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Abstract: This paper presents a new model for multi-object tracking (MOT) with a transformer.
MOT is a spatiotemporal correlation task among interest objects and one of the crucial technologies of
multi-unmanned aerial vehicles (Multi-UAV). The transformer is a self-attentional codec architecture
that has been successfully used in natural language processing and is emerging in computer vision.
This study proposes the Vision Transformer Tracker (ViTT), which uses a transformer encoder as the
backbone and takes images directly as input. Compared with convolution networks, it can model
global context at every encoder layer from the beginning, which addresses the challenges of occlusion
and complex scenarios. The model simultaneously outputs object locations and corresponding
appearance embeddings in a shared network through multi-task learning. Our work demonstrates
the superiority and effectiveness of transformer-based networks in complex computer vision tasks
and paves the way for applying the pure transformer in MOT. We evaluated the proposed model on
the MOT16 dataset, achieving 65.7% MOTA, and obtained a competitive result compared with other
typical multi-object trackers.

Keywords: MOT; transformer; attention; backbone

1. Introduction

The rapid development of deep neural networks (DNN) [1] has increased interest
in applying deep learning to computer vision [2–4]. Supporting Multi-UAV operations
through deep learning is a challenging and vital research area [5–7]. The realization of
the above task depends on many essential computer vision technologies, among which
multi-object tracking is an important one. MOT is used to identify and track a series of
targets in a video sequence, but it faces challenges due to occlusion, complex backgrounds,
and crowded scenes.

The most dominant and effective MOT methods [8–11] are based on the tracking-by-
detection (TBD) paradigm, which involves tracking according to detection results. With re-
spect to complexity, MOT can be divided into separate detection and embedding (SDE)
and joint detection and embedding (JDE) models. For the SDE model, detectors [2,12,13]
first locate all the objects in a single image via bounding boxes. Next, re-identification
(Re-ID) [14,15] models extract embeddings for each bounding box. Finally, association mod-
ules link each object to one of the existing tracks through similarity metrics and complex
association strategies [9] or create a new track. This method is accurate and progresses with
the development of object detection and Re-ID, but using two separate models to detect
objects and extract embedding ignores the potential structure that can be shared between
them. The JDE model was created to address this shortcoming. Some recent work [16,17]
combines object detection and Re-ID into a single network by multi-task learning, which
greatly reduces MOT calculation.

Convolutional neural networks (CNNs) have always occupied a dominant position
in traditional computer vision tasks [2–4,12]. The creation of transformers broadened the
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field. The transformer based on the attention mechanism [18] was initially applied to
natural language processing, which replaced recurrent neural networks (RNN) and other
cyclic networks and became the most dominant backbone. Recently, some research [19–21]
has introduced transformers [22] into the computer vision field and achieved competitive
results. DETR [19] is the first framework that successfully integrates a transformer into the
central building block of a detection pipeline. It regards detection as a set of prediction
problems and uses a transformer to predict a set of bounding boxes. Specifically, DETR uses
a convolutional neural network to extract local information from an image and then uses
a transformer to infer from the whole image and generate predictions. With the Vision
Transformer [21], an image classification model based on a transformer was proposed,
which takes images directly as the transformer’s input and outputs classification predictions
through a multi-layer perception head. Specifically, it divides the original image into several
patches, flattens them into a sequence, and feeds the sequence directly into the transformer
encoder. This demonstrates that it is not necessary for image classification to depend on a
CNN. Most existing visual models based on transformers use the “CNN + transformer”
framework; that is, models extract feature maps using a CNN and then shape those maps
as input into a transformer. The multi-object trackers based on the transformer backbone
still need to be explored. A comparison of MOT models based on different architectures is
shown in Figure 1.
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Figure 1. Comparison of different model architectures. Top diagram: In the traditional MOT model,
a CNN is the foundation and is essential. Middle diagram: Although some works introduce a
transformer into the computer vision models, they still need a CNN to extract the feature map first.
Bottom diagram: Our work aims to explore the MOT model based on the transformer backbone.
The identifiable image in this figure is from the public dataset MOT16.

