
sensors

Article

No Fine-Tuning, No Cry: Robust SVD for Compressing
Deep Networks

Murad Tukan 1,*,† , Alaa Maalouf 1,† , Matan Weksler 2 and Dan Feldman 1

����������
�������

Citation: Tukan, M.; Maalouf, A.;

Weksler, M.; Feldman, D. No

Fine-Tuning, No Cry: Robust

SVD for Compressing Deep

Networks. Sensors 2021, 21, 5599.

https://doi.org/10.3390/

s21165599

Academic Editor: Mario Luca

Fravolini

Received: 26 July 2021

Accepted: 16 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Robotics and Big Data Lab, Department of Computer Science, University of Haifa, Haifa 3498838, Israel;
amaalouf@campus.haifa.ac.il (A.M.); dfeldman@univ.haifa.ac.il (D.F.)

2 Samsung Research Israel, Herzliya 4659071, Israel; m.weksler@samsung.com
* Correspondence: mtukan@campus.haifa.ac.il; Tel.: +972-543298724
† These authors contributed equally to this work.

Abstract: A common technique for compressing a neural network is to compute the k-rank `2

approximation Ak of the matrix A ∈ Rn×d via SVD that corresponds to a fully connected layer (or
embedding layer). Here, d is the number of input neurons in the layer, n is the number in the next
one, and Ak is stored in O((n + d)k) memory instead of O(nd). Then, a fine-tuning step is used
to improve this initial compression. However, end users may not have the required computation
resources, time, or budget to run this fine-tuning stage. Furthermore, the original training set may
not be available. In this paper, we provide an algorithm for compressing neural networks using
a similar initial compression time (to common techniques) but without the fine-tuning step. The
main idea is replacing the k-rank `2 approximation with `p, for p ∈ [1, 2], which is known to be
less sensitive to outliers but much harder to compute. Our main technical result is a practical and
provable approximation algorithm to compute it for any p ≥ 1, based on modern techniques in
computational geometry. Extensive experimental results on the GLUE benchmark for compressing
the networks BERT, DistilBERT, XLNet, and RoBERTa confirm this theoretical advantage.

Keywords: matrix factorization; neural networks compression; robust low rank approximation;
Löwner ellipsoid

1. Introduction

Deep learning revolutionized machine learning by improving the accuracy by dozens
of percents for fundamental tasks in natural language processing (NLP), speech/image
recognition, etc. One of the disadvantages of deep learning is that in many cases, the classi-
fier is extremely large compared to classical machine learning models. A large network
usually requires expensive and stronger resources due to: (1) slower classification time,
which may be a serious limitation, especially in real-time systems such as autonomous cars
or real-time text/speech translations; (2) a large memory requirement, which makes it in-
feasible to store the network on RAM or on a device such as IoT/smartphones; and (3) high
energy consumption which is related to the CPU/GPU time of each classification and
requires larger batteries with shorter lifespan.

Pipeline of network compression. Given training data P, a common pipeline to
obtain a compressed network consists of the following stages:

(i) Train a network N based on the training set P, starting from an initial random network.
(ii) Compress the network N to a small network Ñ. The input P may be not involved in

this stage.
(iii) Fine-tune the weights of Ñ by training it on P. This step aims to improve the accuracy

of the network Ñ but does not change its size.

In this paper, our goal is to improve the compression step (ii) in order to avoid the
fine-tuning step (iii) via suggesting a better and more robust compressing scheme. We

Sensors 2021, 21, 5599. https://doi.org/10.3390/s21165599 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7458-4916
https://orcid.org/0000-0002-3800-9460
https://orcid.org/0000-0002-7700-9711
https://doi.org/10.3390/s21165599
https://doi.org/10.3390/s21165599
https://doi.org/10.3390/s21165599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165599
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165599?type=check_update&version=2

Sensors 2021, 21, 5599 2 of 20

suggest a novel low rank factorization technique for compressing an embedding layer of a
given NLP model. This is motivated by the fact that in many networks, the embedding
layer accounts for 20–40% of the network size. Indeed, the results are easily extended to
fully connected layers.

1.1. Embedding Matrix

One of the most common approaches for compressing neural networks is to treat a layer
in the network as a matrix operation and then to approximate this matrix by its compressed
version. This is especially relevant in a fully connected layer. Specifically, in word embedding,
this layer is called the embedding layer, which is defined by the following matrix.

The input of the embedding layer consists of d input neurons, and the output has n
neurons. The nd edges between these layers define a matrix A ∈ Rn×d. Here, the entry Ai,j
in the ith row and jth column of A is equal to the weight of the edge between the jth input
neuron to the ith output neuron. Suppose that a test sample (vector) x ∈ Rd is received
as an input. The corresponding output n-dimensional vector is thus y = Ax. To simply, a
column from A during training is read, and a standard vector x (a column of the identity
matrix) is used and is called a one-hot vector.

`2 k-rank approximation. One of the natural and common matrix approximations,
including in the context of network compression, is the `2 k-rank approximation (see,
e.g., [1,2] and references therein). This is the matrix which minimizes the Frobenius norm,

i.e., the sum of squared distances ‖A− Ak‖2
F := ∑n

i=1

∥∥∥A(i) − A(i)
k

∥∥∥2

2
between the ith row

A(i) in A and its corresponding row A(i)
k in Ak, over every rank k matrix Ak. It can be

easily computed via the singular value decomposition (SVD) in O(min
{

nd2, dn2}) time.
Although Ak has the same size as A, due to its low rank, it can be factorized as Ak = UW,
where U ∈ Rn×k and W ∈ Rk×d. We can then replace the original embedding layer that
corresponds to A by a pair of layers that correspond to U and W, which can be stored using
O(k(n + d)) memory, compared to the O(nd) entries in A. Moreover, the computation of
the output yk := Akx takes O(k(n + d)) time, compared to the O(nd) time that it takes to
compute Ax.

Handling other linear layers. The rank approximation technique can be also applied
to a fully connected layer, where an activation function f : Rn → R is applied on the
output Ax or each of its coordinates (as Relu) to obtain f (Ax). By approximating A, in a
sense, f (Ax) is also approximated by f (Akx). Then, Ak is replaced by two smaller layers
U, W, as explained above. Furthermore, it is known that convolutional layers (tensors) can
be viewed as fully connected layers (matrix multiplication) applied to reshaped volumes
of the input. Then, one can approximate the convolutional weights by approximating
its corresponding weight matrix. Hence, the rank approximation technique can be also
applied to a convolutional layer.

1.2. Motivation

In what follows, we explain the main motivation of this paper, which in sum, aims to
eliminate the need for the fine-tuning step due to the reasons explained in Section 1.2.1.
We also discuss the weaknesses of the known SVD factorization in Section 1.2.2, which in
turn, give rise to the motivation behind our approach discussed in Section 1.2.3.

1.2.1. Fine-Tuning

The layers that correspond to the matrices U and W above are usually used only as
initial seeds for a training process that is called fine-tuning, where the aim is to improve the
initial results. Here, the training data are fed into the network, and as opposed to the `2 error,
the error is measured with respect to the final classification, i.e., in the fine-tuning step, the
compressed network Ñ is trained using the input P, similar to Step (i). The goal of this step
is to improve the accuracy of the compressed network without increasing its size. Hence, the
structure of the data remains the same, but the edges are updated in each iteration.

Sensors 2021, 21, 5599 3 of 20

To be or not to be fine-tuned? Fine-tuning is a necessary step to recover the general-
ization ability damaged by the model compression. Despite its widespread use, fine-tuning
is vaguely understood, e.g., what fraction of the pre-trained weights are actually changing
and why? [3].

In many cases, the fine-tuning cannot be applied:

1. The original (large) training set is not necessarily available for us (e.g., for sake of data
privacy) to apply the fine-tuning after compressing the model.

2. For large datasets and complex tasks, the fine-tuning process takes a very long time
and requires strong resources [4,5], even on the pruned networks. Hence, due to
the limited computational power (and/or insufficient training time) of the end user
device (e.g., smartphone, IoT), fine-tuning is not a viable choice.

