continuous temporal latent variables Zn = {Zn,t ∈ RK}T

t=1:

Xn ∼ pθ(Xn | Zn),

Ln ∼ pθ(Ln | Sn),

Zn ∼ pθ(Zn | Sn),

Sn ∼ pθ(S), (1)

where pθ(Xn|Zn) and pθ(Ln|Sn) are emission distributions that define conditional proba-
bilities of observation space for motion data Xn and their action labels Ln with respect to
local continuous latents Zn and discrete latents Sn, respectively. pθ(Zn|Sn) is a switching
dynamical autoregressive prior over Zn and pθ(S) is a generative Markovian prior over Sn.
We parameterize all distributions with neural networks and collectively denote their gener-
ative model parameters by θ. The graphical representation for our proposed generative
model is depicted in Figure 1a.

3.1.1. Discrete Markovian Prior pθ(S)
We construct a predictive dynamical framework to capture temporal coherence in our

sequential data. We assume that this dynamical generative process resides at a specific state
at each time point (out of S possible states) which is determined according to a Markovian
prior conditioned on its preceding discrete latent St−1 and continuous latent Zt−1. As such,
the discrete latent states Sn = {Sn,t}T

t=1 are structured in a Markov chain as follows:

pθ(St|St−1 = s, Zt−1) = Cat(σ(Φs
θ(Zt−1))), (2)



Sensors 2021, 21, 5613 6 of 17

where Φs
θ(·) is a state-specific mapping parameterized by neural networks and σ(·) is

a softmax activation function that ensures a valid S-dimensional probability vector. As
noted in [19], conditioning the discrete states on their preceding continuous latents (in
addition to their preceding discrete states) is desirable as it allows informed transitions.

3.1.2. Switching Autoregressive Prior pθ(Zn|Sn)

We assume that the low-dimensional continuous latents Zn follow a nonlinear au-
toregressive Gaussian prior switched by their associated discrete states Sn. This implies a
Gaussian mixture distribution for the dynamical latent space:

pθ(Zt|Zt−`,St = s) = Norm
(

µZ,s
θ (Zt−`), σZ,s

θ (Zt−`)
)

, (3)

where s ∈ {1, · · · , S} and ` denotes a lag set (e.g., ` = {1, 2} for a second-order Markov
model), and state-specific µZ,s

θ (·) and σZ,s
θ (·) are parameterized by multilayer perceptrons

(MLPs) (see Table 1). In other words, we feed Zt−` to a multi-head MLP for estimation of
the Gaussian parameters, e.g., µZ,s

θ (Zt−`) = ∑l∈` MLPs,l
θ (Zt−l).

Table 1. Network architectures for the nonlinear mappings in our generative model (gModel) and inference model (iModel).

gModel Φs
θ : RK → RS (µ, σ)Z,s

θ : R|`|×K → RK,K ΦL
θ : R2K → RA µX

θ : RK → R3D

Input Zt−1 ∈ RK Zt−` ∈ R|`|×K hSt ∈ R2K Zt ∈ RK

1 FC K× K ReLU FC |`| × K× K ReLU FC 2K× K ReLU FC K× 2K ReLU
2 FC K× K ReLU AvgPool(|`|) FC K× A FC 2K× 2K ReLU
3 FC K× S FC K× K ReLU FC 2K× 2K ReLU
4 FC K× (K + K) FC 2K× 3D

iModel ΦSφ : R2K → RS (µ, σ)Z
φ : R2K → RK,K

Input hX
t ∈ R2K hX

t ∈ R2K

1 FC 2K× 2K ReLU FC 2K× 2K ReLU
2 FC 2K× 2K ReLU FC 2K× 2K ReLU
3 FC 2K× S FC 2K× (K + K)

3.1.3. Emission Model for Action Labels pθ(Ln|Sn)

We specify a categorical emission model to determine action labels at each time point
from the sequence of discrete state latents S1:T . To this end, we summarize state latents at
each time point into a hidden vector hSt using a bidirectional LSTM recurrent network:

pθ(Lt|S1:T) = Cat
(

σ
(
ΦL

θ

(
hSt
)))

,

hS1:T = B-LSTM(S1:T),

where ΦL
θ(·) is a neural network mapping. This modeling framework implies that an action

label is decided only after observing its preceding and succeeding state latents in time.