Inspired by the aforementioned research, we apply a transformer to MOT and pro-
pose a new framework called Vision Transformer Tracker (ViTT). ViTT uses a transformer
encoder as a backbone network, and it combines object detection and embedding extrac-
tion in a single shared network. Specifically, ViTT directly divides the image into small
patches of fixed size, flattens each patch, and reshapes them into a 1D patch sequence.
Next, the patch sequence is directly input into a transformer encoder after going through a
patch embedding layer and a position embedding layer. Finally, the tracking head tracks
according to the encoding result. Compared with “CNN + transformer” models [23,24],
ViTT is more straightforward and more effective. Due to the locality found in convolu-
tion operators, CNNs have limitations in global context modeling. These limitations can
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only be solved by gradually expanding the receptive field by deepening the convolution
layer. ViTT, however, can take advantage of the long-range dependence between patch
sequences from the beginning using a self-attention mechanism. The code is available at:
https://github.com/jiayannan/VITT.

2. Related Work

As our work is a multi-object tracker based on the transformer and multi-task learning,
we introduce transformers and their applications in computer vision, and then we review
the TBD paradigm and JDE method.

2.1. Transformers

A transformer is a new architecture based on the attention mechanism [22], which
subverts the previous idea that sequence modeling means the use of RNN. It improves
the shortcomings of RNN, such as slow training, and abandons the use of CNNs in
previous deep learning tasks. Additionally, it replaces RNN in many DNN models [25–29].
Transformers aggregate the information found in a whole input sequence by introducing
self-attention layers to encoders and decoders. An attention mechanism [18] is a neural
network layer that can aggregate information from all input and enable the transformer to
achieve a fast parallel. The transformer’s global computing power and perfect memory
make it more suitable for long sequence processes. Moreover, the transformer’s depth can
be increased to fully explore the characteristics of a DNN and to improve the accuracy
of networks.

2.2. Transformers in Computer Vision

DETR [19] is the first model to introduce a transformer into computer vision success-
fully. It is based on the “CNN + transformer” architecture wherein a CNN first extracts
feature maps as the transformer encoder’s input and obtains the result through the trans-
former decoder. DETR is a complete end-to-end model and does not require non-maximum
suppression (NMS) as post-processing. It has some obvious disadvantages, such as slow
convergence and poor detection effects for small objects. These shortcomings are mainly
due to the self-attention operator’s enormous computational complexity when the input is
high resolution. The deformable DETR [20] attempts to solve the aforementioned problems
by introducing a deformable attention module to pay attention to the samples found in
the feature maps. Both DETR and deformable DETR rely on CNNs to extract features.
Vision Transformer [21] is the first visual model based on a pure transformer, and discards
CNNs completely while achieving good image classification results. Although it is effective
for image classification, there are no studies that show that the method can be extended
to more complex visual tasks such as multi-object tracking. The Generative Pretraining
from Pixels (iGPT) [30] directly applies a model based on the Generative Pretraining 2.0
(GPT-2) [28] to image pixels, which shows that an architecture based on a pure transformer
is possible for some visual tasks. However, the input image resolution is very limited
when using these methods. Other works explore the relationship between a self-attention
module and a convolution layer [31] and analyze the limitations of convolutional neural
networks [32,33].

2.3. Tracking-by-Detection

Most dominant trackers [8–11] follow the TBD paradigm which uses object detection
models to identify object bounding boxes, uses Re-ID models to extract corresponding
embeddings, and applies a Kalman filter [34] and the Hungarian algorithm [35] to associate
objects and existing traces to achieve multi-object tracking. In other words, tracking can
be regarded as the association between object bounding boxes, and the basis of associa-
tion generally includes motion features and appearance features. These methods achieve
good performance on public datasets. However, there is an obvious disadvantage: the ob-
ject detection sub-models and Re-ID sub-models are separated, which results in the two

https://github.com/jiayannan/VITT
https://github.com/jiayannan/VITT


Sensors 2021, 21, 5608 4 of 16

computationally intensive networks significantly increasing the computational cost and
complexity of the entire model. Some works propose the JDE method [16,17] to solve this
problem. Specifically, they combine appearance embedding with a single-shot detector
so that the models can output both detection results and corresponding embeddings in
a shared network. There are also some works to simplify the association process: Track-
tor [36], based on the faster RCNN [37] framework, directly takes the tracking results of
previous frames as the Region Of Interest (ROI), and then applies the bounding boxes
regression to provide the tracking results; Centertrack [38], based on centernet [39], predicts
the offsets of objects relative to the previous frame while detecting objects.