3. In the context of NLP, it is common to learn representations of natural language [6–9]
via full-network pre-training followed by fine-tuning on a small dataset for the sake of
learning a new task [10–12]. However such pre-trained models are very large. Thus, a
natural coping mechanism would involve compression before the fine-tuning. After
the compression, the model suffers from loss in its original learning capability, and
unfortunately, the fine-tuning process is not sufficient to both retain the model’s quality
and make the network learn a new task, since we may not be able to obtain enough
tagged information that we can rely on to perform meaningful training from scratch,
e.g., when compressing the embedding layer, we may lose the richness of the vocabulary,
as it is responsible for representing each word from a vocabulary by a vector that reflects
its semantic and syntactic information which can be extracted from the language.

Hence, some have attempted to prune each layer independently, by which a fine-
tuning process can be done with a small number of epochs to avoid the excessive computa-
tional power required by the fine-tuning process [5]. Finally, it is worth mentioning that the
fine-tuned parameters are not constrained to share any components with the pre-trained
weights and thus are equally expensive to store and to compute per iteration [13].

In this paper, we replace the “go-to” method for compression models using matrix
factorization by a more robust low rank approximation scheme, where the emphasis here
is that the learning capability of the model after the compression is less affected.

1.2.2. Should We Use SVD?

Training the network and compressing it are natural steps. However, it is not clear
that the last fine-tuning step, which may be a serious time consumer, is necessary. The goal
of this work is to remove this step by improving the previous (compression) step via more
involved algorithms that provably approximate the more robust `p rank approximation.
We begin with geometric intuition.

The geometry behind SVD. Geometrically, each row of A corresponds to a
d-dimensional vector (point) in Rd, and the corresponding row in Ak is its projection
on a k-dimensional subspace of Rd. This subspace (which is the column space of U)
minimizes the sum of squared distances to the rows of A over every k-subspace in Rd.

Statistically, if these n points were generated by adding a Gaussian noise to a set of n
points on a k-dimensional subspace, then it is easy to prove that most likely (in the sense of
maximum-likelihood) this subspace is U. The disadvantage of `2 k-rank approximation is
that it is optimal under the above statistical assumption, which rarely seems to be the case
for most applications. In particular, minimizing the sum of squared distances is heavily
sensitive to outliers [14] (see Figure 1). As explained in [15], this is the result of squaring
each term, which effectively weights large errors more heavily than small ones.

This undesirable property, in many applications, has led researchers to use alternatives
such as the mean absolute error (MAD), which minimizes the `1 (sum of distances) of
the error vector. For example, compressed sensing [16] uses `1 approximation as its main
tool to clean corrupted data [17] as well as to obtain sparsified embeddings with provable
guarantees as explained, e.g., in [18].

Sensors 2021, 21, 5599 4 of 20

In machine learning, the `1-approximation replaces or is combined with the `2 approx-
imation. Examples in scikit-learn include lasso regression, elastic-nets, or MAD error in
decision trees [19].

Figure 1. `1-low rank approximation versus `2-low rank approximation. Since the norm of a vector
increases as the base of the norm decreases, the optimization problem becomes less susceptible
towards outliers in the data as presented above.

1.2.3. Novel Approach and Its Challenges

Novel approach: deep learning meets subspace approximation. We suggest gener-
alizing the above `2 approximation to `1 k-rank approximation, or even `p approximation
for more general p < 2. Geometrically, we wish to compute the k-subspace that minimizes
the sum of pth power of the distances to the given set of n points. This should result in more
accurate compressed networks that are more robust to outliers and classification mistakes.

Unlike the case p = 2, which was solved more than a century ago [20] via SVD and
its variants, the `p low rank approximation was recently proved to be NP-hard even to
approximate up to a factor of 1 + 1/poly(d) (recall that d is the number of columns of
A above) for p ∈ [1, 2) [21] and even for general (including constant) values of p (see
Section 2). In the most recent decade, there was great progress in this area; however, the
algorithms were either based on ad hoc heuristics with no provable bounds or impractical,
i.e., their running time is exponential in k [21,22], and their efficiency in practice is not clear.
Indeed, we could not find implementations of such provable algorithms.

This motivates the questions that are answered affirmably in this paper: (i) Can we
efficiently compute the corresponding `p k-rank approximation matrix Ak, similar to SVD?
(ii) Can we remove the fine-tuning step by using the `p low rank approximation, while
scarifying only a small decrease in the accuracy of the compressed network? (iii) Can we
obtain smaller networks with higher accuracy (without fine-tuning) by minimizing the
sum of non-squared errors, or any other power p 6= 2 of distances, instead of the `2 k-rank
approximation via SVD?

1.3. Our Contribution

We answer these questions by suggesting the following contributions:

1. A new approach for compressing networks based on `p k-rank approximation instead
of `2, for p ∈ [1, ∞). The main motivation is the robustness to outliers and noise,
which is supported by many theoretical justifications.

Sensors 2021, 21, 5599 5 of 20

2. Provable algorithms for computing this `p low rank approximation of every n× d
matrix A. The deterministic version takes time O(nd3 log n), and the randomized
version takes O(nd log n). The approximation factor depends polynomially on d, is
independent of n for the deterministic version, and is only poly-logarithmic in n for
the randomized version.

3. Experimental results confirming that our approach significantly improves existing results
when the fine-tuning step is removed from the pipeline upon using SVD (see Section 5).

4. Full open source code is provided [23].

Our results are based on a novel combination of modern techniques in computa-
tional geometry and applied deep learning. We expect that future papers will extend this
approach (see Section 7).

To obtain efficient implementations with provable guarantees, we suggest a leeway
by allowing the approximation factor to be larger than k, instead of aiming for (1 + ε)-
approximation (PTAS). In practice, this worst-case bound seems to be too pessimistic, and
the empirical approximation error in our experiments is much smaller. This phenomenon
is common in approximation algorithms, especially in deep learning, when the dataset has
a lot of structure and is very different from synthetic worse-case artificial examples. The
main mathematical tool that we use is the Löwner ellipsoid, which generalizes the SVD
case to general `p cases, inspired by many papers in the related work below.

To be part and not apart. Our technique can be combined with previous known
works to obtain better compression. For example, DistilBERT [24] is based on knowledge
distillation, and it reduces the size of the BERT [12] model by 40%, while maintaining 97%
of its language understanding capabilities and being 60% faster. However, this result does
not use low rank factorization to compress the embedding layer. We further compressed
DistilBERT and achieved better accuracy than SVD.

2. Related Work

In the context of training giant models, some interesting approaches were suggested to
reduce the memory requirement, e.g., [25,26]. However, those methods reduced the memory
requirement at the cost of speed/performance. Later, [27] proposed a way to train large
models based on parallelization. Here, the model size and evaluation speed are also still an
obstacle. Hence, many papers were dedicated to the purpose of compressing neural networks
in the field of NLP. These papers are based on different approaches such as pruning [28–32],
quantization [33,34], knowledge distillation [24,35–41], weight sharing [42], and low rank
factorization [42–44] (see the example table in [45] for compressing the BERT model). There
is no convention for which approach from the above should be used. However, recent works,
e.g., [42], showed that combining such approaches yields good results.

Subspace approximation. The `2 k-rank approximation can be solved easily in
min

{
nd2, d2n

}
time, while a (1 + ε) approximation can be computed deterministically in

nd(k/ε)O(1) time [46] for every ε > 0, and a randomized version takes O(nnz(A)) + (n + d) ·
(k/ε)O(1) time, where nnz(A) is the number of non-zero entries in A [47–49]. These and many
of the following results are summarized in the seminal work of [21]. However, for p 6= 2, even
computing a multiplicative (1 + ε)-approximation is NP-hard when k is part of the input [21].
Nevertheless, it is an active research area, where techniques from computational geometry
are frequently used. The case p ≥ 1 was introduced in the theory community by [50], and
earlier, the case p = 1 was introduced in the machine learning community by [51]. In [50], a
randomized algorithm for any p ≥ 1 that runs in time nd2(k/ε)O(p)

was suggested. The state
of the art for p ∈ [1, 2) in [21] takes O

(
nnz(A) + (n + d)(k/ε)O(1) + 2((k/ε)O(1))

)
time.

Approximation algorithms for the `p low rank approximation were suggested in [52]
for any p ≥ 1, which we also handle. Although the obtained approximation, in some cases,
is smaller than the approximation achieved in this paper, the running time in most cases
(depending on k) is much larger than that of ours.

