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Abstract: To correctly assess the cleanliness of technical surfaces in a production process, corre-
sponding online monitoring systems must provide sufficient data. A promising method for fast,
large-area, and non-contact monitoring is hyperspectral imaging (HSI), which was used in this paper
for the detection and quantification of organic surface contaminations. Depending on the cleaning
parameter constellation, different levels of organic residues remained on the surface. Afterwards,
the cleanliness was determined by the carbon content in the atom percent on the sample surfaces,
characterized by XPS and AES. The HSI data and the XPS measurements were correlated, using
machine learning methods, to generate a predictive model for the carbon content of the surface. The
regression algorithms elastic net, random forest regression, and support vector machine regression
were used. Overall, the developed method was able to quantify organic contaminations on technical
surfaces. The best regression model found was a random forest model, which achieved an R2 of
0.7 and an RMSE of 7.65 At.-% C. Due to the easy-to-use measurement and the fast evaluation by
machine learning, the method seems suitable for an online monitoring system. However, the results
also show that further experiments are necessary to improve the quality of the prediction models.

Keywords: spectral imaging; HSI; XPS; AES; multivariate analysis; machine learning; elastic net; RF;
SVM; organic residues; cleaning after soldering; cleanliness

1. Introduction

What does it mean to be a clean surface and how can it be measured? The investi-
gation of cleanliness is becoming more of a focus in applied research. The challenge is
that more applications and processes are moving toward the need for higher levels of
cleanliness. Therefore, the limit of the required cleanliness must be defined and measurable.
In order to determine the cleanliness of a surface with regard to a specific contamination, a
suitable method must be identified, and this method must also meet application-specific
requirements such as spatial resolution and measurement speed. Especially for electronic
production, applications with a higher voltage or current in relation to a smaller product
size have higher cleanliness requirements. An insufficient level of cleanliness leads to
electrochemical migration, oxidation, and a decrease in adhesion, which reduces reliabil-
ity [1–3].

In the production of electronics for the automotive industry, the reliability of the car
components is a key requirement. A lot of research has been to investigate the reliability
for direct packing, gluing, or wire bonding. It was shown that oxides and contaminations
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on the surface were linked to an increase of or a decrease in the adhesion of processes
such as wire bonding, gluing, or molding. For oxides, the adhesion increases until the
oxide reaches a critical thickness [4–8]. Lower organic contamination leads to the improved
adhesion of these processes. On the other hand, a higher amount of organic contamination
on the surface reduces adhesion and leads to a decrease in reliability [9–12]. Quantifying
the level of cleanliness, depending on process and applications, is important in order to
control the reliability of the product.

For quantifying organic residues, chemical analytics and a knowledge of the properties
of the contaminations is necessary. During the soldering process, organic contamination is
mainly caused by the use of fluxes in the solder pastes. For a soldering process, it is required
that the liquid solder can flow and wet the surface. Therefore, solder pastes contain flux.
These fluxes are primarily based on rosin. Rosin is a natural product containing a high
proportion of organic acids. The primary acids of the rosin are abietic acid, succinic acid,
and glutaric acid [13–15].

Additionally, the fluxes contain high amounts of alcohols. The alcohols volatilize and
decompose during the soldering process. Consequently, the residues on the surface consist
of organic acids, which present as a salt. In the literature, the corrosive properties of these
salt residues and their impact on the reliability of electronics in humid environments is
reported [16–19].

For cleanliness quality control, visual inspection by a trained operator is a state-of-
the-art process in industrial serial production. A fast, non-destructive, objective, and
online capable cleanliness measurement would be highly beneficial for costs and quality
in a manufacturing process. A monitoring system can quantify the level of cleanliness
and help to objectively compare the performance of the cleaning process with alternative
cleaning processes. Therefore, the best performing and most cost-efficient process for this
application needs to be identified [20].