3. Method

In this section, we introduce our model ViTT, which uses a transformer instead of a
traditional CNN as the backbone network for feature extraction. Traditional multi-object
trackers and existing multi-object trackers that combine a CNN and a transformer need
to go through the CNN’s backbone network to extract feature maps. Our model inputs
images directly into the transformer’s encoder and reconstructs the encoder’s outputs
into final spatial feature maps to replace the convolution backbone network’s function.
A CNN focuses on local information after downsampling several times, while a trans-
former can focus on global context information from the beginning. This model is based on
multi-task learning, which outputs object classifications, locations, and embeddings simul-
taneously through a tracking head based on the encoder’s output feature maps. Our work
demonstrates that a transformer can replace a CNN as a backbone network to complete
complex computer vision tasks, thus paving the way for complex vision models based on a
pure transformer.

The following is an accurate description of MOT. Given a video, i.e., an image frame
sequence {I}n

i=1, where n is the number of frames in the video, for each image frame
Ii ∈ Rc×w×h (i = 1, . . . , n), where w, h and c are the width, height of images, and the
number of images channels, trackers should give all objects B ∈ R4×k, their corresponding
classification C ∈ Zk, and serial number N ∈ Zk, where k is the number of objects in the
image. Since multi-object tracking is essentially the association between multiple objects in
adjacent frames, MOT needs to number all objects in each frame. The same serial number
marks the same object or track. When a new object appears, trackers give it a new serial
number. When an old object reappears, trackers mark it with the original serial number.
However, a DNN cannot directly output serial numbers in a practical way. Most existing
multiple-object trackers are based on the outputs of DNNs. Networks only need to output
each object’s location and other attributes associated with each object, including motion
information and appearance information. Our model’s multi-task learning outputs the
corresponding appearance embeddings E ∈ Rd×k while outputting the detection results,
where d is the dimension of embedding vectors. Finally, MOT can be achieved by an
association strategy such as the Hungarian algorithm.

3.1. Architecture

An overview of the ViTT model is depicted in Figure 2, and it can be roughly divided
into the following three phases. (1) Image serialization. Since the transformer’s standard
input is a vector sequence, we need to shape input images to the desired format. Specifically,
we divide each image into fixed-size patches, reshape these small patches into a patch
sequence, and finally, convert the patch sequence into an embedding sequence via a patch
embedding layer and a position embedding layer. (2) Transformer encoding. This part is
the model’s backbone, which receives an embedding sequence as input and outputs an
encoding sequence. We rearrange the output sequence back to the original position and
view it as a group of feature maps after the downsampling directly. (3) Multi-task learning.
The model produces locations, classifications, and appearance embeddings in a single
shared network simultaneously through a tracking head based on the aforementioned
feature maps. MOT is ultimately achieved through the association of objects from adjacent
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frames. A common association strategy is the Hungarian algorithm, which is not our focus.
Next, we will introduce these parts in detail.
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multi-object tracking directly based on the transformer encoder’s outputs. We reinterpret the encoder results into spatial
feature maps and then output the object locations, classifications, and corresponding embeddings through a tracking head.
The model inherits many advantages of the transformer and achieves strong performance. The identifiable image in this
figure is from the public dataset MOT16.

3.2. Image Serialization

Since a transformer needs a one-dimensional embedding vector sequence as input,
we first need to obtain one-dimensional embedding vectors from three-dimensional input
images. Specifically, we reshape each input image to a fixed size I ∈ Rw×h×3, where w and
h are the width and height of images, and the 3 is the number of image channels. We then
divide images into patches Ip ∈ Rn×(p2×3) of size p× p, where n = wh

p2 is the number of

patches. Finally, we flatten patches into embeddings {pi}n
i=1 of dimension d and add a

learnable position embedding Epos. The specific method is expressed as Equation (1):

pi = Ii
pE + Epos. i = 1, . . . , n, E ∈ Rd×(p2×3), Epos ∈ Rd×n (1)

where E is a learnable linear projection.
Finally, we obtain the embedding vector sequence z0 = [p1, . . . , pn] as the input of the

transformer encoder.

3.3. Encoder

The encoder of ViTT consists of L serial identical layers. Each layer consists of a
multi-head self-attention (MHA) sublayer, a feed-forward network (FFN) sublayer, and sev-
eral residual connections (we use “+” to indicate a residual connection calculation) and
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normalization layers (LN) following MHA and FFN. For all layers, the first layer takes an
embedding sequence as input, and the others take the output of their upper layers as input,
and the last layer outputs the final vector sequence zL.