3.1.4. Emission Model for Motion Sequence pθ(Xn|Zn)

We consider a Gaussian emission distribution for the observed motion instance Xt
conditioned on its continuous latent Zt. Namely, the mean of this Gaussian is a function of
the continuous latent value:

pθ(Xt|Zt) = Norm
(
µX

θ(Zt), σXI
)
, (4)

where µX
θ(·) is a nonlinear mapping parameterized by a neural network and σX denotes

observation noise.
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3.2. Inference Model

As the posterior probability for this model is intractable, we use approximate varia-
tional methods in the form of amortized inference to learn the model parameters [45,46].
These methods approximate the posterior of latents pθ(S , Z |X, L) with a variational distri-
bution qφ(S , Z |X) by maximizing the evidence lower bound (ELBO):

L(θ, φ) =Eqφ(S ,Z|X)

[
log

pθ(X, L,S , Z)
qφ(S , Z|X)

]
= log pθ(X, L)−KL

(
qφ(S , Z|X) ‖ pθ(S , Z|X, L)

)
. (5)

By maximizing ELBO with respect to the parameters θ, we learn a generative model
that defines a distribution over datasets pairs pθ(X, L). By maximizing ELBO over the
variational parameters φ, we perform Bayesian inference. Here, we assume a factorized
variational distribution for the latents {S , Z}:

qφ(S , Z|X) =
N

∏
n=1

T

∏
t=1

qφ(Sn,t|X)qφ(Zn,t|X), (6)

where its distribution parameters are estimated from input motion sequences. The graphi-
cal representation for the proposed inference model is depicted in Figure 1.

3.2.1. Variational Distributions for Discrete and Continuous Latents qφ(Sn,t|X), qφ(Zn,t|X)

For discrete state latents S1:T , we specify a categorical variational distribution at
each time point, whose parameter vector is a function of observed motion sequence. For
continuous latents Z1:T , we assume a Gaussian variational distribution at each time point,
whose mean and covariance are functions of observed motion sequence. To this end,
we encode each motion sequence into a hidden vector hX

t at each time point using a
bidirectional LSTM recurrent network:

qφ(St|X1:T) = Cat
(

σ
(
ΦSφ
(
hX

t
)))

,

qφ(Zt|X1:T) = Norm
(

µZ
φ(h

X
t ), σZ

φ(h
X
t )
)

,

hX
1:T = B-LSTM(X1:T),

where ΦSφ(·), and µZ
φ(·) and σZ

φ(·) are neural network mappings that parameterize cate-
gorical and Gaussian distributions, respectively.

3.2.2. ELBO Derivation

We can derive ELBO by plugging in the generative pθ(X, L,S , Z) and variational
qφ(S , Z|X) distributions from Equations (1) and (6) respectively into Equation (5) (subscript
over n is dropped for brevity):

|Ln,t(θ, φ)| =

Eqφ(Zt |X)

[∥∥Xt − µX
θ(Zt)

∥∥2
F

]
+

Eqφ(S|X)

[
CELoss

(
σ
(
ΦL

θ(h
S
t )
)
, L
)]

+

∑
s

qφ(St−1 = s|X)Eqφ(Zt−1|X)

[
KL
(
qφ(St|X)||pθ(St|St−1 = s, Zt−1)

)]
+

∑
s

qφ(St = s|X)Eqφ(Zt−` |X)

[
KL
(
qφ(Zt|X)‖pθ

(
Zt|Zt−`,St = s)

)]
,

where CELoss(·, ·) denotes the cross-entropy loss function. The first two terms correspond
to motion sequence reconstruction loss and action label prediction loss, respectively. The
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third and fourth terms regularize discrete and continuous latent transitions, respectively.
We estimate the gradients of ELBO with respect to generative and variational parameters
(θ and φ) using a reparameterized sample from the continuous latent Zt [47]. In the
regularization terms of ELBO, the expectations over discrete latent St are easily handled by
enumerating over its S possible states.

