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Abstract: Previous knowledge of the possible spatial relationships between land cover types is
one factor that makes remote sensing image classification “smarter”. In recent years, knowledge
graphs, which are based on a graph data structure, have been studied in the community of remote
sensing for their ability to build extensible relationships between geographic entities. This paper
implements a classification scheme considering the neighborhood relationship of land cover by
extracting information from a graph. First, a graph representing the spatial relationships of land
cover types was built based on an existing land cover map. Empirical probability distributions of the
spatial relationships were then extracted using this graph. Second, an image was classified based
on an object-based fuzzy classifier. Finally, the membership of objects and the attributes of their
neighborhood objects were joined to decide the final classes. Two experiments were implemented.
Overall accuracy of the two experiments increased by 5.2% and 0.6%, showing that this method
has the ability to correct misclassified patches using the spatial relationship between geo-entities.
However, two issues must be considered when applying spatial relationships to image classification.
The first is the “siphonic effect” produced by neighborhood patches. Second, the use of global
spatial relationships derived from a pre-trained graph loses local spatial relationship in-formation to
some degree.

Keywords: remote sensing; image classification; SVM (Support Vector Machine); knowledge graph;
object-based image analysis; fuzzy classification; graph theory

1. Introduction

Machine learning has been widely used in remote sensing image classification. Some
studies have experimented on small regions, reaching an overall accuracy of more than
90% [1–5]. The accuracy is high enough at the national level if the overall accuracy is more
than 85% [6]. In reality, however, there is still a large amount of remote sensing image
classification requiring human interpretation or modification [6]. Traditional machine
learning focuses on classification based on isolated information such as spectral, shape, and
texture information for the extraction of ground features. Many researchers have flocked
into the field of deep learning to seek breakthroughs in remote sensing image classification
methods, precisely because traditional machine learning methods have shown bottlenecks
that are difficult to break through [7–11]. For example, most machine learning methods
are developed to converge upon a fixed solution, however, an ideal learning method
should capable of continual learning by incorporate some common-sense knowledge. Deep
learning has higher requirements on the number of training images, although transfer
learning enables the network to adjust parameters and reduce the number of training
images. The diversity of remote sensing imagery and the ground it depicts, however, make
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classification an extremely complex process, especially with the constant emergence of new
sensors. Training for each sensor’s data and each geographic scene for remote sensing
image classification is an unusually tough job for deep learning applications [12]. The
knowledge of spatial relations within and between objects can be used as important knowl-
edge in classification [13], because although there are many variables regarding sensor
characteristics such as band ranges, spatial resolution, and revisit cycles, the distribution of
the ground features usually has a certain pattern.

Early in 1987, scholars designed an expert system for remote sensing [14], a knowledge
representation structure, and the knowledge contained in the system. Later, expert knowl-
edge based on fuzzy logic was used to describe knowledge on the basis of the probability
or degree [15]. There are also expert systems designed for land cover classification [16].
Early expert system knowledge representation for remote sensing imagery was usually
based on a tree-like structure, which is conducive to rule-based inference such as If-Then
rules [17], Dempster’s combination rule [18], or decision trees [19]. These expert systems
usually contain information on spatial relationships between land cover types. It was
difficult to apply that knowledge to classification until the emergence of object-based image
analysis [20]. Object-based image analysis can easily include contextual and neighborhood
information into the classification process [21]. Mutual relations between image objects
include the similarity/dissimilarity of spectra between neighborhood objects, while con-
textual information includes spectral relationships to sub- and super-objects and spatial
relationships such as ‘existence of,’ ‘border to’, and ‘distance to’ [22–24]. Qiao et al. [25]
proposed a maximum spatial adjacency and directional spatial adjacency method to extract
certain land cover classes. A representative platform, eCognition Developer, provides
tools to perform a hierarchical rule-based classification scheme where the relationship
between objects can be manually defined [26]. The object-oriented classification method
has provided a solution to understanding image semantics [27].

Two issues are usually considered for knowledge-based classification of remote sens-
ing images. First is to build a knowledge base. The key issue in building an appropriate
knowledge base is to identify an appropriate data structure and knowledge representation
(knowledge acquisition, conceptualization, and formalization [28,29]). Second is the im-
plementation of knowledge. The key issue in implementing knowledge is to effectively
use prior knowledge for interpretation and “scene understanding” for image classification.
There are many recent studies focusing on knowledge-based methods for remote sensing
data classification. Forestier et al. used a knowledge base constructed by ontology for scene
and concept matching [29]. Rejichi et al. [30] designed an expert knowledge scheme for SITS
(satellite image timeseries) analysis using scene ontology and a tree-like organized data
structure. To localize the knowledge base, they proposed to compare similarity between
an extracted graph from a knowledge base with the user request. Belgiu et al. [31] used
existing literature on evaluated building types to build an ontology based on If-Then rules,
random forest was used to classify the building types by the features described in the ontol-
ogy. Forestier et al. [32] also used an object-oriented method for the classification of coastal
areas, and an ontology describing existing classes in the region was built. A hypothesis
about the semantics of the region was made and knowledge on the type of region was used
to check and modify the hypothesis. Belgiu et al. developed a method to automatically
embed a formalized ontology into an object-based image analysis (OBIA) process [33].
Objects produced by image segmentation are usually used as the basic processing units
in the knowledge-based classification methods [34,35]. That is, knowledge is extracted by
relationships between image objects rather than pixels. Recent years, ontology-based data
structure is usually used for geographic knowledge representation.