For each layer, the vector sequence first passes through an MHA sublayer, calculated
as Equation (2):

z′l = MHA(LN(zl−1)) + zl−1. l = 1, . . . , L (2)

Following the MHA layer, the calculation process of the FFN sublayer is Equation (3):

zl = FFN(LN(z′l =)) + z′l . l = 1, . . . , L (3)

where zl−1 is the output of layer l − 1, and zl is the output of layer l.
Each MHA sublayer contains H parallel self-attention heads, which allows the model

to focus on different subspaces and expands its ability to focus on different locations. In this
mechanism, the model keeps independent query Q, key K, and value V weight matrix for
each head and obtains the output from multiple heads. These outputs are directly spliced
together and then multiplied by a weight matrix W to aggregate them. The calculation
process is expressed as Equation (4):

MHA(Q, K, V) = Concat(h1, . . . , hH)W (4)

where h1, . . . , hH are outputs of different heads. The calculation of self-attention in different
heads is expressed as Equation (5):

Sel f Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

where dk is the dimension of the key vector.
Each FFN sublayer consists of two linear layers and a dropout. The calculation process

is Equation (6):

FFN(z′l) = FC2(dropout(GELU(FC1(z′l)))). l = 1, . . . , L (6)

where GELU is an activation function.

3.4. Multi-Task Learning

Our model implements object detection and embedding extraction in a shared network.
Specifically, bounding boxes, classifications, and appearance embeddings are generated
simultaneously on the same feature map by the tracking head. Let the size of the input
images be O ×Win × Hin, and the size of the output maps be O ×Wout × Hout, where
O is the dimension of output tensors. Then Win

Wout
= Hin

Hout
= R, where R is the multiple

of downsampling.

3.4.1. Object Detection

The model’s object detection module is equivalent to a Region Proposal Network
(RPN), whose function is to generate foreground candidate boxes and position offsets.
Feature maps are first obtained through a backbone network, and each point on these
feature maps is mapped to anchor boxes with different scale and aspect ratios in the original
image. Then, feature maps are input into a RPN to classify whether anchor boxes belong to
the foreground which results in the output of four predictive values representing the offset
relative to the ground truth. It is important to note that we adjust the size and aspect ratio
of anchor boxes according to different tracking objects.

3.4.2. Identity Embedding

The function of identity embeddings is to calculate the distance, that is, the similarity
between different objects. Learning identity embeddings is learning a function d(.) that
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makes similar objects close and dissimilar objects far away. For an object Bi
t marked

as i in frame t, the same object Bi
t1 in frame t1, and a different object Bj

t2 marked as j
(i 6= j) in frame t2, then d(Bi

t, Bi
t1) < d(Bi

t, Bj
t2). Our model produces identity embedding

E ∈ R128×Wout×Hout through the corresponding prediction header. For every object with the
center point at (x, y), the embedding is Ex,y ∈ R128.

3.5. Loss Functions

ViTT’s loss function can be divided into three parts: the loss of classification LC, the
loss of box offset LR, and the loss of identity embedding LE. These parts are aggregated
using the automatic loss balancing approach [40].

RPN has two tasks: one is to judge whether an anchor box produced based on an
anchor point is a foreground object, the corresponding loss function is LC; the other is to
perform offset regression on candidate boxes, and the corresponding loss function is LR.

For LC, we use the cross-entropy loss Function (7):

LC =
1

NC
∑

i
− log[p∗i pi + (1− p∗i )(1− pi)] (7)

where NC is the total number of anchor boxes, pi is the probability that an anchor box is a
foreground box, and p∗i is the ground truth probability Equation (8):

p∗i =

{
0 negative
1 positive

(8)

For LR, the loss function is Equation (9):

LR =
1

NR
∑

i
p∗i R(ti − t∗i ) (9)

where NR is the number of all candidate boxes, ti =
{

tx, ty, tw, th
}

is the predicted off-

sets, and t∗i =
{

t∗x, t∗y , t∗w, t∗h
}

is the set of ground truth offsets. ti and t∗i are shown in
Equation (10):

tx = (x− xa)/wa
ty = (y− ya)/ya

tw = log( w
wa
)

th = log( h
ha
)

t∗x = (x∗ − xa)/wa
t∗y = (y∗ − ya)/ya

t∗w = log(w∗
wa

)

t∗h = log( h∗
ha
)

(10)

where x, y, w, h is the center coordinate, width, and height of prediction boxes; xa, ya, wa, ha
is the center coordinate, width, and height of anchor boxes; and x∗, y∗, w∗, h∗ is the center
coordinate, width, and height of manually marked objects. R is a smoothing Function (11):

R =

{
0.5x2 i f |x|< 1

x− 0.5 otherwise
(11)

For LE, we choose triple loss [41] Ltriplet = max( f T f+ − f T f− + margin, 0), where f T

is an anchor, f+ is anchor’s positive sample, and f− is anchor’s negative sample. Ignor-
ing the margin and selecting the most difficult positive example to reduce the sampling
space [16], the loss function of identity embedding is defined as Equation (12):

LE = − log
exp( f T g+)

exp( f T g+) + ∑
i

exp( f T g−i )
(12)

where g+ is the class-wise weight of the positive class, and g−i is the negative class’ weight.
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For the fusion of multi-task learning loss functions, we adopt the automatic learning
strategy [40], and the loss function is defined as Equation (13):

L =
N

∑
i=1

∑
j=H,B,E

1
2
(

1

esi
j
Li

j + si
j). (13)

where si
j is a learnable parameter.