To measure the cleanliness of metal surfaces, X-ray photoelectron spectroscopy (XPS)
measurements are described in the literature. The level of cleanliness for organic contami-
nations is determined by the carbon content on the surface in atom percent (At.-%) [21].
In addition to XPS, Auger electron spectroscopy (AES), and time-of-flight-secondary ion
mass spectroscopy (TOF-SIMS) are well known to characterize organic contaminations
on metal substrates [22,23]. However, because of the required ultra-high vacuum and
the limited dimensions of the sample size, these methods are not options for an online
monitoring process [24]. Techniques such as contact angle measurement, ion exchange
chromatography, and spectroscopy in the ultraviolet and visible spectral range (UV-Vis)
are described in the literature for the investigation of organic substances [24–27]. The dis-
advantage of these methods is that sample preparation and a trained employee is needed
and that they are limited to single point measurements. Consequently, they are limited to
at-line measurements, and a large-area inline measurement is not possible. In addition, the
methods require a liquid that interacts with the surface for contact angle measurement and
ion exchange chromatography. Depending on the liquid, the liquid may possibly change
the surface properties and the adhesion of subsequent processes [24].

Diffuse UV-Vis reflection spectroscopy measures the absorption and the scattering
of the sample surface without making contact with the surface, and it is commonly used
for quantitative and qualitative analysis [28,29]. In the literature, examples of an online
monitoring method can be found, for example, in powder analysis applications [30] or in
the food industry [31].

However, such a monitoring system can only be used for a small portion of the surface.
The UV-VIS diffuse reflection method simply cannot be used for larger and geometrically
more complex surfaces due to its protruding components.

Another challenge for all of the methods mentioned above is whether the cleanliness
at the measured point is representative of the entire surface. In real applications or pro-
cesses, inhomogeneously contaminated surfaces often occur. It can be concluded that a
measurement at one point on the surface is not sufficient to determine the cleanliness of
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the entire surface. As a result, imaging methods that measure the entire surface have a
significant advantage over conventional methods. Hyperspectral imaging (HSI) has the
potential to meet the requirements for high resolution and large area detection and assess-
ment of surface contaminations. HSI enables the rapid spatially resolved spectral analysis
of surfaces. HSI systems are well described in the literature for applications in the fields of
medicine, food, and agriculture [32–34]. Paoletti et al. [35] provide a comprehensive review
of the current state-of-the-art of methods for HSI classification, analyzing, and correlation
of imaging data. To monitor cleanliness, some approaches for the food industry have been
published using a HSI system [36–38]. Various approaches have been published for the
quantification of thin films, e.g., oxides or liquid films [39–42]. Stiedl et al. [40] have shown
that the prediction of oxide layer thickness on technical copper using HSI and multivariate
analysis is possible.

In this research, hyperspectral imaging will be used to evaluate the cleanliness of
surfaces of soldered copper substrates and the degree of contamination by the organic
contaminants on these surfaces. The hyperspectral imaging measurements were conducted
in the visible and near-infrared (VNIR) spectral range.

The actual level of contamination is determined by the carbon content on the sample
surfaces as measured by XPS and AES. Different levels of surface cleanliness were generated
by different cleaning process parameters. The cleanliness of the surfaces was quantified by
the carbon content in atom percent. The HSI data and the carbon content measurements
were correlated using machine learning methods to generate a predictive model for the
carbon content of the surface.

2. Materials and Methods
2.1. Sample Preparation

Direct bonded copper (DBC) Curamik®Power substrates (Rogers Corporation, Chan-
dler, AZ, USA) with the dimensions of 21.0 mm × 21.0 mm × 1.1 mm were used. The
solder paste F360 SnAg 3.5 (Hereaus, Hanau, Germany) was printed with the dimensions
of 18.0 mm × 3.0 mm × 0.2 mm on the surface. The samples were soldered at 240 ◦C for
4 min in a nitrogen atmosphere, cooled down to 25 ◦C, and directly cleaned. For each set
of samples (Set1–Set7), 10 DBC substrates were soldered and cleaned afterwards. Figure 1
shows a photo of some of the soldered and cleaned samples.
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2.2. Wet Chemical Cleaning Process