To extract the knowledge of spatial relationships, Dale et al. reviewed and analyzed
the value of geo-spatial graphs [36]. The authors suggested that “future applications
should include explicit spatial elements for landscape studies of ecological, genetic, and
epidemiological phenomena”. Cheuang et al. [37] practiced a graph-based representation
of landscape relationships where a graph-based structure was implemented to present
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landscape topology. Moreover, graph edit distance was leveraged to project the structural
attributes of a landscape entity’s topology to vector dimensions. The graph-based data
structure enables more analysis regarding spatial relationships between landscape entities
such as subgraph mining and kernel analysis. Recently, Xu et al. [38] used graphs to explore
the morphological changes between adjacent tidal flat objects. Aside from directly using
graph-based spatial relationships in the process of classification, graph convolutional neural
networks (GCN) have been implemented in remote sensing image classification. Ouyang
and Li proposed a method to first extract features of objects and then constructed a graph
containing the extracted features of objects for the implementation of a GCN classifier [39].
Li et al. proposed a scene classification scheme that first extracted scene features then
segmented the feature map to construct a graph. Finally, the graph was classified by a
graph attention network (GAT) [40]. Ma et al. proposed a sum of minimum distance
parameter to determine graph adjacency relationships. The parameter was used for the
classification of hyperspectral image (HSI) data [41]. Pu et al. reviewed the application
of GCN on HSI classification and proposed a graph-based CNN (Convolutional Neural
Network) classifier to classify HSI data [42]. Scholars in the remote sensing community
usually leverage graphs to extract spatial relationships.

Motivated by the notion that the graph-based structure can learn adjacency informa-
tion, we propose a method to make use of adjacency information by combining information
at the decision level. The proposed method consists of three parts. First, the original
image is segmented and classified by a fuzzy classifier to produce a membership, which
represents the probability they belong to a class. In the second step, a graph based on an
existing land cover map is produced to calculate the probability of adjacency between land
cover types. In the final step, the two probabilities are assembled to produce the final class
decision. The main contributions of this paper can be summarized as follows:

• We propose a method to extract the adjacency probability by using a graph.
• The adjacency probability derived from the graph is aggregated with pre-classification

results at the decision level.
• Two experiments show that the method has some ability to correct misclassified objects

with neighborhood information, but problems regarding global uncertainty and the
“siphonic effect” need to be considered in future work.

The remainder of this paper is organized as follows. Section 2 introduces the details of
our proposed framework. Section 3 describes the setup of the experiments and reports the
results. Section 4 discusses the factors of our framework. Section 5 presents the conclusions.

2. Method

Our proposed framework is illustrated in Figure 1. Generally, we proposed a way to
train previous knowledge of the distribution pattern of land cover types using graph theory
and aggregated the trained distribution pattern with physical features of the land cover to
the final decision module. Specifically, because manually interpreting and classifying small
regions enabled us to get an accurate spatial distribution pattern of land cover types, we
trained the previous knowledge by manually interpreting and classifying small regions
as ROI (Region of Interests) of the region to be classified. Second, we built a graph of the
land cover features of the ROI and calculated each node’s degree by land cover type. This
degree represents the probability of the presence of neighboring land cover types. Third,
fuzzy classification was conducted on the image to obtain the membership. Finally, we
combined the probability of the presence of neighboring land cover types with membership
to reach the final decision.
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2.1. Generating the Spatial Relationship Graph

To generate pre-trained knowledge on the relationships between classes, a simple
graph-based method was used. First, a small region was chosen as an ROI within the area
to be classified, and the area was manually interpreted and classified to produce a land
cover map. Manual interpretation is usually used as reference map because of its accuracy
This can also be done by classifying very-high resolution remote sensing images [43,44],
but the classified land cover map must be processed using a generalization technique to
guarantee the integration of converted features. Small features should be merged into
neighboring polygons. Because of landscape may changes overtime hence effects adjacency
possibility. We suggest that using images collected near the to-be-classified image dates for
manually interpretation.

Second, the image was segmented using the same segmentation scales as the whole
region. The segmented image was intersected with the manually classified land cover
map to guarantee the object adjacent to each node had the same scale with the image to
be classified. For example, in the manually classified land cover map, land cover areas of
the same type are outlined as one feature, but when segmenting the image to be classified,
adjacent land cover areas of the same type may be segmented as separate objects. The
manually classified land cover map has few adjacent features with identical types, but
the segmented map has many. Intersection of the segmented features with the land cover
map can reflect an identical segment scale with the image to be classified, showing the
probability of adjacent features. The process is shown in Figure 2.
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The polygons of the segmented manually classified land cover map are denoted as a
set SMC. Assume there are k polygons in SMC, and SMC = {x |0 < x ≤ k, x ∈ Z)}. Each
polygon x should have a class type c. Assume there are n types of land cover in the area.

Third, the graph G = (V, E) was built using the manually classified land cover map.
Set V is a set of nodes in G, which are polygons x of the manually classified land cover map.
Set E is a set of edges in G, which have no direction nor weight and denote the adjacency
relationship between polygons. The objective was to get the probability of each type c
adjacency to {c |0 < c ≤ n, c ∈ Z) }. The probability of polygons with type ci adjacency to
polygons with type cj were calculated via the graph G using the degree of nodes V. The
calculation is shown in Equation (1):

Pcij =
∑v∈ci , v∈cj

e

∑v∈ci
deg(v)

(1)

where Pcij is the probability that type ci is adjacent to type cj; deg(v) is the degree of node
v; ∑v∈ci

deg(v) is the degree of nodes v, which have the attributes that belongs to type ci;
and ∑v∈ci , v∈cj

e is the number of edges that connect nodes v, which have the attributes that
belongs to type ci, and nodes v which have the attributes that belongs to type cj.