4. Experiments and Discussion

This section introduces the datasets, evaluation metrics, and implementation details
of the ViTT model, analyzes the experimental results, and introduces a series of ablation
studies. In addition, this section discusses the limitations of ViTT in tracking small objects.
Future research directions also are highlighted in this section, finally.

4.1. Datasets and Metrics
4.1.1. Datasets

We evaluated our model on MOT16 [42] benchmarks. MOT Challenge [42] is an
authoritative evaluation platform for MOT that provides very accurate annotation data and
comprehensive evaluation metrics to evaluate tracking algorithm and pedestrian detector
performance. MOT16, whose annotation objects include moving pedestrians and vehicles,
has a wealth of images, including different shooting perspectives and camera movements,
and contains videos of different weather conditions. There are 14 video sequences in
the MOT16 dataset, including 7 training sets with annotation information and 7 test sets.
For the model’s training, we use the method of collecting multiple datasets into a large
dataset [16]. Among them, PRW [43], CUHK-SYSU [44], MOT17 [42], and CalTech [45] are
labeled with object locations and identities. We use these for training the whole model,
while ETH [46] and CityPerson [47] are only labeled with object locations, so we use them
for training the detection branch.

4.1.2. Evaluation Metrics

MOT Challenge provides the official MOT evaluation metrics, including multiple ob-
ject tracking accuracy (MOTA), multiple object tracking precision (MOTP), mostly tracked
(MT), mostly lost (ML), false negative rate (FN), false positive rate (FP), ID switches (IDs),
and ID F1 score (IDF1). The function of MOTP is to quantify the positioning accuracy of
detectors, we do not list MOTP as the comparison index of trackers. MOTA is the primary
metric to evaluate the comprehensive performance of trackers Equation (14):

MOTA = 1−
∑
t

FPt + FNt + IDst

∑
t

GTt
(14)

where FNt is the false-negative, indicating the number of missed detections, FPt is the
false-positive, indicating the number of false detections, IDst is the number of identity
switches, and GTt is the number of ground truth objects. The false-negative rate (FN), false
positive rate (FP), and identity switches (IDs) are calculated as follows Equation (15):

FN =
∑
t

FNt

∑
t

GTt
, FP =

∑
t

FPt

∑
t

GTt
, IDs =

∑
t

IDst

∑
t

GTt
(15)

The MT is the percentage of successfully tracked objects over most (over 80%) of the
time. The ML is the percentage of successfully tracked objects over a small (less than 20%)
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fraction of the time. The IDF1 measures the difference between the predicted ID and the
correct ID:

IDF1 =
2× IDP× IDR

IDP + IDR
(16)

where IDP is the accuracy of ID, and IDR is the recall rate of ID defined in Equation (17):

IDP =
IDTP

IDTP + IDFN
, IDR =

IDTP
IDTP + IDFN

(17)

where IDTP is the true-positive of ID, IDFN is the false-negative of ID.

4.2. Implementation Details

We used stochastic gradient descent (SGD), which is optimized by Adam [48], with a
learning rate of 1 × 10−3, momentum of 0.9, and a weight decay of 1 × 10−4. We set
the batch size batchsize = 32, the random false-positive rate λ f p = 0.1, and the random
false-negative rate λ f n = 0.2. Data augmentations included random horizontal flipping,
random resizing, and color dithering. We trained all models for 150 epochs, and in the
75th and 112th epochs, the learning rate was decreased by 0.1. We trained and tested our
model on the GPU of two RTX 3090. We reshaped the resolution of the input images to
1088 × 608. The encoder consisted of 12 layers with 24 heads, and the patch size was set to
32 × 32. As for track rebirth, we referred to the previous work and suspended unmatched
objects temporarily until they were rematched or beyond K = 32 frames. Unless otherwise
stated, the following experiments used these default hyperparameters.