Sensors 2021, 21, 5599 6 of 20

Regardless of the approximation, [52] suggests a polynomial time algorithm (one
of many) as long as k ∈ Θ

(
log n

log log n

)
. Similar to the discussion in [52], our `1 low rank

approximation allows us to recover an approximating matrix of any chosen rank, while the
robust PCA [53] returns some matrix of unknown rank. Although variants of robust PCA
have been proposed to force the output rank to be a given value [54,55], these variants
make assumptions about the input matrix, whereas our results do not. The time complexity
for p = 1 was improved in [56] to nd(k/ε)O(1) + (n + d)2(k/ε)O(1)

, and later, for general p
to nd(k/ε)O(1) + 2(k/ε)O(p)

[22]. The latter work, together with [57], also gives a coreset for
subspace approximation, i.e., a way of reducing the number of rows of A so as to obtain a
matrix A′ such that the cost of fitting the rows of A′ to any k-dimensional subspace F is
within a 1 + ε factor of the cost of fitting the rows of A to F; for p = 2, such coresets were
known [47,58–60] and can be computed exactly (ε = 0) [61,62].

Efficient approximations. The exponential dependency on k and hardness results may
explain why we could not find (even inefficient) open or closed code implementations on
the web. To our knowledge, it is an open problem to compute larger factor approximations
(ε ∈ O(1)) in a time polynomial in k, even in theory. The goal of this paper is to provide such
a provable approximation in time that is near-linear in n with practical implementation
and to demonstrate our usefulness in compressed networks.

3. Method

Notations. For a pair of integers n, d ≥ 1, we denote by Rn×d the set of all n× d real
matrices, by Id ∈ {0, 1}d×d the identity matrix, and [n] = {1, · · · , n}. For a vector x ∈ Rd,
a matrix A ∈ Rn×d, and a real number p > 0, the pth norm of x is defined as ‖x‖p =(

∑d
i=1|xi|p

)1/p
, and the `p entry-wise norm of A is defined as ‖A‖p,p =

(
∑d

i=1‖Aei‖p
p

)1/p
,

where ei ∈ {0, 1}d is a vector whose ith entry is 1 and 0 elsewhere. We say that the columns
of a matrix A ∈ Rn×d (where n ≥ d) are orthogonal if AT A = Id. In addition, a matrix
F ∈ Rd×d is called positive definite matrix if F is a symmetric matrix, and for every x ∈ Rd

such that ‖x‖2 > 0, we have xT Fx > 0. Furthermore, we say that a set L ⊆ Rd is centrally
symmetric if for every x ∈ L, it holds that −x ∈ L. Finally, a set L ⊆ Rd is called a convex
set if for every x, y ∈ L and θ ∈ [0, 1], θx + (1− θ)y ∈ L.

3.1. ‖·‖p-SVD Factorization and the Löwner Ellipsoid

In what follows, we intuitively and formally describe the tools that will be used in
our approach. Definition 1 is based on Definition 4 in [63]. While the latter defines a
generic factorization for a wide family of functions, Definition 1 focuses on our case, i.e.,
the function we wish to factorize is ‖Ax‖p for any p ≥ 1, where A ∈ Rn×d is the input

matrix, and x is any vector in Rd.

Definition 1 (Variant of Definition 4 [63]). Let A ∈ Rn×d be a matrix of rank d, and let p ≥ 1 be
a real number. Suppose that there is a diagonal matrix D ∈ (0, ∞)d×d of rank d, and an orthogonal
matrix V ∈ Rd×d, such that for every x ∈ Rd,∥∥∥DVTx

∥∥∥p

2
≤ ‖Ax‖p

p ≤ d
p
2

∥∥∥DVTx
∥∥∥p

2
.

Define U = A
(

DVT)−1. Then, UDVT = A is called the ‖·‖p-SVD of A.

Why ‖·‖p-SVD? The idea behind using the ‖·‖p-SVD factorization of an input matrix

A is that we obtain a way to approximate the span of the column space of A ∈ Rn×d.
This allows us to approximate the dot product Ax for any x ∈ Rd, which implies an
approximation for the optimal solution of the `p low rank approximation problem.

Sensors 2021, 21, 5599 7 of 20

For example, in the case of p = 2, the ‖·‖2-SVD of a matrix A ∈ Rn×d is equivalent to
the known SVD factorization A = UDVT . This holds due to the fact that the columns of the
matrix U are orthogonal, and for every x ∈ Rd, we have ‖Ax‖2

2 =
∥∥UDVTx

∥∥2
2 =

∥∥DVTx
∥∥2

2.
As for the general case of any p ≥ 1, [63] showed that the ‖·‖p-SVD factorization always
exists, and can be obtained using the Löwner ellipsoid.

Theorem 2 (Variant of Theorem III [64]). Let D ∈ [0, ∞)d×d be a diagonal matrix of full rank
and an orthogonal matrix V ∈ Rd×d, and let E be an ellipsoid defined as
E =

{
x ∈ Rd

∣∣∣xTVDT DVTx ≤ 1
}

.
Let L be a centrally symmetric compact convex set. Then, there exists a unique ellipsoid E

called the Löwner ellipsoid of L such that 1/
√

dE ⊆ L ⊆ E, where 1/
√

dE =
{

1/
√

dx
∣∣∣x ∈ E

}
.

Computing ‖·‖p-SVD via Löwner ellipsoid. Intuitively speaking, for an input matrix

A ∈ Rn×d, the ‖·‖p-SVD A = UDVT aims to bound from above and below the cost function

‖Ax‖p
p for any x ∈ Rd by the term

∥∥DVTx
∥∥p

2 . Since ‖Ax‖p
p is a convex continuous function

(for every x ∈ Rd), the level set L =
{

x ∈ Rd
∣∣∣‖Ax‖p ≤ 1

}
is also convex. Having a convex

set enables us to use the Löwner ellipsoid, which, in short, is the minimum volume enclosing
ellipsoid of L. In addition, contracting the Löwner ellipsoid by

√
d yields an inscribed

ellipsoid in L. It turns out that D, V of the ‖·‖p-SVD represents the Löwner ellipsoid of
L as follows: D is a diagonal matrix such that its diagonal entries contain the reciprocal
values of the ellipsoid axis lengths, and V is an orthogonal matrix which is the basis of
the same ellipsoid. Using the enclosing and inscribed ellipsoids (the Löwner ellipsoid and
its contracted form) enables us to bound ‖·‖p using the mahalonobis distance. Although

in traditional k `2-low rank factorization with respect to an input matrix A ∈ Rn×d, the
optimal result is equal to the sum of the smallest d− k singular values, we generalize this
concept to `p-low rank factorization. Specifically, the singular values of D (the reciprocal
values of the ellipsoid axis lengths) serve as a bound on the “`p singular values of A”.

3.2. Additive Approximation for the `p-Low Rank Factorization

In what follows, we show how to compute an approximated solution for the
`p-low rank factorization for any p ≥ 1 (see Algorithm 1). This is based on the
‖·‖p-SVD factorization (see Definition 1).

From ‖·‖p-SVD to `p-low rank factorization. For any k ∈ [d − 1] and any matrix

A ∈ Rn×d of rank d, the `p-low rank factorization problem aims to minimize
∥∥A− AXXT

∥∥p
p,p

over every matrix X ∈ Rd×k whose columns are orthogonal. As a byproduct of the
orthogonality of X, the problem above is equivalent to minimizing

∥∥AYYT
∥∥p

p,p over every

matrix Y ∈ Rd×(d−k) whose columns are orthogonal such that YYT = Id − XXT . By
exploiting the definition of the entry-wise `p norm of AYYT , we can use ‖·‖p-SVD to
bound this term from above and below using the mahalonobis distance. Furthermore, we
will show that by using the ‖·‖p-SVD, we can compute a matrix Ak of rank k such that
‖A− Ak‖p

p,p depends on the ellipsoid axis lengths (see Algorithm 1 and Theorem 5).