2.2. Object-Oriented Fuzzy Classification

An object-oriented method for pre-classification was used to reduce the data pro-
cessing time. More importantly, the object-oriented method better reflects relationships
between classes. The degree to adjacent land cover is more robust and enables the built
graph to be more applicable and extensible to larger regions [45]. This is because images
with different resolutions will show different probabilities of adjacency. Images with a
higher resolution will need more pixels to store real surface features, which will make the
probability of adjacency smaller.

It is labor-intensive to produce a land cover map of a sample region, though reference
land cover maps from high-resolution satellite imagery have a high accuracy of classifica-
tion. To transform the high-resolution classification data, the strategy in this paper is to
overlay the segmented polygons on the high-resolution land cover map and assign major
land cover types within each polygon as the land cover map of the segmented polygon.

2.2.1. Image Segmentation

The eCognition platform uses five parameters to control multi-resolution segmentation
(MRS), including the scale, shape, color, compactness, and smoothness parameters. The
segmentation scale is the most critical parameter that controls the size of resultant polygons.
A good segmentation will produce a balance between polygon size and the homogeneity
within an object and heterogeneity between objects [46,47]. The shape and color parameters
define the weight that the shape and color criteria should have when segmenting the image.
The higher the value of the shape, the lower the influence of color on the segmentation
process. For the compactness and smoothness criteria, the higher the weight value, the
more compact image objects may be. Note that different test sites should have different
segmentation parameter values.

2.2.2. Selected Fuzzy Classifier

1. Nearest neighbor

Nearest neighbor (NN) classification first builds a feature space using spectrum,
geometry, or texture of samples [48]. Then each object is classified by mapping its features
to the feature space. Finally, the Euclidean distance between sample features is used with
the object’s features for classification. The NN classification is based on the minimum
distance in the NN feature space where the training data are constructed by spectral, shape,
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or texture feature values. The distance can also be seen as the reliability of the classification
results. The distance function is shown in Equation (6) [49]:

d(x, y) =

(
m

∑
i=1

(xi − yi)
2

)1/2

(2)

where d(x, y) is the Euclidean distance of samples to be classified in the NN feature space.
The data are more similar to the samples when the Euclidean distance is smaller. The
Euclidean distances provide a chance to range the feature values into fuzzy membership
values between 0 and 1.

After the segmentation, the objects were classified via sample points. The fuzzy
classification process was also performed in eCognition. The object information, including
the spectral, texture, shape, and difference with neighbor objects were input in the NN
feature space for the training of samples. The distance was output as membership to use in
the decision phase.

1. Fuzzy SVM

SVM is another popular classification technique [50]. The principle of SVM can be
briefly described as follows [51]. Given a set of instance-label pairs (xi, yi), i = 1, . . . , l
where xi ∈ Rn and yi ∈ {1,−1}l , the SVM requires the solution of the following optimiza-
tion problem:

min
w,b,ξ

1
2

wTw + C
l

∑
i=1

ξi

Subject to yi

(
wTφ(xi) + b

)
≥ 1− ξi, (3)

ξi ≥ 0

Here, training vectors xi are mapped into a higher (maybe infinite) dimensional
space by the function φ. The SVM finds a linear separating hyperplane with the maximal
margin in this higher dimensional space. C > 0 is the penalty parameter of the error term.
Furthermore, K

(
xi, xj

)
= φ(xi)

T φ
(
xj
)

is called the kernel function. The most commonly
used kernel function is the Gaussian radial basis function (RBF):

K
(

xi, xj
)
= exp

{
−
‖xi − xj‖2

2σ2

}
(4)

Fuzzy SVM means the output is a probabilistic prediction. Hong and Hwang [52]
provided a strategy in training the SVM and mapping the outputs into probabilities.
The probability is measured by Bayesian theory, and the kernel model is replaced by a
Bayes formula:

P(y = 1| f ) =
1

exp(A f + B)
(5)

where y ∈ {−1, 1} is the label and f is the decision function:

f (x) = ∑
i∈S

αiyiK(xi, x) + b (6)

where {αi} is a set of nonzero multipliers. For multiple classes, Equation (7) is used:

min
p

1
2

k
∑

i=1
∑

j:j 6=i

(
rji pi − rij pj

)2

k
∑

i=1
pi = 1

(7)
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where rij is the probability that the sample belongs to class i when considering only the two
classes i and j so that the one-one classification is transferred into a one-all classification.

2.3. Aggregation of Graph and Membership

We obtained the membership of each object according to Section 2.2 as well as the
probability of land cover adjacency. The membership of polygons can be treated as the
probability that the polygon belongs to a land cover type. The classification is based
on spectral, shape, or texture information of objects and does not contain neighborhood
information of objects. The degree obtained from the neighborhood relationship graph
contains the probability of land cover types that are adjacent to other types. We can combine
the two probability values by a decision fusion scheme:

C = Pmembership × Pneighborhood (8)

where C is the classification result of the polygon; Pmembership is the probability obtained
by the fuzzy classification based on spectral, shape, and texture information of the object;
and Pneighborhood is the probability obtained by neighborhood information from the pre-
trained graph.

More specifically, each node contains the fuzzy classification membership of each
polygon. Also, we obtained the probability that the land cover is adjacent to others.
Supposing that a polygon has n adjacent polygons, the adjacent polygons of polygon Y
were denoted as (NX |X = 1, 2, . . . n). Supposing there are k types of land cover, the land
cover types were denoted as T = {t | t = t1, t2, . . . tk}. The membership of polygons are
given as M = {mt | t = 1, 2, . . . k} and the probability of land cover ti adjacent to tj is Pti ,tj .
The fusion was conducted as the following equation:

NYmi =
n

∏
X=1

k

∑
j=1

NYmi × NXmj × Pti ,tj (9)

where NYmi is the membership value of type i in polygon Y; X is the adjacent polygons to
polygon Y; NXmj is the membership value of type j in polygon X; and Pti ,tj is the probability
of land cover ti adjacent to tj obtained by the built graph in Section 2.1.