3.3. Summary of the Proposed Method

We have visualized the framework of our model in Figure 2. As shown in this figure,
our model encodes an input motion sequence {X1, · · · , XT} into a sequence of hidden
features {h1, · · · , hT} using a bidirectional LSTM. The resulting hidden features are fed to
two separate MLPs for estimating variational distribution parameters of discrete latents
{S1, · · · ,ST} and continuous latents, {Z1, · · · , ZT}. These posterior distributions are then
sampled to obtain their latent values. We decode to the input motion sequence {X̂1, · · · , X̂t}
by feeding continuous latents Z to an MLP. We also decode to the associated action labels
{L̂1, · · · , L̂T} by feeding probability vectors of the discrete latents S to a bidirectional
LSTM. We estimate the priors for the discrete latents p(St) and continuous latents p(Zt)
from the values of sampled latents using two separate MLPs.

4. Experimental Results

We evaluated the performance of our model on two large-scale 3D skeletal motion
datasets in terms of action recognition and dynamical prediction. First, we give a brief
description of each skeletal dataset and the performance metrics we used throughout
our experiments. Next, we introduce comparison baselines and provide implementation
details of our model. Then, we describe our experimental results on each of the benchmark
datasets. Finally, we conduct an ablation study to evaluate the impact of our modeling
assumption. The classification and predictive performance of our model is summarized in
Table 2.

Table 2. Comparison of action classification accuracy and dynamical prediction error. Our model outperformed all
the baselines.

Classification Accuracy (%) Dynamical Prediction (NRMSE%)

Dataset
Model Ours P-LSTM Ablation Ours rSLDS SLDS BTMF RKN LSTNetOurs

NTU (x-view) 76.60 70.27 69.81 17.23 22.45 22.19 18.81 22.64 20.22

NTU (x-sub) 67.52 62.93 60.74 18.34 23.68 25.49 21.86 25.63 24.15

Human3.6M 78.33 71.67 73.33 20.76 27.99 28.57 23.83 24.04 23.12

The best results are highlighted in bold fonts.

4.1. 3D Skeletal Datasets

We evaluated our model on a large-scale action recognition dataset, NTU RGB+D
60 [9], and a benchmark dataset for 3D human sensing in natural environments, Hu-
man3.6M [48].

NTU RGB+D 60 dataset contains 56,578 3D skeletal motion sequences for 60 action
classes captured from 40 subjects and recorded by three Kinect V2 cameras concurrently
from different view angles. Each motion sequence contains 3D locations of D = 25 skeleton
joints recorded over time. Following the suggestion in [9], we split the dataset into train
and test under two settings: (i) Cross-Subject (x-sub), where the subjects are split into train
and test groups, yielding 40,091 and 16,487 train and test sequences, respectively, and
(ii) Cross-View (x-view), where 37,646 sequences recorded from camera 2 and 3 are used
for train and 18,932 sequences collected from camera 1 are used for test. We preprocessed
sequences with normalization and translation following [9]. We further downsampled
skeletal sequences by a factor of six (to 5 Hz) and padded all sequences to T = 50 time
points by repetition.
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Human3.6M dataset contains 3.6 million 3D human poses from 11 professional actors
in 15 different scenarios (directions, discussion, eating, sitting down, greeting, taking photo,
posing, making purchases, smoking, waiting, walking, sitting, phone call, walking dog,
and walking together). This dataset provides accurate 3D positions of D = 17 body joints
recorded with high-speed motion capture system at 50 Hz from two motion sequences
per each actor and action label. However, only 3D pose data from 7 actors are provided
(for training and validation) and the remaining poses for 4 actors are kept confidential for
testing purposes in video-based pose estimation models. Therefore, in this paper for the
purpose of action recognition we focus on the 7 actors from whom we have their 3D pose
data and corresponding action labels. We select data from 5 actors (1, 5, 6, 7, and 8) for
training and leave data from 2 actors (9 and 11) for test yielding 150 = 5× 15× 2 motion
sequences for training and 60 = 2× 15× 2 motion sequences for test. We preprocessed
sequences with normalization and translation (translating torso to origin) and further
downsampled skeletal sequences by a factor of ten to 5 Hz resulting in sequences of
temporal length T = 100− 635.