Overview of Algorithm 1. Algorithm 1 receives as input a matrix A ∈ Rn×d of
rank d, a positive integer k ∈ [d − 1], and a positive number p ≥ 1 and outputs a ma-
trix Ak of rank k, which satisfies Theorem 5. At Line 1, we compute a pair of matrices
D, V ∈ Rd×d such that the ellipsoid E :=

{
x ∈ Rd

∣∣∣xTVDT DVTx ≤ 1
}

is the Löwner el-

lipsoid of L :=
{

x ∈ Rd
∣∣∣‖Ax‖p ≤ 1

}
, where D is a diagonal matrix of rank d, and V is

an orthogonal matrix; we refer the reader to the Appendix A for computing the Löwner
ellipsoid. At Line 2, we compute the matrix U from the ‖·‖p-SVD of A (see Definition 1).
At Lines 3–4, we set Dk to be the diagonal matrix of d× d entries where the first k diagonal

Sensors 2021, 21, 5599 8 of 20

entries are identical to the first k diagonal entries of D, while the rest of the matrix is set to
0 (see Figure 2 for an illustrative description of our algorithm).

Figure 2. Illustration of our method. Given a matrix A ∈ Rn×d whose rows are points in Rd (step (i)), we first compute the
Löwner ellipsoid of f (x) = ‖Ax‖p for every x ∈ Rd (step (ii)). This enables us to encapsulate the geometrical properties of
f . After computing the minimum volume enclosing ellipsoid, we focus on the ellipsoids’ axes which will form our matrix G
(step (iii)). Due to the invertability of G, we can factorize A into a multiplication of two matrices, U = AG−1 and G (step
(iv)). Finally, we choose the longest k axes of the ellipsoid where these vectors will form a subspace on which the points will
be projected on to form our low rank approximation as illustrated above (step (v), see red points).

Algorithm 1: `ρ-LOW-RANK(A, k, p).

Input: A matrix A ∈ Rn×d of rank d, p ≥ 1, a positive integer k ∈ [d− 1], and a
positive real number p ≥ 1.

Output: A matrix U ∈ Rn×d, a diagonal matrix Dk ∈ [0, ∞)d×d, an orthogonal
matrix V ∈ Rd×d where U, V are from the ‖·‖p-SVD of A, and a set of d
positive real numbers {σ1, . . . , σd}.

1 (D, V) := LÖWNER(A, p) // See Algorithm A1 at the Appendix A

2 U := A
(

DVT)−1 // computing U from the ‖·‖p-SVD of A with respect
to the `p-regression problem

3 {σ1, . . . , σd} := the diagonal entries of D
4 Dk := diag(σ1, . . . , σk, 0, . . . , 0) // A diagonal matrix in Rd×d

5 return U, Dk, V, {σ1, . . . , σd}

4. Analysis

Some of the proofs in this section were moved into the Supplementary Material due
to space limitations.

4.1. Deterministic Result

In what follows, we present our deterministic solution for the `p-low rank factori-
zation problem.

Sensors 2021, 21, 5599 9 of 20

Claim 3. Let D ∈ [0, ∞)d×d be a diagonal matrix of rank d, and let σ > 0 be the lowest singular
value of D. Then, for every unit vector x ∈ Rd, ‖Dx‖2 ≥ σ.

Proof. Let x ∈ Rd be a unit vector, and for every i ∈ [d], let Di,i denote the ith diagonal
entry of D, and xi denotes the ith entry of x. Observe that

‖Dx‖2 =

(
d

∑
i=1
|Di,ixi|2

) 1
2

≥
(

d

∑
i=1
|σxi|2

) 1
2

= σ‖x‖2 = σ,

where the first equality follows from the definition of norm, the inequality holds by
definition of σ, and the last equality holds since x is a unit vector.

Lemma 4 (Special case of Lemma 15 [63]). Let A ∈ Rn×d be a matrix of full rank, p ≥ 1. Then,
there exist a diagonal matrix D ∈ [0, ∞)d×d of full rank and an orthogonal matrix V ∈ Rd×d such
that for every x ∈ Rd, ∥∥∥DVTx

∥∥∥p

2
≤ ‖Ax‖p

p ≤ d
p
2

∥∥∥DVTx
∥∥∥p

2
(1)

Proof. First, let L =
{

x̃ ∈ Rd
∣∣∣‖Ax̃‖p

p ≤ 1
}

, and put x ∈ Rd. Observe that (i) since p ≥ 1,

the term ‖Ax̃‖p is a convex function for every x̃ ∈ Rd which follows from properties of
norm function. This means that the level set L is a convex set. In addition, (ii) by definition
of L, it holds that for every x̃ ∈ L, also −x̃ ∈ L, which makes L a centrally symmetric set by
definition. Note that (iii) since A is of full rank, then L spans Rd.

Since properties (i)–(iii) hold, we obtain by Theorem 2 that there exists a diagonal
matrix D ∈ [0, ∞)d×d of full rank and an orthogonal matrix V ∈ Rd such that the set
E =

{
x̃ ∈ Rd

∣∣∣x̃TVDT DVT x̃ ≤ 1
}

satisfies

1√
d

E ⊆ L ⊆ E. (2)

Proving the right hand side of Equation (1). Let y = 1
‖DVT x‖2

x, and observe that

‖Ax‖p
p =

(√
d
∥∥∥DVTx

∥∥∥
2

)p
∥∥∥∥ 1√

d
Ay
∥∥∥∥p

p
≤ d

p
2

∥∥∥DVTx
∥∥∥p

2
, (3)

where the equality follows from the definition of y, and the inequality holds since 1√
d

y ∈ L
follows from Equation (2).

Proving the left hand side of Equation (1). Since L spans Rd, there then exists
b > 0 such that ‖A(bx)‖p

p = 1. By Equation (2), bx ∈ E, which results in
∥∥DVTx

∥∥
2 =

1
b

∥∥DVT(bx)
∥∥

2 ≤
1
b . Thus,

‖Ax‖p
p =

1
bp ‖A(bx)‖p

p =
1
bp ≥

∥∥∥DVTx
∥∥∥p

2
(4)

Since Equations (3) and (4) hold for every x ∈ Rd, Lemma 4 follows.

Theorem 5. Let A ∈ Rn×d be real matrix, p ≥ 1; k ∈ [d − 1] be an integer; and
(U, Dk, V, {σ1, . . . σd}) be the output of a call to `ρ-LOW-RANK(A, k, p). Let Ak = UDkVT. Then,

dσ
p
d ≤ ‖A− Ak‖p

p,p ≤ d1+ p
2 σ

p
k .

Proof. First, we assume that p 6= 2; otherwise, the ‖·‖2 factorization is the SVD factoriza-
tion, and we obtain the optimal solution for the `2 low rank approximation problem. For
every i ∈ [d], let ei ∈ Rd be a vector of zeros, except for its ith entry, where it is set to 1.

Sensors 2021, 21, 5599 10 of 20

Observe that ‖A− Ak‖p
p,p =

d
∑

i=1
‖(A− Ak)ei‖p

p =
d
∑

i=1

∥∥∥A
(

I −
(

DVT)−1DkVT
)

ei

∥∥∥p

p
, where

the first equality holds by definition of ‖·‖p
p,p, and the second equality follows from the

definition of Ak (see Lines 3–4 of Algorithm 1).
Plugging A := A, D := D, V := V, x :=

(
I −

(
DVT)−1DkVT

)
ei into Lemma 4 yields

that for every i ∈ [d], ∥∥∥(D− Dk)VTei

∥∥∥p

2
≤ ‖(A− Ak)ei‖p

p,p

≤ d
p
2

∥∥∥(D− Dk)VTei

∥∥∥p

2
.

(5)

Observe that for every i ∈ [d],∥∥∥(D− Dk)VTei

∥∥∥p

2
≤ ‖D− Dk‖

p
2

∥∥∥VTei

∥∥∥p

2
≤ ‖D− Dk‖

p
2 , (6)

where the first inequality holds by properties of the `2 matrix induced norm, and the
second inequality holds since V is an orthogonal matrix.

Since VTei is a unit vector, ∥∥∥(D− Dk)VTei

∥∥∥p

2
≥ σ

p
d , (7)

where the inequality holds by plugging x := VTei and D := (D− Dk) into Claim 3.
In addition, we have that

σd ≤ ‖D− Dk‖2 = σk+1 (8)

where both the inequality and equality hold since σd is the lowest eigenvalue of D, D being
a diagonal matrix.