The final decision of land cover type in polygon Y is max ( NYmi

∣∣ i = 1, 2, . . . k) . The
aggregation equation is intended to consider the land cover types of the neighborhood of
the polygon to be classified as well as the fuzzy classification result on its own.

3. Experiments

The purpose of using a graph is to make use of previous knowledge on the distribution
of land cover types. Our scheme used a localized knowledge of the probability of land cover
adjacency and a simple degree of the nodes. The information of this localized knowledge
was used by the decision fusion of membership and the probability of land cover adjacency.

3.1. Study Area and Satellite Data
3.1.1. Brief Introduction to the Study Area

We used two satellite images to test on two test sites. One region is the Mun River
Basin, the other is Kent County, Delaware, USA. The land cover of the Mun River Basin
is mainly paddy rice, while Kent County consists of multiple land cover classes such as
forest, agriculture, and cities.

1. Mun River Basin

The Mun River Basin is located in northeastern Thailand bordering Laos to the east
and Cambodia to the south, between 101◦30′–105◦30′ E and 14◦–16◦ N. It is the largest
river basin in Thailand, the largest river on the Khorat Plateau, and the second longest
river in Thailand (the largest is the Chak River). It is also a major tributary of the Mekong
River. The main stream of the Mun River is about 673 km long and the basin area is
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about 70,500 km2. Vegetation coverage in the Mun River Basin is large, about 12% natural
vegetation and about 80% artificial vegetation, and the rest of the land cover types are
water bodies and developed land. The location of the area is shown in Figure 3.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 30 
 

 

1. Mun River Basin 
The Mun River Basin is located in northeastern Thailand bordering Laos to the east 

and Cambodia to the south, between 101°30′–105°30′ E and 14°–16° N. It is the largest river 
basin in Thailand, the largest river on the Khorat Plateau, and the second longest river in 
Thailand (the largest is the Chak River). It is also a major tributary of the Mekong River. 
The main stream of the Mun River is about 673 km long and the basin area is about 70,500 
km2. Vegetation coverage in the Mun River Basin is large, about 12% natural vegetation 
and about 80% artificial vegetation, and the rest of the land cover types are water bodies 
and developed land. The location of the area is shown in Figure 3. 

 
Figure 3. Location of the Mun River Basin test site in northeastern Thailand. 

2. Kent County, Delaware, USA 
Kent County is located in the central part of the U.S. state of Delaware within the 

Chesapeake Bay area, the largest estuary in the United States [53]. Kent County has a hu-
mid subtropical climate according to the Köppen climate classification, while the Tre-
wartha climate classification considers the climate oceanic because only seven months av-
erage >10° C (>50° F). All months average above freezing and Dover has three months 
averaging above 22° C (71.6° F.) The hardiness zone is mostly 7a with very small areas of 
7b [54]. The location of the site is shown in Figure 4. 

Figure 3. Location of the Mun River Basin test site in northeastern Thailand.

2. Kent County, Delaware, USA

Kent County is located in the central part of the U.S. state of Delaware within the
Chesapeake Bay area, the largest estuary in the United States [53]. Kent County has a humid
subtropical climate according to the Köppen climate classification, while the Trewartha
climate classification considers the climate oceanic because only seven months average
>10◦ C (>50◦ F). All months average above freezing and Dover has three months averaging
above 22◦ C (71.6◦ F.) The hardiness zone is mostly 7a with very small areas of 7b [54]. The
location of the site is shown in Figure 4.
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Figure 4. Location of the Kent County test site in the Chesapeake Bay area.

3.1.2. Satellite Data and Pre-Processing

1. Landsat 8 OLI

Landsat 8 data from the United States Geological Survey (USGS) website (https:
//earthexplorer.usgs.gov/, accessed on 15 August 2021) were used for the Mun River
Basin, selecting high-quality images (cloud cover less than 10%) from 2015. The Landsat
8 satellite carries the Operational Land Imager (OLI) including nine bands, among which
eight are multispectral bands with a resolution of 30 m and another 15 m panchromatic
band. The imaging width is 185 km × 185 km. The Landsat 8 OLI image used is a Level 1T
product. We conducted radiometric calibration and FLAASH model-based atmospheric
correction with the ENVI 5.0 SP3 software. Then the Landsat 8 OLI data were resampled to
25 m with the nearest resampling technique.

To obtain an accurate land cover map by manual interpretation and classification,
Google Earth imagery was downloaded and georeferenced using Landsat data and DEM
images (Shuttle Radar Topography Mission, SRTM, 30 m data).

2. Sentinel-2

Sentinel-2 data were used in Kent County, Delaware, downloaded from the CREO-
DIAS website (https://creodias.eu/, accessed on 15 August 2021). Sentinel-2 is a wide-
swath, high-resolution, multi-spectral imaging mission, supporting Copernicus Land
Monitoring studies, including the monitoring of vegetation, soil, and water cover, as well
as observation of inland waterways and coastal areas. It uses a Multispectral Instrument
(MSI) that samples thirteen spectral bands: four bands at 10 m, six bands at 20 m, and three
bands at 60 m spatial resolution. The acquired data, mission coverage, and high revisit
frequency provide for the generation of geoinformation at local, regional, national, and
international scales. We used high-quality images (cloud free) from 2016. The downloaded
level 1 data were processed with orthographic correction and geometric correction on a
sub-pixel level. Atmospheric correction should be conducted in principle, but the quality of
the data was good enough for classification and we did not conduct atmospheric correction.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://creodias.eu/
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We only used four bands at 10 m for classification, including the Red, Green, Blue, and
NIR bands.