4.3. Results

We evaluated our baseline model on MOT16 and compared it with other typical track-
ers: DeepSORT [49], RAR16 [50], TAP [9], CNNMTT [10], and POI [11]. MOT16 Challenge
includes public and private detections. Trackers using public detections implement track-
ing using common detections provided by MOT16 Challenge. The purpose of this protocol
is to evaluate the tracker’s similarity measurement and correlation strategy. Trackers using
private detections use private detection results to track and have no restrictions on the
detection network and training datasets. The purpose of this protocol is to evaluate the
overall performance of the trackers, including detection performance. Since our model
is not only trained on the training dataset of MOT16, we choose the private detections
protocol of MOT16 for evaluation. The models we compared are using private detections
protocol, too. Table 1 reports the results of VITT’s evaluation around several key evaluation
metrics and its detailed comparison with other trackers. The performance of ViTT is shown
in the last row of Table 1: MOTA is 65.7%, better than DeepSORT (61.4%), and close to
CNNMTT (65.2%). IDF1 is 66.5%, second only to TAP’s 73.5%; MT (39.5%), ML (20.6%),
and IDs (706) are also close to the optimal level. ViTT is not optimal for some metrics,
but the gap is small, and its performance in the remaining indicators is often excellent.
For example, the MOTA of ViTT is slightly lower than 66.1% of POI, but in other aspects,
ViTT is better than POI. Therefore, we can report that the overall performance of VITT is
satisfactory. Speed is an important performance of online trackers and is key to whether a
model can handle real-time video. We use frames per second (FPS) to compare the speed
of our model. It is worth noting that the other trackers use “Hz” while our tracker uses the
detection time plus the association time. Because our model is a multi-task learning model,
which parallelizes object detection and embedding learning into a single network, and is
much faster than the other separate detection and embedding (SDE) models. As can be
seen from Table 1, the speed of ViTT can reach up to 15 frames per second, far exceeding
other trackers.
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Table 1. Comparison with the standard online trackers under the private detections protocol on the
MOT-16 benchmark. The arrows indicate low or high optimal metric values.

MOTA↑ IDF1↑ MT↑ ML↓ IDs↓ FPS

DeepSORT 61.4 62.2 32.8% 18.2% 781 <8.1
RAR16 63.0 63.8 39.9% 22.1% 482 <1.5

TAP 64.8 73.5 40.6% 22.0% 794 <8.2
CNNMTT 65.2 62.2 32.4% 21.3% 946 <6.4

POI 66.1 65.1 34.0% 20.8% 805 <6
(ours) ViTT 65.7 66.5 39.5% 20.6% 706 <15

We only provide a simple baseline designed to explore the effectiveness and bene-
fits of our framework without using complex optimizations and tricks. We believe the
performance of the model will continue to improve with the addition of some significant
optimizations, including replacing the original transformer with improved versions like
the Swin Transformer [51]; pre-training the model on large datasets, such as ImageNet-
21K [52]; reducing the size of the patches; increasing the input resolution, or applying other
standard tweaks. Due to limited hardware and other factors, we did not carry out detailed
experiments. Moreover, these optimizations are not the focus of this work.

While testing, we found that ViTT has excellent tolerance for occlusion. Occlusion
is one of the main difficulties of MOT, but ViTT based on a transformer can solve this
problem. As shown in Figure 3, the model can still track an object accurately when it is
almost completely occluded. We know that occlusion can easily cause tracking to fail by
causing ID switching. As shown in Table 1, the higher tolerance of occlusion using ViTT
is reflected in the lower IDs. We think this is due to the transformer’s powerful ability to
combine context, which is difficult for convolution to achieve.
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Figure 3. Occlusion tolerance of ViTT. As shown by the arrow, when a person passes through the
shelter, ViTT can still track them accurately. The identifiable image in this figure is from the public
dataset MOT16.

By exploring the relationship between occlusion and IDs, we prove that the lower
IDS of this tracker is related to its robustness to occlusion. We selected 3 image sets in the
MOT16 test datasets. Each image set consisted of 150 frames of continuous images and
contains rich occlusion. We counted the number of occlusions (Nocc) and IDs (NIDs) for
each image set. An object is judged occluded when most of its surface area is occluded
and then reappears. The reason for blocking out situations that only disappear but do not
reappear, such as one going out of frame, is that IDS does not occur in these situations.
The number of IDs is obtained from the tracking results. The detailed results are shown
in Table 2. As shown in Table 2, the number of IDs of the tracker is positively correlated
with the number of occlusions. Under the condition that the number of occlusions is fixed,
lower IDS represents higher occlusion robustness. Therefore, ViTT is more effective than
CNN-based trackers for complex scenarios including occlusion, such as disorderly people,
a jungle with abundant occlusion, etc.
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Table 2. The relationship between occlusion and IDs. Nocc1–3 represent IDs number of the three
image sets, respectively.