By combining Equations (5)–(8), we obtain that for every i ∈ [d],

σ
p
d ≤ ‖(A− Ak)ei‖p

p ≤ d
p
2 σ

p
k+1. (9)

Theorem 5 follows by summing Equation (9) over every i ∈ [d].

Note that the set {σi}d
i=1 denotes the reciprocal values of the ellipsoid E axis’s lengths,

where E is the Löwner ellipsoid of L =
{

x ∈ Rd
∣∣∣‖Ax‖p ≤ 1

}
. As discussed in the previous

section, these values serve to bound the “`p singular values of A”.

4.2. Randomized Result

In addition to our deterministic result, we also show how to support a randomized
version that computes an approximation in a faster time, which relies on the following
result of [65].

Theorem 6 (Variant of Theorem 10 [65]). For any A ∈ Rn×d of rank d and p ≥ 1, one
can compute an invertible matrix R ∈ Rd×d and a matrix U = AR−1 such that ‖Rx‖2 ≤
‖Ax‖p ≤ d

(
d3 + d2 log n

)|1/p−1/2|‖Rx‖2 holds with a probability of at least 1− 1
n , where R can

be computed in time O(nd log n).

Theorem 7. Let A ∈ Rn×d be real matrix, p ≥ 1, and k ∈ [d− 1] be an integer. There exists a
randomized algorithm which, when given a matrix A ∈ Rn×d, k ∈ [d− 1], in time O(nd log n),
returns (U, Dk, V, {σ1, . . . σd}), such that

dσ
p
d ≤ ‖A− Ak‖p

p,p ≤ d1+p
(

d3 + d2 log n
)|1−p/2|

σ
p
k+1,

Sensors 2021, 21, 5599 11 of 20

holds with a probability of at least 1− 1
n , where Ak = UDkVT .

Proof. The algorithm is described throughout the following proof. Let R ∈ Rd×d be as
defined in Theorem 6 when plugging A := A into Theorem 6. Let R = ŨDVT be the SVD
of R; Dk ∈ [0, ∞)d×d be a diagonal matrix where its first k diagonal entries are identical
to those of D, while the rest of the entries in Dk are set to 0; and {σ1, · · · , σd} be the set of
singular values of D. Note that since for every x ∈ Rd, by Theorem 6 it holds that

‖Rx‖p
2 ≤ ‖Ax‖p

pdp
(

d3 + d2 log n
)|1−p/2|

‖Rx‖p
2 .

From here, similar to the proof of Theorem 5, we obtain that

dσ
p
d ≤ ‖A− Ak‖p

p,p ≤ d1+p
(

d3 + d2 log n
)|1−p/2|

σ
p
k+1.

Remark 8. Note that in our context of embedding layer compression, the corresponding embedding
matrix A has more columns than rows. Regardless, our `p norm of any A− B such that A, B ∈
d× n enables us to have ‖A− B‖p

p,p =
∥∥AT − BT

∥∥p
p,p. Hence, substituting A := AT and

Ak := AT
k yields

dσ
p
d ≤ ‖A− Ak‖p

p,p ≤ d1+ p
2 σ

p
k+1,

for our deterministic results, and similarly, we can obtain this for our randomized result.

5. Experimental Results

The compressed networks. We compress several frequently used NLP networks:

(i) BERT [12]: BERT is a bidirectional transformer pre-trained using a combination of
masked language modeling objective and next sentence prediction on a large corpus
comprising the Toronto Book Corpus and Wikipedia.

(ii) DistilBERT [24]: the DistilBERT model is smaller, faster, cheaper, and lighter than
BERT. This model is a distilled version of BERT. It has 40% less parameters than
bert-base-uncased and runs 60% faster, while preserving over 95% of BERT’s perfor-
mances as measured on the GLUE language understanding benchmark [24].

(iii) XLNet [66]: XLnet is an extension of the Transformer-XL model [67] pre-trained
using an autoregressive method to learn bidirectional contexts by maximizing the
expected likelihood over all permutations of the input sequence factorization order.

(iv) RoBERTa [68]: RoBERTa modifies the key hyperparameters in BERT, including
removing BERT’s next-sentence pre-training objective, and training with much larger
mini-batches and learning rates. This allows RoBERTa to improve on the masked
language modeling objective compared with BERT and leads to better downstream
task performance.

See full details on the sizes of each network and their embedding layer before com-
pression in Table 1.

Implementation, Software, and Hardware. All the experiments were conducted on
an AWS p2.xlargs machine with 1 GPU NVIDIA K80, 4 vCPUs, and 61 RAM [GiB]. We
implemented our suggested compression algorithm (Algorithm 1) in Python 3.8 using the
Numpy library [69]. To build and train networks (i)–(iv), we used the suggested implemen-
tation in the Transformers https://github.com/huggingface/transformers (accessed on 15
July 2021) library from HuggingFace [70] (Transformers version 2.3 and PyTorch version
1.5.1 [71]). Before the compression, all the networks were fine-tuned on all the tasks from
the GLUE benchmark to obtain almost the same accuracy results as reported in the original
papers. Since we did not succeed in obtaining close accuracy on the tasks QQP and WNLI
(with most of the network), we did not include results from them.

https://github.com/huggingface/transformers

Sensors 2021, 21, 5599 12 of 20

Our compression. We compress each embedding layer (matrix) of the reported net-
works by factorizing it into two smaller layers (matrices) as follows. For an embedding
layer that is defined by a matrix A ∈ Rn×d, we compute the matrices U, Dk, V by a call
to `ρ-LOW-RANK(A, k, 1) (see Algorithm 1), where k is the low rank projection we wish
to have. Observe, that the matrix Dk is a diagonal matrix, and its last d− k columns are
zero columns. We then compute a non-square diagonal matrix D′k ∈ Rd×k that is the
result of removing all the zero columns of Dk. Now, the `1 k-rank approximation of A can

be factorized as Ak =
(

U
√

D′k
)(√

D′k
T

VT
)

. Hence, we save the two matrices (layers):

(i) U
√

D′k of size n× k, and (ii)
√

D′k
T

VT of size k× d. This yields two layers of a total size
of nk + kd instead of a single embedding layer of a total size of nd.

Reported results. We report the test accuracy drop (relative error) on all the tasks
from the GLUE benchmark [72] after compression for several compression rates:

1. In Figure 3, the x-axis is the compression rate of the embedding layer, and the y-
axis is the accuracy drop (relative error) with respect to the original accuracy of the
network. Each figure reports the results for a specific task from the GLUE benchmark
on all the networks we compress. Here, all reported results are compared to the
known `2-factorization using SVD. In addition, in all the experiments, we do not
fine-tune the model after compressing; this is to show the robustness and efficiency of
our technique.

2. Table 2 suggests the best compressed networks in terms of accuracy vs size. For every
network from (i)–(iv), we suggest a compressed version of it with a very small drop
in the accuracy and sometimes with an improved accuracy. Given a network “X”, we
call our compressed version of “X” “RE-X”, e.g., RE-BERT and RE-XLNet. The “RE”
here stands for “Robust Embedding”.

3. Table 3 reports a comparison between our approach and different compressionmeth-
ods that do not require fine-tuning or any usage of the training data after compression:

(i) SVD.
(ii) L1PCA [73].
(iii) Pruning [74].
(iv) Random pruning.
(v) Syn flow [75].

Figure 3. Here, we report the accuracy drop (additive error) as a function of the embedding layer’s compression rate on the
networks (i)–(iv). We compare our results with SVD over several tasks from the GLUE benchmark. For a network “X”, our
compressed version of it is called “RE-X”, e.g., RE-BERT and RE-XLNet.

Sensors 2021, 21, 5599 13 of 20

Table 1. The sizes of the networks BERT, RoBERTA, XLNet, and DistilBERT, and their
embedding layers.

Model Embedding Layer Size Parameters

BERT base 30,522 × 768 110 M

RoBERTa base 50,265 × 768 125 M

XLNet base 32,000 × 768 110 M

DistilBERT base 30,522 × 768 66 M

Table 2. In the above, we present our compressed networks and their drop in accuracy based on the compression rate of
the embedding layer. Specifically, each non-percentile value represents the accuracy drop achieved by our compressed
model with respect to its original model (e.g., RE-RoBERTa is a compressed model of RoBERTa), while negative values
present improvements in the accuracy upon the non-compressed version of the corresponding model. The last column is
the average accuracy drop over all tested tasks. The “RE” here stands for “Robust Embedding”.