4.2. Performance Metric

We report test set classification accuracy for quantifying the model’s capacity for action
recognition. We further report a histogram of dynamical state usage per action label and
cluster actions based on their state-correlation matrix. In order to quantify the performance
of our dynamical generative model, we compute its temporal predictive error on the test
set. To this end, we predict the next time point on a test set using the generative model
learned on our train set:

X̂t+1 ∼ pθ(X̂t+1|Ẑt+1),

where

Ẑt+1 ∼ pθ(Ẑt+1|Zt+1−`, Ŝt+1),

Ŝt+1 ∼ pθ(Ŝt+1|St, Zt)

St ∼ qφ(St|X1:t),

Zt ∼ qφ(Zt|X1:t), Zt+1−` ∼ qφ(Zt+1−`|X1:t),

where variables with hat denote predicted values and variables without hat are sampled
from their posterior. In other words, latent values for the next time point are predicted
from their historical values and then these predicted latent values are used for generating
the next motion in the sequence. We then run inference on Xt+1, the actual observation at
t + 1, to obtain Zt+1 and St+1, and add them to the historical data for prediction of the next
time point X̂t+2 in the same way. We repeat these steps to make predictions in a rolling
manner across the test set and report their normalized root-mean-square error (NRMSE%):

NRMSE% =
‖X− X̂‖F

‖X‖F
× 100,

where X and X̂ are the ground-truth and predicted values, respectively, and ‖ · ‖F denotes
Frobenius norm. Note that this metric is related to the test-set predictive log-likelihood in
our case of Gaussian distributions (with a multiplicative/additive constant).

4.3. Comparison Baselines

We compared our model in terms of action classification accuracy against a state-of-the-
art action recognition model, Part-Aware LSTM (P-LSTM) [9], and in terms of dynamical
prediction accuracy against two established Bayesian switching dynamical models, re-
current switching linear dynamical systems (rSLDS) [20] and switching linear dynamical
systems (SLDS) [18], a state-of-the-art dynamical matrix factorization method, Bayesian



Sensors 2021, 21, 5613 10 of 17

temporal matrix factorization (BTMF) [49], which models higher-order linear dependen-
cies, a state-of-the-art deep state-space model, recurrent Kalman networks (RKN) [32],
which employs first-order nonlinear transitions, and a deep neural network forecasting
method, long- and short-term time-series network (LSTNet) [35], which employs vector
auto-regression.

The P-LSTM model divides the skeleton into five major groups of joints (torso, two
hand, and two legs) and assigns a distinct LSTM cell for each body part. The outputs
of these part-based cells are then concatenated to learn their common temporal patterns
and are combined in the global level representation for final action classification. Similar
to P-LSTM, we employ an LSTM structure for encoding motion dynamics, however, we
additionally define a dynamical deep generative model to decode from these encoded
features to the original motion sequences and their associated action labels. The use
of LSTM structure in both P-LSTM and our method, makes P-LSTM a fair comparison
baseline for the purpose of this work for evaluating the impact of our generative dynamical
modeling assumption on action classification.

Dynamical baselines can be separated into two categories of “switching”: rSLD and
SLDS, and “non-switching”: BTMF, RKN, LSTNet. rSLDS and SLDS models learn a switch-
ing dynamical model over sequential data by defining a set of discrete and continuous
temporal latents similar to our method. However, they consider a first-order and linear
transition model between temporal latents. On the other hand, BTMF learns dynamical
transitions by defining an auto-regressive transition model on its temporal latents such
that each latent is estimated from a linear combination of its preceding latents. RKN
method employs a first-order transition network (parameterized by a neural network)
to non-linearly map from preceding value of a temporal latent to its current value. LST-
Net is a non-Bayesian deep learning-based forecasting approach which directly processes
high-dimensional sequential data by employing a vector auto-regressive transition model
to relate neighboring time points. Our method extends these baselines by considering a
switching nonlinear auto-regressive transition model (empowered by neural networks)
which is able to capture multi-modal and higher-order nonlinear dependencies in motion
sequences. The aforementioned baselines share similar modeling assumptions with our
method; therefore, they constitute a fair comparison.

4.4. Implementation Details

We implemented our model in PyTorch v1.8 [50] and run our experiments on a TITAN
Xp GPU. The network architectures for all nonlinear mappings in our model are reported
in Table 1. Our model has O(KD) variational and O(S|`|K2 + KD + KA) generative
parameters. We employed Adam optimizer [51] with lr = 0.01 and trained our models
for 300 epochs. Our method took roughly 6.0 seconds per epoch with batch size of 3000
for NTU RGB+D dataset and 0.7 seconds per epoch with batch size of 1 for Human3.6M
dataset. Each epoch took around 6 s.