Nocc1 (38) Nocc2 (74) Nocc3 (97)

NIDs 7 24 39

We visualized the feature map in front of the model’s tracking head in the form of
a heat map, which helps to understand the transformer’s advantages more intuitively
and confirms our previous analysis. From Figure 4, we can see that the model seems to
pay more attention to semantic information, such as walking people, people carrying a
bag, and people with their hand(s) in their pants pockets. We believe this is due to the
transformer’s powerful ability to connect and understand global context information.
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map in front of the tracking head in the form of a hot map. The upper part is a tracking result, and the
lower part is the corresponding attention visualization result. The identifiable image in this figure is
from the public dataset MOT16.

4.4. Ablation Study

To explore the working principle of the model, we conducted a series of ablation
experiments on ViTT’s core technical contribution: a transformer. Because there are few
reference computer vision models based on transformers, we carried out comprehensive ab-
lation experiments on the transformer, including the number of encoder layers and encoder
heads, encoder input with different resolutions, multi-layer encoder output aggregation,
and training datasets of different sizes.
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4.4.1. Number of Encoder Layers and Encoder Heads

First, we compared the model’s performance using different numbers of encoder
layers and encoder heads. The original transformer encoder had six layers, and each layer
had eight heads. Was this size suitable for CV tasks? In order to make the model accurately
locate objects, we divided the image into many small patches. Since each object is usually
composed of multiple patches, the number of initial layers and heads may not be enough
to find the context correlation between them. Intuitively, the more layers and heads the
encoder has, the better the model should be. However, due to the complexity of the model
and training hardware requirements, it is impossible to increase the number of encoder
layers and headers without bounds. We conducted ablation experiments on the number
of layers and heads of the encoder and compared the MOTA of ViTT with a different
number of layers (6, 8, 10, 12, and 14 layers) and different numbers of heads (8, 12, 16,
20, and 24 heads). The experimental results are shown in Figure 5, where the abscissa is
the number of layers, and the ordinate is the MOTA; different curves represent different
numbers of heads.
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We find that the number of heads positively correlates but is not strictly proportional
to the model’s performance. When the number of heads increases to a particular value,
the growth rate of the model’s performance decreases significantly. As shown in Figure 5,
as the number of heads increases, the gap between different curves gradually narrows.
When the number of layers increases to a specific size, the MOTA of the model no longer
increases with it. As shown laterally in Figure 5, the curves between the 12 layers and
14 layers are almost horizontal. This is probably because the learning for different patches
can be performed in the first few layers of the network, and adding more layers does not
contribute substantially to the model’s performance.

4.4.2. Encoder Input with Different Resolutions

For computer vision tasks such as MOT, the precise positioning of objects requires a
very detailed image. For our model, the input resolution of the encoder is critical to ensure
its performance. However, for patches of fixed size, the computational complexity of the
model increases exponentially with increasing resolution. We compared the differences
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between the models from three different resolutions (576× 320, 864× 480, and 1088× 608).
Table 3 lists the experimental results. When the resolution increased from 576 × 320 to
864 × 480, MOTA improved by 2.8%; when it is increased to 1088 × 608, MOTA continued
to improve by 2.3%. The improvement of the encoder’s input resolution is positively
correlated with the improvement of model performance. Therefore, model performance
can be improved by improving the input resolution (or reducing the patch size) under the
condition that the computing force is allowed.

Table 3. Comparison between different input resolutions of the encoder. The results show that the
resolution is essential to the performance of the model.

MOTA IDF1 MT ML IDs

576 × 320 60.6 60.1 32.6% 24.2% 956
864 × 480 63.4 64 36.7% 21.1% 788

1088 × 608 65.7 66.5 39.5% 20.6% 706

4.4.3. Multi-Layer Encoder Output Aggregation

Inspired by feature pyramid networks (FPN) [53], we wondered if aggregating the
encoder output of the middle layers could improve the performance of the model. There-
fore, we aggregated the output of layers 4 and 8 with the final output (concatenating them
directly and then performing a linear transformation). Table 4 shows a comparison between
the aggregated model and the non-aggregated model. As shown in Table 4, the MOTA
and IDF1 of the aggregated and non-aggregated models are consistent, so the aggregation
of middle layers does not improve the model’s performance. This is likely because the
model gradually learns the relationship between patches as the number of encoder layers
increases, and the output of middle layers has no vital influence on the final judgment.