Model Embedding Layer Compression Rate MRPC COLA MNLI SST-2 STS-B QNLI RTE Avg.

RE-RoBERTa
base 15% 0.49 −2.16 0.01 0.045 0.013 0.018 1.08 −0.072
small 28% 0.98 −2.01 0.08 0.68 0.87 1.33 2.52 0.63
tiny 41% 2.69 3.82 2.18 2.17 3.10 3.58 2.16 2.81

RE-XLNet
base 15% 2.20 −0.43 −0.07 0.22 0.03 2.39 2.16 0.92
small 21% 1.47 0.26 0.11 −0.34 0.03 3.42 4.33 1.32
tiny 28% 1.96 3.19 0.47 −0.22 0.19 4.46 6.13 2.31

RE-BERT
base 15% 0.73 −0.54 0.48 −1.49 0.85 2.36 1.80 0.59
small 21% 3.43 0.08 1.72 0.45 1.62 3.78 1.44 1.78
tiny 28% 4.90 −0.94 3.48 1.49 2.66 7.65 1.80 3

RE-DistilBERT base 15% 1.47 5.24 0.86 0.34 0.13 5.80 2.16 2.28

Table 3. We evaluate our compression method against different compression techniques that do
not use any fine-tuning steps on the RoBERTa model (or any usage of the training data after com-
pression). The following table reports the drop in accuracy on the MRPC task after using these
compression techniques.

Compression Method Embedding Layer Compression Rate MRPC

SVD
base 15% 5.70
small 28% 6.25
tiny 41% 9.51

L1PCA [73]
base 15% 3.04
small 28% 4.94
tiny 41% 18.48

Pruning [74]
base 15% 1.90
small 28% 2.17
tiny 41% 2.98

Random pruning
base 15% 1.36
small 28% 3.06
tiny 41% 4.38

SynFlow [75]
base 15% 0.81
small 28% 1.60
tiny 41% 2.75

Our compression
base 15% 0.49
small 28% 0.98
tiny 41% 2.69

Sensors 2021, 21, 5599 14 of 20

6. Discussion

It can be seen by Figure 3 that our approach is more robust than the traditional SVD.
In most of the experiments, our suggested compression achieves better accuracy for the
same compression rate compared to the traditional SVD. Mainly, we observed that our
compression schemes shine when either vocabulary is rich (the number of subword units
is large) or the model itself is small (excluding the embedding layer). Specifically speaking,
in RoBERTa, our method achieves better results due to the fact that RoBERTa’s vocabulary
is rich (i.e., 50 K subword units compared to the 30 K in BERT). This large vocabulary
increases the probability of having outliers in it, which is the main justification for our
approach. In DistilBERT, the network is highly efficient. This can lead to a “sensitive
snowball effect”, i.e., the classification is highly affected by even the smallest errors caused
by the compression of the embedding layer. Since SVD is sensitive to outliers and due
to the fact that the network is highly sensitive to small errors, the existence of outliers
highly affects the results. This phenomenon is illustrated throughout Figure 3. Here, our
compression scheme outperforms the SVD due to its robustness against outliers, which,
in turn, achieves smaller errors. As for XLNet, the model encodes the relative positional
embedding, which, in short, represents an embedding of the relative positional distance
between words. In our context, this means that having outliers highly affects the relative
positional embedding, which, in turn, affects the classification accuracy. Hence, this
explains why we outperform SVD. Since none of the above phenomena hold for BERT, this
may explain why SVD sometimes achieves better results. However, across most tasks, our
compression scheme is favorable upon SVD.

Finally, for some tasks at low compression rates, the accuracy has been improved (e.g.,
see task SST-2 at Figure 3 when compressing BERT). This may be due to the fact that at low
compression rates, we remove the least necessary (redundant) dimensions. Thus, if these
dimensions are actually unnecessary, by removing them, we obtain a generalized model
which is capable of classifying better.

7. Conclusions and Future Work

We provided an algorithm that computes an approximation for `p k-rank approx-
imation, where p ≥ 1. We then suggested a new approach for compressing networks
based on k-rank `p-approximation, where p ∈ [1, 2] instead of `2. The experimental results
in Section 5 showed that our suggested algorithm overcomes the traditional `2 k-rank
approximation and achieves higher accuracy for the same compression rate when there is
no fine-tuning involved.

Future work includes: (1) Extending our approach to other factorization models, such
as non-negative matrix approximation or dictionary learning; (2) experimental results on
other benchmarks and other models; (3) suggesting algorithms for the `p k-rank approxi-
mation for any p ∈ (0, 1), while checking the practical contribution in compressing deep
networks for this case; and (4) combining this result with other compression techniques to
obtain a smaller network with higher accuracy.

Author Contributions: Conceptualization, M.T., A.M., M.W., and D.F.; methodology, M.T. and A.M.;
software, M.T. and M.W.; validation, M.T. and M.W.; formal analysis, M.T. and D.F.; investigation,
M.T. and A.M.; resources, M.W. and D.F.; data curation, M.T. and M.W.; writing—original draft
preparation, M.T. and A.M.; writing—review and editing, M.T., A.M., M.W., and D.F.; visualization,
M.T.; supervision, D.F.; project administration, M.T.; funding acquisition, M.W. and D.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 5599 15 of 20

Appendix A. Computing the Löwner Ellipsoid

(a) (b)

(c) (d)

(e) (f)
Figure A1. Computing the Löwener ellipsoid. Step I: We start with an ellipsoid that contains our level
set (the blue body). From here, the basic ellipsoid method is invoked, i.e., while the center is not
contained inside the level set (blue body), a separating hyperplane between the center of the ellipsoid
and the level set is computed, and the ellipsoid is stretched in a way such that the center moves closer
in distance to the level set. The basic ellipsoid method halts when the center is contained in the level
set (see (a–c) for illustration of the ellipsoid method). Step III: We compute a contracted version of
the current ellipsoid and check if all of its vertices are contained in the level set. If there exists one
ellipsoid’s vertex which is not contained in the level set, we find the farthest vertex of the contracted
ellipsoid from the level set and compute a separating hyperplane between it and the level set. Then,
the ellipsoid is stretched such that this vertex becomes closer to the level set presented in (d,e). We
then loop StepsII–III until the contracted ellipsoid’s vertices are contained in the level set (see (f)).

Sensors 2021, 21, 5599 16 of 20

For an input matrix A ∈ Rn×d of rank d and a number p ≥ 1, we now show how
to compute the Löwner ellipsoid for the set L :=

{
x
∣∣∣x ∈ Rd, ‖Ax‖p ≤ 1

}
. This is a crucial

step towards computing the ‖·‖p-SVD (see Definition 1) for the matrix A in the context of
the `p-low rank approximation problem, which will allow us to suggest an approximated
solution (See Theorem 5).

Overview of Algorithm A1 (computing the Löwner ellipsoid). Algorithm A1 re-
ceives as input a matrix A ∈ Rn×d of rank d and a number p ≥ 1. It outputs a Löwner
ellipsoid for the set L (see Line 1 of Algorithm A1). First, at Line 1, we initialize L to be
set of all the points x in Rd such that ‖Ax‖p ≤ 1. At Lines 2–5, we find a ball E in Rd of
radius r, which contains the set L, and its center is set to be the origin 0d. Then, we build a
diagonal matrix F, where we set its diagonal entries to r.

Lines 8–12 represent the pseudo-code of the basic ellipsoid method which is described
in detail in [76], where we set H to the separating hyperplane between c (the center of
the ellipsoid E) and L; b is set to be the multiplication between F and the normalized
subgradient of ‖Ax‖p at x = c, where b is used to set the next candidate ellipsoid.

In Lines 13–17, we compute the next candidate ellipsoid E, and based on it, we set Ṽ
to be the set containing the vertices of the inscribed ellipsoid 1

d (E− c) + c in L. Now, if
Ṽ ⊆ L, then we halt the algorithm; otherwise, we find the farthest vertex point v in Ṽ from
L with respect to ‖Ax‖p, and finally, we set H to be the separating hyperplane between v
and L.