4.5. Evaluation Results on NTU RGB+D 60 Dataset

We fit our model on this dataset with S = 20 discrete states, ` = {1, 2} temporal lags
(i.e., a 2nd-order Markov model), and K = 15 for the continuous latent dimension. We
fit P-LSTM and dynamical baselines accordingly with their default settings and match
their structural hyper-parameters (if applicable) for a fair comparison. As reported in
Table 2, our model outperformed P-LSTM in terms of action classification accuracy in both
cross-view and cross subject setup with 76.60% and 67.52% against 70.27% and 62.93%,
respectively. We have visualized the confusion matrix of this classification (for x-view
setup) in Figure 3a which shows difficulty in distinguishing {reading, writing, typing,
playing with phone} or {clapping, rub two hands, put palms together} for instance. We
have further visualized states usage shares for each action label in Figure 3b which are
mainly dominated by usage of state 05, state 08 and state 13 (as major motion primitives)
appearing to represent hand, upper-body and lower-body movements, respectively, for
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most action labels. To further explore this, we computed action correlations in terms of
their state-usage similarity, applied a spectral co-clustering algorithm [52] on the resulting
correlation matrix, and visualized that in Figure 4a. This figure reveals the three major
action groups based on their inferred state latents. We have visualized inferred states over
time for ten randomly-selected motion sequences from each action label of {pick up, falling
down, stand up, put on a shoe} and {brush teeth, brush hair, drink water, headache} in
Figure 4 which confirms that similar actions share similar states as their motion primitives.

Figure 3. (a) Confusion matrix of action classification for x-view setup of NTU RGB+D 60 dataset. The model has difficulty in
distinguishing {reading, writing, typing, playing with phone} or {clapping, rub two hands, put palms together} for instance.
(b) State usage ratio per each action label shows predominant usage of state 05, state 08 and state 13 (as major motion
primitives) appearing to represent hand, upper-body, and lower-body movements for most action labels, respectively.

Figure 4. (a) Action correlation matrix based on state-usage for x-view setup of NTU RGB+D 60 dataset, post-processed with
a spectral co-clustering algorithm, reveals three major action groups. (b) Inferred states over time for ten randomly-selected
motion sequences from each action label of {pick up, falling down, stand up, put on a shoe} and {brush teeth, brush hair,
drink water, headache} confirms similar states across similar actions.

Our model also outperformed all the dynamical baselines in terms of dynamical
prediction error with 17.23% and 18.34% for cross-view and cross-subject setup, respectively,
by employing a 2nd-order switching nonlinear dynamical model. We have visualized test
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set predictions of four skeletal sequences along with their uncertainty intervals for two
sample body joints in Figure 5, which indicate the capability of our model in following and
predicting the actual dynamics.

Figure 5. Test set predictions of four skeletal sequences from x-view setup of NTU RGB+D 60 dataset
along with their uncertainty intervals for two sample body joints.

4.6. Evaluation Results on Human3.6M Dataset

We fit our model on this dataset with S = 5 discrete states, ` = {1, 2} temporal lags,
and K = 5 for the continuous latent dimension. We fit P-LSTM and dynamical baselines
accordingly by matching their structural hyper-parameters (if applicable). As reported
in Table 2, our model outperformed P-LSTM in terms of action classification accuracy
with 78.33% against 71.67%, respectively. We have visualized the confusion matrix of this
classification in Figure 6a which shows that the model has difficulty in distinguishing
“smoking” from “phone call”, “showing directions” from “discussion”, “walking together”
from “walking”, or “waiting” and “directions” from “greeting” for instance. This is
expected as these actions share very similar motion patterns and are hard to determine
from pose data without any visual features. We have further visualized states usage shares
for each action label in Figure 6b which are exclusive to the usage of state 03 and state 05 (as
major motion primitives) appearing to represent arms and legs movements, respectively
(the other three states are never used). Additionally, we computed action correlations in
terms of their state-usage similarity, and applied a spectral co-clustering algorithm on the
resulting correlation matrix, and visualized that in Figure 7a. This figure reveals three
major action groups based on their inferred state latents. To be specific, actions of “waiting”,
“showing directions”, “discussion”, “greeting”, “walking”, “walking together”, “posing”,
“taking photos” and “walking dog” are clustered together because of their dominant usage
of state 03, while actions of “sitting” and “sitting down” are clustered together because of
their dominant usage of state 05. On the other hand, actions of “smoking”, “phone call”,
“eating” and “making purchases” are clustered together as they use both states (03 and 05)
almost equally. While these latter actions mainly involve hands, they are mostly performed
in a sitting posture. We have visualized inferred states over time for ten randomly-selected
motion sequences from each action label in Figure 7 which confirms similar state-usage
between similar actions.
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Figure 6. (a) Confusion matrix of action classification for Human3.6M dataset. The model has difficulty in distinguishing
“smoking” from “phone call”, “showing directions” from “discussion”, “walking together” from “walking”, or “waiting”
and “directions” from “greeting” for instance. This is expected as these actions share very similar motion patterns and
are hard to determine from pose data without any visual features. (b) State usage histogram per each action label shows
exclusive usage of state 03 and state 05 as major motion primitives which appears to represent arms and legs movements,
respectively. The other three states are not utilized.