Table 4. Comparison of aggregated and non-aggregated mid-layer outputs. We aggregate output
with layers four layers and layers eight and compare them with the original model. Y is with
aggregation, and N is without aggregation.

MOTA IDF1 MT ML IDs

Y 65.7 66.4 39.3% 20.6% 702
N 65.7 66.5 39.5% 20.6% 706

4.4.4. Training Data Sets of Different Sizes

According to the analysis of Vision Transformer [21], the dataset size has a significant
impact on model performance. Its performance on small datasets is inferior to standard
classifiers, but as the size of the dataset increases, its performance gradually surpasses
other classifiers. ViTT has the same characteristics. We trained the model with different
training datasets, and the results are shown in Table 5. When the training set contained
“MOT17 [42] + CUHK-SYSU [44] + PRW [43] + ETH [46]” the model’s MOTA was only
56.4%. Caltech [45] and CityPersons [47] were added successively so that the MOTA value
increases by 5.7% and 3.6%, respectively. Consistent with known experience, ViTT still has
a significant dependence on the size of the datasets. Only training datasets that are large
enough can maximize the performance of ViTT.

Table 5. The comparison of different size training datasets. MCPE is“MOT17 + CUHK-SYSU + PRW
+ ETH”; MC2PE adds Caltech; and MC3PE adds CityPersons on MC2PE.

MOTA IDF1 MT ML IDs

MCPE 56.4 55.9 28.9% 24.2% 1051
MC2PE 62.1 62.0 35.2% 22.1% 843
MC3PE 65.7 66.5 39.5% 20.6% 706
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4.5. Discussion

This section discusses the transformer’s ability to model in a global context, the advan-
tages of our approach in occlusion and complex scenarios, the transformer’s shortcomings
in model training and local modeling, and the limitations of our model in tracking small
objects. Future research directions also are highlighted in this section.

4.5.1. Limitations of ViTT

VITT is a multi-object tracker based on the transformer. It adopts the image processing
method of ViT [21] to divide the image into patches of fixed size. This method has both
advantages and disadvantages of the transformer. CNN expands the receptive field and ex-
tracts more advanced abstract features through convolution and pooling. The convolution
model can not make full use of context information to capture features. Stacking layers
of convolution can also make the network too large. The advantage of the transformer is
that it uses self-attention to capture global contextual information to establish a remote
dependency on the embedding, thus extracting more powerful semantic features [22]. ViTT
leverages the strengths of the transformer to show strong robustness in occlusion and
complex scenarios. The transformer has the above advantages, but at the same time, there
are some disadvantages, more difficult training is an obvious disadvantage of the trans-
former [21]. The model based on a transformer needs a huge training dataset to achieve
excellent performance. ViTT’s training dataset is a large dataset composed of five public
datasets. In addition, transformer-based visual models have limitations when dealing with
small objects [19]. On the one hand, since the function of the self-attention operator is to
model between embedded vectors, the method of dividing the picture into patches cannot
understand the semantic information inside the patches well. On the other hand, since
the computational complexity of the self-attention operator increases exponentially with
the increase in embedded vectors, the size of patches is also limited. Therefore, ViTT has
relatively poor performance when tracking small objects.

4.5.2. Future Research Directions

Firstly, considering the limitation of ViTT in tracking small objects, how to effectively
model the semantics inside patches or design an efficient transformer to reduce the patch
size to improve the performance of the tracker in tracking small objects is a worthy research
direction. In addition, this work only explores the advantages of ViTT in complex scenarios
involving occlusion. Whether this approach can be expanded to other types of complex
scenarios, such as semantic mismatches, category confusion, extreme light conditions, etc.,
is a worthy research direction, too.

5. Conclusions

In this study, we explored the direct application of a transformer for completing
complex computer vision tasks. We proposed an MOT model called ViTT based on a
transformer. The model replaces a traditional backbone network with a transformer’s
encoder, and reinterprets the coding results into spatial feature maps. Compared with
traditional convolutional backbones, ViTT can focus on global context information through
the encoder’s self-attention layer at the beginning of the network. This multi-task learning
model outputs the detection results and appearance embeddings simultaneously in a
single shared network, which significantly reduces the calculation requirements of MOT.
The competitive performance of the model on MOT16 demonstrated the effectiveness
of our method. Our proposed method serves as a reference for new ideas for applying
transformers in MOT.
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