Lines 19–25 present the pseudo code of applying a shallow cut update to the ellipsoid
E; this is described in detail in [76]. Finally, at Line 27, we set G to be the Cholesky
decomposition of F−1 (see [77] for more details). For formal details, see Theorem 2.

Sensors 2021, 21, 5599 17 of 20

Algorithm A1: LÖWNER(A, p).

Input: A matrix A ∈ Rn×d of rank d, and p ≥ 1
Output: A diagonal matrix D ∈ [0, ∞)d×d and an orthogonal matrix V ∈ Rd×d

satisfying Theorem 2.

1 L :=
{

x
∣∣∣x ∈ Rd, ‖Ax‖1 ≤ 1

}
2 E := A ball centered around the origin which contains L
3 r := the radius of E
4 F := rId

5 c :=

0
...
0

 ∈ Rd

6 while true do
7 while c 6∈ L do

/* Here we apply the basic ellipsoid method */

8 grad := ‖Ac‖p−1
p · ‖Ac‖p−1

p−1 ·
[n

∑
i=1

Ai,1c1

|AT
i∗c|

, · · · ,
n
∑

i=1

Ai,dc[d]
|AT

i∗c|

]T
// The

gradient of `p-regression at c
9 H := 1

‖grad‖∞
grad // Separating hyperplane between the center of

the ellipsoid and L
10 b := 1√

HT FH
FH

11 c := c− 1
d+1 b // Updating the center of the ellipsoid

12 F := d2

d2−1

(
F− 2

d+1 bbT
)
// updating the basis of the ellipsoid

13 E :=
{

x ∈ Rd
∣∣∣(x− c)T F−1(x− c) ≤ 1

}
14 Ṽ := vertices of 1

d (E− c) + c // compute the vertices of the enclosed
version of E in L

15 if Ṽ ⊆ L then
16 Go to Line 27
17 v := arg max

x∈Ṽ
‖Ax‖p // the farthest vertex of the contained

ellipsoid from L by the norm ‖Ax‖p

18 grad := ‖Av‖p−1
p · ‖Av‖p−1

p−1 ·
[n

∑
i=1

Ai,1v1

|AT
i∗v|

, · · · ,
n
∑

i=1

Ai,dvd

|AT
i∗v|

]T
// The gradient

of `p-regression at v
19 H := 1

‖grad‖∞
grad // Separating hyperplane between v and L

/* Here we apply the shallow cut ellipsoid update */
20 z := 1

(d+1)2

21 σ := d3(d+2)
(d+1)3(d−1)

22 ζ := 1 + 1
2d2(d+1)2

23 τ := 2
d(d+1)

24 b := 1√
HT FH

FH

25 F := ζσ
(

F− τ
(
bbT))

26 c := c− zb
27 G := chol

(
F−1) // The Cholesky decomposition of F−1

28 (U, D, V) := the SVD of G
29 return D, V

Sensors 2021, 21, 5599 18 of 20

References
1. Yu, X.; Liu, T.; Wang, X.; Tao, D. On compressing deep models by low rank and sparse decomposition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7370–7379
2. Acharya, A.; Goel, R.; Metallinou, A.; Dhillon, I. Online embedding compression for text classification using low rank matrix

factorization. In Proceedings of the AAAI Conference on Artificial Intelligence, Hawaiian Village, HI, USA, 27 January–1 February
2019; Volume 33, pp. 6196–6203.

3. Wang, Y.X.; Ramanan, D.; Hebert, M. Growing a brain: Fine-tuning by increasing model capacity. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2471–2480.

4. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.J.; Han, S. Amc: Automl for model compression and acceleration on mobile devices. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–800.

5. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference On Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5058–5066.

6. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. Adv. Neural Inf. Process. Syst.2013, 2, 3111–3119

7. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the PInternational Conference on
Machine Learning, Beijing, China, 21–26 June 2014; pp. 1188–1196.

8. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.
arXiv 2018, arXiv:1802.05365.

9. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

10. Dai, A.M.; Le, Q.V. Semi-supervised sequence learning. In Proceedings of the Neural Information Processing Systems, Montreal,
QC, Canada, 7–10 December 2015; pp. 3079–3087.

11. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. Avail-
able online: https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf (accessed on 7 September 2020)

12. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MI, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

13. Radiya-Dixit, E.; Wang, X. How fine can fine-tuning be? Learning efficient language models. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, Sicily, Italy, 3–5 June 2020; pp. 2435–2443.

14. Bermejo, S.; Cabestany, J. Oriented principal component analysis for large margin classifiers. Neural Netw. 2001, 14,
1447–1461. [CrossRef]

15. Wikipedia. Mean Squared Error—Wikipedia, The Free Encyclopedia. 2020. Available online: http://en.wikipedia.org/w/index.
php?title=Mean%20squared%20error&oldid=977071088 (accessed on 7 September 2020).

16. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
17. Huang, X.; Liu, Y.; Shi, L.; Van Huffel, S.; Suykens, J.A.K. Two-level `1 minimization for compressed sensing. Signal Process. 2015,

108, 459–475. [CrossRef]
18. Donoho, D.L.; Elad, M. Optimally sparse representation in general (nonorthogonal) dictionaries via `1 minimization. Proc. Natl.

Acad. Sci. USA 2003, 100, 2197–2202. [CrossRef] [PubMed]
19. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
20. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [CrossRef]
21. Clarkson, K.L.; Woodruff, D.P. Input sparsity and hardness for robust subspace approximation. In Proceedings of the 2015 IEEE

56th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 17–20 October 2015; pp. 310–329.
22. Feldman, D.; Langberg, M. A unified framework for approximating and clustering data. In Proceedings of the Forty-Third

Annual ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011; pp. 569–578
23. Code. Open Source Code for All the Algorithms Presented in this Paper. 2021. Available online: https://github.com/muradtuk/

LzModelCompression (accessed on 7 September 2020).
24. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv 2019,

arXiv:1910.01108.
25. Chen, T.; Xu, B.; Zhang, C.; Guestrin, C. Training deep nets with sublinear memory cost. arXiv 2016, arXiv:1604.06174.
26. Gomez, A.N.; Ren, M.; Urtasun, R.; Grosse, R.B. The reversible residual network: Backpropagation without storing activations.

In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017; pp. 2214–2224.
27. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer

learning with a unified text-to-text transformer. arXiv 2019, arXiv:1910.10683.
28. McCarley, J.S. Pruning a bert-based question answering model. arXiv 2019, arXiv:1910.06360.
29. Michel, P.; Levy, O.; Neubig, G. Are sixteen heads really better than one? In Proceedings of the Neural Information Processing

Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 14014–14024.
30. Fan, A.; Grave, E.; Joulin, A. Reducing transformer depth on demand with structured dropout. arXiv 2019, arXiv:1909.11556.

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
http://doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1016/S0893-6080(01)00106-X
http://en.wikipedia.org/w/index.php?title=Mean%20squared%20error&oldid=977071088
http://en.wikipedia.org/w/index.php?title=Mean%20squared%20error&oldid=977071088
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1016/j.sigpro.2014.09.028
http://dx.doi.org/10.1073/pnas.0437847100
http://www.ncbi.nlm.nih.gov/pubmed/16576749
http://dx.doi.org/10.1007/BF02288367
https://github.com/muradtuk/LzModelCompression
https://github.com/muradtuk/LzModelCompression

Sensors 2021, 21, 5599 19 of 20

31. Guo, F.M.; Liu, S.; Mungall, F.S.; Lin, X.; Wang, Y. Reweighted proximal pruning for large-scale language representation. arXiv
2019, arXiv:1909.12486.

32. Gordon, M.A.; Duh, K.; Andrews, N. Compressing BERT: Studying the effects of weight pruning on transfer learning. arXiv 2020,
arXiv:2002.08307.