3.2. Results of the Mun River Basin

We first built the pre-trained graph for spatial relationship extraction by selecting re-
gions that contain all types of land cover to perform manual interpretation and classification.

3.2.1. Trained Graph in the Mun River Basin

The sampling region’s area of 672 km2 comprised 3710 polygons in the manually
classified land cover map. After the segmentation and intersection, 76,141 polygons were
generated. For the graph, 498,908 edges were generated for the 76,141 nodes. The edges
denote that the nodes are adjacent to each other. We visualized 9722 nodes and their 63,432
edges.

From the graph, statistics were calculated for each node’s degree with different labels
according to Equation (1). For example, nodes labeled “artificial forest” have 4000 degrees.
Among the edges connected to nodes labeled “artificial forest”, 200 nodes are labeled
“wetland”. The probability of “artificial forest” being adjacent to “wetland” is 200/4000.
Table 1 shows the probability of land cover adjacent to other land cover types. Using this
probability, we can aggregate the fuzzy classification result with the adjacent probabilities.

Table 1. Probability of land cover types being adjacent to each other in the Mun River Basin.

AF 1 WL 2 DF 3 EF 4 AL 5 WT 6 PR 7 OT 8 DL 9 GL 10

AF 0.659 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.003 0.000
WL 0.009 0.613 0.004 0.004 0.004 0.038 0.007 0.013 0.003 0.004
DF 0.007 0.017 0.489 0.001 0.020 0.028 0.046 0.029 0.042 0.060
EF 0.000 0.004 0.000 0.524 0.008 0.003 0.010 0.006 0.011 0.010
AL 0.000 0.021 0.027 0.046 0.566 0.054 0.077 0.045 0.037 0.032
WT 0.025 0.130 0.025 0.012 0.032 0.478 0.055 0.022 0.014 0.043
PR 0.037 0.162 0.263 0.225 0.279 0.304 0.661 0.196 0.196 0.258
OT 0.000 0.003 0.002 0.001 0.002 0.001 0.002 0.600 0.001 0.001
DL 0.258 0.026 0.124 0.136 0.062 0.036 0.087 0.057 0.635 0.128
GL 0.006 0.022 0.065 0.051 0.028 0.057 0.055 0.032 0.058 0.463

1 artificial forest; 2 wet land; 3 deciduous forest; 4 evergreen forest; 5 developed land; 6 water; 7 paddy rice;
8 others; 9 dry land; 10 grassland.

3.2.2. Pre-Fuzzy-Classification Results in the Mun River Basin

The nearest neighbor classifier used 6000 points for the classification of the Mun River
Basin. We used a relatively large number of sample points for training to guarantee the
accuracy of pre-classification results. Thus, the improvement in the fusion stage was not
caused by the low accuracy of pre-classification results. Fuzzy classification using the
nearest-neighbor classifier was implemented in eCognition with a scale parameter of 60 in
the multi-resolution segmentation model, a shape criterion of 0.1, and a compactness of 0.5.
All bands participated in the segmentation. In the classification process, we chose the mean
value of each band, the NDVI value, and the width/length value to input into the nearest
neighbor feature space. The result is shown in Figure 5a. Membership of selected land
cover types including paddy rice, evergreen forest, and water is also shown in Figure 5.



Sensors 2021, 21, 5602 11 of 28
Sensors 2021, 21, x FOR PEER REVIEW 11 of 30 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Cont.



Sensors 2021, 21, 5602 12 of 28Sensors 2021, 21, x FOR PEER REVIEW 12 of 30 
 

 

 
(d) 

Figure 5. Fuzzy classification results and membership of selected land cover types in the Mun River 
Basin: (a) classification result by nearest neighbor; (b) membership of paddy rice; (c) membership 
of evergreen forest; (d) membership of water. 

3.2.3. Decision Fusion Map of the Mun River Basin 
According to Equation (9), the fuzzy classification results were aggregated with 

neighborhood land cover probability. A decision fusion map of the Mun River Basin is 
shown in Figure 6. 

 
Figure 6. Land cover map of the aggregated pre-trained neighborhood spatial relationship and 
fuzzy classification membership. 

The major pattern of land cover distribution did not have many differences compared 
with the pre-classification map and true land cover classification map. The main land 
cover class is paddy rice. Dry land is mostly distributed in the west of the basin while 
water and developed land are distributed evenly. Forests, including deciduous and ever-
green, are mostly distributed in the south. 

3.2.4. Accuracy Assessment of the Mun River Basin 

Figure 5. Fuzzy classification results and membership of selected land cover types in the Mun River Basin: (a) classification
result by nearest neighbor; (b) membership of paddy rice; (c) membership of evergreen forest; (d) membership of water.

3.2.3. Decision Fusion Map of the Mun River Basin

According to Equation (9), the fuzzy classification results were aggregated with
neighborhood land cover probability. A decision fusion map of the Mun River Basin is
shown in Figure 6.
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Figure 6. Land cover map of the aggregated pre-trained neighborhood spatial relationship and fuzzy
classification membership.

The major pattern of land cover distribution did not have many differences compared
with the pre-classification map and true land cover classification map. The main land cover
class is paddy rice. Dry land is mostly distributed in the west of the basin while water and
developed land are distributed evenly. Forests, including deciduous and evergreen, are
mostly distributed in the south.