Figure 7. (a) Action correlation matrix based on state-usage for Human3.6M dataset, post-processed with a spectral
co-clustering algorithm, reveals three major action groups. To be specific, actions of “waiting”, “showing directions”,
“discussion”, “greeting”, “walking”, “walking together”, “posing”, “taking photos” and “walking dog” are clustered
together because of their dominant usage of state 03, while actions of “sitting” and “sitting down” are clustered together
because of their dominant usage of state 05. On the other hand, actions of “smoking”, “phone call”, “eating” and “making
purchases” are clustered together as they use both states (03 and 05) almost equally. While these latter actions mainly
involve hands, they are mostly performed in a sitting posture. (b) We have visualized inferred states over time for ten
randomly-selected motion sequences from each action label which confirms similar state-usage among similar actions.
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Our model again outperformed all the dynamical baselines in terms of dynamical
prediction error with 20.76% by employing a 2nd-order switching nonlinear dynamical
model. We have visualized predictions of a test set sequence along with its uncertainty
intervals for four sample body joints in Figure 8, which indicate the capability of our model
in following and predicting the actual dynamics.

Figure 8. Test set predictions of a sequence in Human3.6M dataset along with its uncertainty intervals
for four sample body joints, which indicate the capability of our model in following and predicting
the actual dynamics.

4.7. Ablation Study

We conducted an ablation study to evaluate the impact of motion sequence recon-
struction in our model on action classification accuracy. To this end, we trained a version
of our model with only discrete latents which merely regresses input sequences to their
action labels. The classification accuracy of this variant are reported in Table 2 which
shows a significant decrease compared to the original model. We believe that the motion
reconstruction term guides the model towards learning more expressive latent features
(similar to encoding in auto-encoders) which are then helpful for better decoding to the
action labels.

5. Conclusions

We proposed a deep switching dynamical model for action recognition and dynamical
prediction in 3D skeletal motion data. Our model parsed dynamical states in the low-
dimensional generative process of the data. We parameterized these low-level temporal
generative models with regard to a switching deep autoregressive prior to enable multi-
modal and higher-order dynamical estimation. Our classification and and predictive results
on two large-scale 3D skeletal datasets demonstrated the superior performance of the pro-
posed model in comparison with the state-of-the-art methods. Specifically, our method
achieved higher action classification accuracies by incorporating a dynamical generative
framework in comparison with a state-of-the-art model which did not model dynamics.
Our model also achieved better predictive performance (in terms of next-time point predic-
tion on the test set) when compared to the state-of-the-art dynamical prediction models by
employing a nonlinear second-order dynamical transition model. Also, the sequence of
discrete latents in our method provided qualitative and quantitative interpretations about
motion primitives that gave rise to each action class.

For future work, we plan to replace the LSTM structure by a graph convolutional
neural network to better capture spatial correlations that are present in skeletal data by
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explicitly incorporating joint-hierarchy information. There are still several limitations with
our method and previous works which need to be addressed in future. A major limitation
with our method and previous works in human action recognition is that (I) they are
not directly generalizable to new action classes and need re-training. (II) As with other
sequence modeling methods, our model can be sensitive to temporal sampling frequency.
(III) Since our method processes joint locations, it is not invariant to the rotations of skeletal
data and may not generalize well on globally rotated data. This is also the case with a vast
body of previous works. (IV) Although our method demonstrates an improved prediction
error over state-of-the-art dynamical models, its predictions may still diverge over longer
horizons due to accumulation error.
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