33. Zafrir, O.; Boudoukh, G.; Izsak, P.; Wasserblat, M. Q8bert: Quantized 8bit bert. arXiv 2019, arXiv:1910.06188.
34. Shen, S.; Dong, Z.; Ye, J.; Ma, L.; Yao, Z.; Gholami, A.; Mahoney, M.W.; Keutzer, K. Q-BERT: Hessian Based Ultra Low Precision

Quantization of BERT. AAAI 2020, 34, 8815–8821 [CrossRef]
35. Zhao, S.; Gupta, R.; Song, Y.; Zhou, D. Extreme language model compression with optimal subwords and shared projections.

arXiv 2019, arXiv:1909.11687.
36. Tang, R.; Lu, Y.; Liu, L.; Mou, L.; Vechtomova, O.; Lin, J. Distilling task-specific knowledge from bert into simple neural networks.

arXiv 2019, arXiv:1903.12136.
37. Mukherjee, S.; Awadallah, A.H. Distilling transformers into simple neural networks with unlabeled transfer data. arXiv 2019,

arXiv:1910.01769.
38. Liu, L.; Wang, H.; Lin, J.; Socher, R.; Xiong, C. Attentive student meets multi-task teacher: Improved knowledge distillation for

pretrained models. arXiv 2019, arXiv:1911.03588.
39. Sun, S.; Cheng, Y.; Gan, Z.; Liu, J. Patient knowledge distillation for bert model compression. arXiv 2019, arXiv:1908.09355.
40. Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.; Wang, F.; Liu, Q. Tinybert: Distilling bert for natural language understanding.

arXiv 2019, arXiv:1909.10351.
41. Sun, Z.; Yu, H.; Song, X.; Liu, R.; Yang, Y.; Zhou, D. Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv

2020, arXiv:2004.02984.
42. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language

representations. arXiv 2019, arXiv:1909.11942.
43. Wang, Z.; Wohlwend, J.; Lei, T. Structured pruning of large language models. arXiv 2019, arXiv:1910.04732.
44. Maalouf, A.; Lang, H.; Rus, D.; Feldman, D. Deep Learning Meets Projective Clustering. arXiv 2020, arXiv:2010.04290.
45. Gordon, M.A. All The Ways You Can Compress BERT. Available online: http://mitchgordon.me/machine/learning/2019/11/18

/all-the-ways-to-compress-BERT.html (accessed on 15 July 2021).
46. Cohen, M.B.; Nelson, J.; Woodruff, D.P. Optimal approximate matrix product in terms of stable rank. arXiv 2015, arXiv:1507.02268.
47. Clarkson, K.L.; Woodruff, D.P. Low-rank approximation and regression in input sparsity time. J. ACM 2017, 63, 1–45. [CrossRef]
48. Meng, X.; Mahoney, M.W. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear

regression. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 1–4 June
2013; pp. 91–100.

49. Nelson, J.; Nguyên, H.L. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. In Proceedings
of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–29 October 2013;
pp. 117–126.

50. Shyamalkumar, N.D.; Varadarajan, K. Efficient subspace approximation algorithms. SODA 2007, 7, 532–540. [CrossRef]
51. Ding, C.; Zhou, D.; He, X.; Zha, H. R 1-PCA: rotational invariant L 1-norm principal component analysis for robust subspace

factorization. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006;
pp. 281–288.

52. Chierichetti, F.; Gollapudi, S.; Kumar, R.; Lattanzi, S.; Panigrahy, R.; Woodruff, D.P. Algorithms for `p Low-Rank Approximation.
Int. Conf. Mach. Learn. 2017, 34, 806–814

53. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM (JACM) 2011, 58, 1–37. [CrossRef]
54. Netrapalli, P.; UN, N.; Sanghavi, S.; Anandkumar, A.; Jain, P. Non-convex robust PCA. Adv. Neural Inf. Process. Syst. 2014,

27, 1107–1115.
55. Yi, X.; Park, D.; Chen, Y.; Caramanis, C. Fast algorithms for robust PCA via gradient descent. Adv. Neural Inf. Process. Syst. 2016,

30, 4152–4160.
56. Feldman, D.; Monemizadeh, M.; Sohler, C.; Woodruff, D.P. Coresets and sketches for high dimensional subspace approximation

problems. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19
January 2010; pp. 630–649.

57. Varadarajan, K.; Xiao, X. On the Sensitivity of Shape Fitting Problems. In Proceedings of the 32nd International Conference on
Foundations of Software Technology and Theoretical Computer Science, Hyderabad, India, 15–17 December 2012; p. 486.

58. Feldman, D.; Volkov, M.; Rus, D. Dimensionality reduction of massive sparse datasets using coresets. Adv. Neural Inf. Process.
Syst. 2016, 29, 2766–2774

59. Maalouf, A.; Statman, A.; Feldman, D. Tight sensitivity bounds for smaller coresets. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Goa, India, 14–18 December 2020; pp. 2051–2061.

60. Maalouf, A.; Jubran, I.; Tukan, M.; Feldman, D. Faster PAC Learning and Smaller Coresets via Smoothed Analysis. arXiv 2020,
arXiv:2006.05441.

61. Maalouf, A.; Jubran, I.; Feldman, D. Fast and accurate least-mean-squares solvers. Adv. Neural Inf. Process. Syst. 2019, 33,
8307–8318.

62. Jubran, I.; Maalouf, A.; Feldman, D. Introduction to coresets: Accurate coresets. arXiv 2019, arXiv:1910.08707.

http://dx.doi.org/10.1609/aaai.v34i05.6409
http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
http://dx.doi.org/10.1145/3019134
http://dx.doi.org/10.1007/s00454-011-9384-2
http://dx.doi.org/10.1145/1970392.1970395

Sensors 2021, 21, 5599 20 of 20

63. Tukan, M.; Maalouf, A.; Feldman, D. Coresets for near-convex functions. Adv. Neural Inf. Process. Syst. 2020, 33, 4.
64. John, F. Extremum problems with inequalities as subsidiary conditions. In Traces and Emergence of Nonlinear Programming;

Springer: Berlin/Heidelberg, Germany, 2014; pp. 197–215.
65. Clarkson, K.L.; Drineas, P.; Magdon-Ismail, M.; Mahoney, M.W.; Meng, X.; Woodruff, D.P. The fast cauchy transform and faster

robust linear regression. SIAM J. Comput. 2016, 45, 763–810. [CrossRef]
66. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language

understanding. Adv. Neural Inf. Process. Syst. 2019, 1, 5753–5763.
67. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.G.; Le, Q.; Salakhutdinov, R. Transformer-XL: Attentive Language Models beyond a

Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy, 28 July–2 August 2019; pp. 2978–2988.

68. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

69. Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci.
Eng. 2011, 13, 22. [CrossRef]

70. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s
Transformers: State-of-the-art Natural Language Processing. arXiv 2019, arXiv:1910.03771v5.

71. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in PyTorch. NIPS-W. 2017. Available online: https://openreview.net/pdf?id=BJJsrmfCZ (accessed on 15 July 2021).

72. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, Brussels, Belgium, 1 November 2018; pp. 353–355.

73. Markopoulos, P.P.; Karystinos, G.N.; Pados, D.A. Optimal algorithms for L_{1}-subspace signal processing. IEEE Trans. Signal
Process. 2014, 62, 5046–5058. [CrossRef]

74. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

75. Tanaka, H.; Kunin, D.; Yamins, D.L.; Ganguli, S. Pruning neural networks without any data by iteratively conserving synaptic
flow. Adv. Neural Inf. Process. Syst. 2020, 33, 13.

76. Grötschel, M.; Lovász, L.; Schrijver, A. The Ellipsoid Method. In Geometric Algorithms and Combinatorial Optimization; Springer:
Berlin/Heidelberg, Germany, 1993; pp. 64–101.

77. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2012; Volume 3.

http://dx.doi.org/10.1137/140963698
http://dx.doi.org/10.1109/MCSE.2011.37
https://openreview.net/pdf?id=BJJsrmfCZ
http://dx.doi.org/10.1109/TSP.2014.2338077

	Introduction
	Embedding Matrix
	Motivation
	Fine-Tuning
	Should We Use SVD?
	Novel Approach and Its Challenges

	Our Contribution

	Related Work
	Method
	 p-SVD Factorization and the Löwner Ellipsoid
	Additive Approximation for the p-Low Rank Factorization

	Analysis
	Deterministic Result
	Randomized Result

	Experimental Results
	Discussion
	Conclusions and Future Work
	Computing the Löwner Ellipsoid
	References