3.2.4. Accuracy Assessment of the Mun River Basin

In order to compare the detailed differences between the pre-classification map, fusion
map, and true land cover classification map, four regions were chosen and shown at a
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larger scale for demonstration. The main land cover types in each are, respectively, paddy
rice, dry land, and developed land; dryland and forest; paddy rice, water, and developed
land; and dryland and forest. Comparisons are shown in Figure 7.
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Figure 7. Details of the pre-classification land cover map versus the decision fusion land cover map. Four locations mainly
containing paddy rice, dryland, developed land, and forests are shown at a larger scale: (a) mainly paddy rice, dry land,
and developed land; (b) mainly dryland and forest; (c) mainly paddy rice, water, and developed land; (d) mainly dryland
and forest; (e–h) the same regions with decision fusion results; (i–l) the same regions with manually interpreted land cover.
(m) is the location of the four regions.
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As shown in Figure 7a,e,i, the pre-classification results preserved more details of dry
land and developed land. Figure 7b,f,j show that the pre-classification map and decision
map are not very similar to the true land cover map. On the fusion map, more patches
are classified as dry land. The evergreen forest in the bottom left is more intact on the
decision map than the pre-classification map. More dry land is classified in the fusion map
compared with the pre-classification map. In Figure 7c,g,k, the most obvious difference in
the decision fusion map and pre-classification map is that the decision fusion map failed to
correctly classify the water in the middle of the river. In Figure 7d,h,l, the distribution of
land cover does not have much of a difference with the pre-classification map. However,
the decision fusion map captured more intact patches compared with the pre-classification
map. These results demonstrate that fusion after aggregation loses details in the land
cover map. Patches are more intact compared with the pre-classification map of the nearest
neighbor classifier.

Confusion matrixes of the classification results of pre-classification and after-fusion
are shown in Figure 8. We normalized the confusion matrix [55] for visual comparison.
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Figure 8. Confusion matrixes of the Mun River Basin for (a) pre-classification results and (b) neighborhood spatial
relationship and fuzzy classification fusion results.

The overall accuracy of the nearest neighbor classification result is 61.71%, while that
of the decision fusion result is 66.95%. As to the Kappa coefficient, the nearest neighbor
classification kappa coefficient is 0.42 and the decision fusion result is 0.43. Paddy rice’s
predicted label increased in the decision map, as did evergreen forest, while other classes
decreased. Class-wise comparison of the nearest neighbor classification results and decision
fusion results are shown in Figure 9.

As shown in Figure 9, user’s accuracies of all classes in the decision fusion results are
higher than the pre-classification results. However, only the evergreen forest and paddy rice
producer’s accuracies of decision fusion results are higher than the pre-classification results.
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Figure 9. Class-wise comparison of nearest neighbor classification results and decision fusion results (statistic by user’s
accuracy (a) and producer’s accuracy (b)) in the Mun River Basin.

3.3. Results for Kent County

Following the method above, we also conducted the experiment for Kent County.

3.3.1. Trained Graph in Kent County

Unlike the Mun River Basin’s true land cover map, which was obtained by manually
interpreting and classifying land cover, the “true” land cover map was obtained by a 1 m
computer classification. To achieve a better effect on the scale issue we introduced in 2.2,
the segmentation polygon was overlaid on the 1 m land cover map. Segmentation polygon
is obtained by multi-resolution segmentation of the sentinel-2 image on the eCognition
development platform. Segmentation scale is set as 80. And a shape criterion of 0.1, and a
compactness of 0.5.

We assumed that there was only one type of land cover within an object. Land cover
types were accounted for within the segmented polygon of the land cover map and the
land cover type with the highest count was treated as the land cover of the object. The
comparison of the land cover maps is shown in Figure 10.
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Figure 10. Comparison of 1 m land cover map and the overlaid segmentation map: (a) 1 m land cover map; (b) overlaid
segmentation map.

Unlike the homogeneous landscape of the Mun River Basin, Kent County can roughly
be divided into urban and suburban landscapes. Two small regions were selected to repre-
sent the urban region and suburban region to build the graph. The overlaid segmentation
map is coarser and loses some details in the 1 m image classification map, but the overall
land cover types are identical. In a real application, it is not necessary to transfer the entire
high-resolution land cover map to the object level. Only sample regions that are used for
graph building are needed (Figure 11).
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Because of the spectral similarity and the definition homogeneity, we combined some
of the classes. The final classification scheme has eight types of land cover: impervious,
tree canopy, water, wetlands, forest, mixed land, turf, and agriculture. In total, 2662 edges
were generated for the 603 nodes for graph building. The edges denote that the nodes
are adjacent to each other. We visualized the built graph of the two sample regions in
Figure 12.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 11. Location of the sample region for building the graph of Kent County. 

Because of the spectral similarity and the definition homogeneity, we combined some 
of the classes. The final classification scheme has eight types of land cover: impervious, 
tree canopy, water, wetlands, forest, mixed land, turf, and agriculture. In total, 2662 edges 
were generated for the 603 nodes for graph building. The edges denote that the nodes are 
adjacent to each other. We visualized the built graph of the two sample regions in Figure 
12. 

 
Figure 12. Visualized graph for the pre-trained spatial relationship of Kent County. 

From the graph, the statistics of each node’s degree with different labels according to 
Equation (1) were calculated. The calculation of the probability of land cover types being 
adjacent to each other in Kent County were the same as the Mun River Basin. Table 2 
shows the probability of land cover types being adjacent to other types. Using this proba-
bility, we can aggregate the fuzzy classification result with the adjacent probabilities. 

Figure 12. Visualized graph for the pre-trained spatial relationship of Kent County.

From the graph, the statistics of each node’s degree with different labels according to
Equation (1) were calculated. The calculation of the probability of land cover types being
adjacent to each other in Kent County were the same as the Mun River Basin. Table 2 shows
the probability of land cover types being adjacent to other types. Using this probability, we
can aggregate the fuzzy classification result with the adjacent probabilities.

Table 2. Probability of land cover types being adjacent to each other in Kent County.

IM 1 TC 2 FR 3 WT 4 WL 5 MX 6 TF 7 AC 8

IM 0.101 0.027 0.144 0.018 0.183 0.048 0.170 0.308
TC 0.057 0.045 0.173 0.024 0.155 0.041 0.169 0.335
FR 0.051 0.028 0.175 0.033 0.182 0.039 0.159 0.334
WT 0.036 0.022 0.193 0.028 0.215 0.046 0.165 0.295
WL 0.050 0.022 0.150 0.030 0.216 0.049 0.149 0.334
MX 0.058 0.022 0.127 0.026 0.206 0.058 0.160 0.343
TF 0.055 0.028 0.145 0.027 0.170 0.047 0.162 0.366
AC 0.046 0.024 0.142 0.022 0.176 0.045 0.163 0.382

1 impervious; 2 tree canopy; 3 forest; 4 water; 5 wetland; 6 mixed; 7 turf; 8 agriculture.

3.3.2. Pre-Fuzzy-Classification Results in Kent County

LIBSVM 3.2.4 was implemented for pre-classification in Kent County [56]. C-SVC was
implemented for the SVM model and RBF was run as the SVM kernel. Parameter values
were trained on 1500 samples and five folds of cross-validation accuracy was 43.35%. The
best c value is 724.0773 and the best g value is 2.8284, as shown in Figure 13. However,
testing 6000 samples yielded an accuracy of 65.55% (statistics of object numbers rather than
area). Therefore, we decided to use this parameter for SVM model training.
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Figure 13. Training for c and g values for the RBF kernel of the SVM classifier.

LIBSVM uses an All-versus-All strategy to achieve multi-label classification. We
directly used the multi-classification solution for our classification. The pre-classification
result in Kent County is as shown in Figure 14a. Membership in the selected land cover
types including impervious, forest, and agriculture is also shown in Figure 14.
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3.3.3. Decision Fusion Maps in Kent County

According to Equation (9), the fuzzy classification results were aggregated with
neighborhood land cover probability. The decision fusion map of Kent County is shown in
Figure 15.
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Figure 15. Land cover map of the aggregated pre-trained neighborhood spatial relationship and
fuzzy classification membership result.

3.3.4. Accuracy Assessment of Kent County

In order to compare the detailed difference between the pre-classification map, fusion
map, and true land cover classification map, three small regions were randomly picked to
show the detailed difference between pre-classification results and decision fusion results.
The three small regions mainly contained wetland and agriculture; impervious and tree
canopy; and water and wetlands.

As shown in Figure 16a,d,g, the decision fusion result corrected some wetland regions
that were misclassified as forest in the pre-classification process. In Figure 16b,e,h the
pre-classification map and decision map are similar. Most tree canopy was misclassified as
turf and the decision fusion method failed to correct them. Some turf patches misclassified
as forest in the pre-classification were corrected in the decision map. In Figure 16c,f,i, the
decision fusion method also failed to correct the large area of turf that was misclassified as
agriculture in the pre-classification map. Moreover, the decision fusion method connected
the areas of agriculture, which led to misclassification of a small region of wetland. The
decision fusion method succeeded in correcting a small water area that was misclassified as
agriculture in the pre-classification map. This experiment demonstrated that the decision
fusion method tends to connect large patches that belong to the same class. This conforms
to the first law of geography [57] but may also lead to misclassification.
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Normalized Confusion matrixes of classification results in Kent County is shown
in Figure 17. The overall accuracy of the nearest neighbor classification result is 73.64%,
while that for the decision fusion result is 74.26%. As to the Kappa coefficient, the nearest
neighbor classification kappa coefficient is 0.648 and the decision fusion result is 0.653.
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Impervious surfaces misclassified as water were corrected in the decision result. As
shown in Figure 17, tree canopy decreased in the decision result and more tree canopy
was misclassified as turf in the decision result. Some forest cover was corrected from
misclassification as turf, wetland, and impervious surfaces in the pre-classification but
some of the forest patches were misclassified as agriculture in the decision fusion. Some
misclassified mixed land in pre-classification was corrected to water in the decision fusion,
and some misclassified mixed land in pre-classification was corrected to wetland in the
decision fusion. No mixed land was corrected by the decision fusion process. Some turf
that was correctly classified in pre-classification was then mis-labeled as tree canopy in the
decision fusion result. A comparison of class-wise fuzzy SVM classification and decision
fusion is shown in Figure 18.

As shown in Figure 18, the decision fusion user’s accuracy and producer’s accuracy
did not change much compared with the fuzzy SVM classification result. We will analyze
the reason for this result in the following section.
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Figure 18. Class-wise comparison of fuzzy SVM classification results and decision fusion results
(statistic by user’s accuracy (a) and producer’s accuracy (b)) in Kent County.

4. Discussion
4.1. Experiments Analysis

The first experiment’s overall accuracy improved 5.24%, whereas the second exper-
iment’s overall accuracy only improved 0.62%. The main difference between the two
regions is the distribution pattern of land cover classes. In the first region, the land cover
distribution is imbalanced. As shown in Figure 19, the standard deviation of land cover
classes in the Mun River Basin is 10,685.1, whereas the standard deviation of land cover
classes in Kent County is 184.6.
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Figure 19. Area of land cover classes in the Mun River Basin (a) and Kent County (b). The area
distribution of classes in the Mun River Basin is imbalanced compared with Kent County.
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The imbalance of the distribution of land cover types is also inferred from Tables 1 and 2,
the probability of land cover types being adjacent to each other in sample regions. As
shown in Figure 20, class-wise standard deviations of the probability of adjacency in the
Mun River Basin are all higher than Kent County, caused by the extensive distribution
of paddy rice in the former leading to a high probability of other land cover adjacency to
paddy rice. In contrast, land cover class distribution in Kent County is relatively balanced.
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The imbalanced distribution of land cover classes meant a higher probability that
classes with larger areas would have higher weights in the decision fusion process. This
was also proved by the confusion matrix. More patches were misclassified as paddy rice in
the decision fusion result. The problem was mainly caused by the single use of adjacency
probability derived from the graph, which represents the global probability of adjacency
rather than the local probability. Therefore, extracting the local probability of adjacency
through more knowledge and spatial patterns is a worthwhile direction of study.

Kent County’s land cover distribution is relatively balanced. However, overall ac-
curacy only improved 0.62%. There were 1632 among 52,719 objects that the decision
fusion process successfully corrected from misclassification in pre-classification. The class
membership of the corrected objects that were wrongly classified was close to the corrected
class membership. The performance of pre-classification is vital in the performance of
decision fusion.

There were 1395 among 52,719 objects that the pre-classification correctly classified
but the decision fusion result misclassified. Focusing on these 1395 objects, two situations
that led to incorrect classification were found, as shown in Table 3.

Table 3. Two situations demonstrate the objects misclassified by decision fusion. Problems causing the misclassification are
marked in underline.

Situation 1:

Object
Membership

Adjacent
Membership

Adjacency
Probability True Class Pre-Classified

Result Decision Result

Class A: 0.35 Class A: 0.37 A-A: 0.1
B-B: 0.3
A-B:0.05

Class A Class A Class BClass B: 0.32 Class B: 0.23

Situation 2:

Object
Membership

Adjacent
Membership

Adjacency
Probability True Class Pre-Classified

Result Decision Result

Class A: 0.35 Class A: 0.27 A-A: 0.1
B-B: 0.3
A-B:0.05

Class A Class A Class BClass B: 0.22 Class B: 0.73
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The first situation that caused misclassification is similar to the Mun River Basin.
When the membership of two classes was close, so was that of the adjacent object. The
probability of adjacency of the false class was higher, shown in Table 3 Situation 1, and the
decision tended to classify them as classes with higher adjacency probability like B-B. The
second situation was caused by the “siphonic effect”. Although membership of the two
classes was not very close, the high membership of adjacent objects like Class B caused
misclassification as well.

To sum up, two problems were found to cause misclassification in the decision process.
First, the single use of global probability of adjacency caused the tendency of classification
to those classes with larger areas. Second, the “siphonic effect” led to misclassification
caused by high membership probability of neighborhood objects.

4.2. Segmentation Effects

The adjacency estimation will ulteriorly influence the fusion results. So that the results
of the graph-based neighborhood adjacency estimation are depending on the seg-mentation
result. The segmentation scale will influence adjacency estimation as shown in Figure 21.
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makes the built graph more applicable to it.

In the experiment, we segmented the image used multi-resolution segmentation with
a self-defined segment scale in the eCognition software. In the experiment, we set a
proper segmentation scale as 60 in the first experiment and 80 in the second experiment.
The adjacency possibility is calculated by the segmented polygons in the two-study case.
However, the second experiment indicate that fusion result doesn’t improve much even
when the adjacency possibility is calculated in the same scale with the object-oriented
classification process. In The second experiment, pre-classification overall accuracy is
73.64%. Much improvement is hardly achievable by incorporating adjacency possibilities.
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These results indicate that the fusion results are hardly affected by segmentation scale
provided that proper segmentation scale is set in the object-oriented classification process.

5. Conclusions

In this paper, we presented a method to extract the probability of adjacency between
classes using graph theory. In order to utilize adjacency probability in the decision fusion
process, the pre-fuzzy-classification results and the adjacency probability were combined
at the decision level. Two experiments exhibited improvement in the overall accuracy. Al
though the overall accuracies are not significantly improved. As for the class-wise accuracy,
the user’s accuracies are obviously improved in term of most of the classes.

In the first study case, Landsat data are used for pre-classification and the overall
accuracy is 61.71%. It is likely to achieve more improvement in the fusion result compared
with the second study case, which pre-classification overall accuracy is 73.64%. And indeed,
the first study case achieved the 5.2% overall accuracy improvement and the second study
case only improved by 0.6%. Another reason may lead to the limited improvement of the
overall accuracy in the second study is that we are using a simulated “true” map rather
than a manually interpreted map as in the first study case. It causes inaccuracy of adjacency
possibility in the second study case. Although the overall accuracy of the decision fusion
result is unsatisfactory in the second study case, user’s accuracy is obviously improved.
We only used the 1th order adjacency degree to dig the adjacency information. Future work
that explores more information from the graph is needed for overall accuracy improvement.

We analyzed the results and found two major problems in the proposed method. First,
using adjacency probability derived from the samples of the regions to be classified resulted
in imbalanced classification. Second, directly multiplying the adjacency probability and
membership caused neighborhood objects to experience the “siphonic effect”.

There are improvements feasible to further digging the adjacency knowledge using
graph theory. In this paper, we simply used the first order adjacent degree in the sampled
graph to inference the adjacency probability. There was second order and even third order
adjacency in the graph theory. Also, graph embedding theory and graph neural network
theory were employed to extract spatial relationships between classes.

Researchers have used knowledge to inference land cover classes. The general scheme
is to first match the scene knowledge, then use that knowledge to classify the im-age again.
This is a practical effort. In our research, we found that using neighborhood adjacency
probability caused problems. A practical improvement might be to use scene knowledge,
inferencing adjacency probability from the scene knowledge rather than statistics from
the whole map. Another direction is to embed the knowledge into the classifier. Some
researchers have already used a GNN (Graph Neural Network) model to classify remote
sensing imagery [39,40]. These studies have proved that the spatial relationship introduced
by GCN boosts the performance and robustness of the classification model. Application of
graph theory in extracting spatial relationship information and the use of prior knowledge
in remote sensing image classification is worth further research in the future.
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