All samples were cleaned with a mixture of the cleaning agents Vigon A200 (Zestron,
Ingolstadt, Germany) and CI20 (Zestron, Ingolstadt, Germany) and deionized water. The
cleaning process parameters were the temperature of the cleaning agent, the duration of
the cleaning process, the concentration of A200 and CI20, and the rinsing duration with
deionized water after the cleaning. These parameters were varied to produce different
levels of cleanliness. The cleaning parameters are shown in Table 1 for each set of cleaning
parameters (Set1–Set7). The rinsed samples were dried using compressed dry nitrogen,
were wrapped up in aluminum foil, and were packed in a polymer bag with a nitrogen gas
atmosphere to prevent recontamination.

Table 1. The cleaning parameters for Set1–Set7 and the carbon content measured by XPS at Spot A and Spot B.

Set Cleaning
Temperature (◦C)

Cleaning
Duration (s)

A200
Conc. (%)

CI20
Conc. (%)

Rinsing
Duration (s)

C Content
Measured by XPS
at Spot A (At.-%)

C Content
Measured by XPS
at Spot B (At.-%)

Set1 30 100 25 0 600 76 46
Set2 60 100 45 2 80 73 58
Set3 30 480 45 0 600 58 46
Set4 60 100 25 2 600 67 58
Set5 60 100 45 2 80 63 40
Set6 45 290 35 1 340 52 38
Set7 45 290 35 1 340 52 36

2.3. X-ray Photoelectron Spectroscopy (XPS)

The measurements were conducted under the following experimental conditions: A
system base pressure of 4.0 × 10−10 mbar was used. A monochromatic Al Kα radiation
was used, and the anode tube operated at 12.5 kV with 20 mA. The take-off angle for
the electrons was 0◦ with respect to the normal surface. The XPS core level spectra were
measured with standard X-ray source SPECS XR50 (SPECS Surface Nano Analysis GmbH,
Berlin, Germany) and the concentric hemispherical analyzer Phoibos 100, SPECS (SPECS
Surface Nano Analysis GmbH, Berlin, Germany). The pass energy of the concentric
hemispherical analyzer was 50 eV for the survey and 20 eV for the high-resolution spectra.
The data acquisition was 0.5 eV; 0.1 eV per step. For each sample the measurements were
performed in the same spot on the substrate surface. Spot A was defined at 1 mm away
from solder paste on the copper, and Spot B was in the center of the substrate on the copper.
The XPS measurement was the spot size, which was defined of 100 µm × 100 µm.

2.4. Auger Electron Spectroscopy (AES)

The measurements were conducted using an electron beam voltage of 3.0 keV. The
chamber pressure was set at 3 × 10−8 mbar during measurements. A Perkin Elmer PHI-600
scanning Auger spectrometer (PerkinElmer, Waltham, MA, USA) equipped with a Perkin
Elmer 04-303 differential ion gun (PerkinElmer, Waltham, MA, USA) was used. The AES
line scans of the inhomogeneous distribution of the carbon surface contamination were
started about 1 mm away from solder paste boundaries on the sample.

2.5. Hyperspectral Imaging (HSI)

The hyperspectral measurement of the samples was performed with a pushbroom
HSI measuring system with diffuse halogen illumination. A schematic representation of
the HIS system and a photo of the HIS system with the diffuse illumination is shown in
Figure 2. The system was equipped with a Specim FX10 VNIR HSI camera (Specim Spectral
Imaging Ltd., Oulu, Finland) with a wavelength range between 400 nm and 1000 nm and
a matching lens (f/1.7, FOV 38◦). The HSI camera was equipped with a CMOS detector
with 1024 pixel in the spatial dimension and 224 pixels in the spectral dimension, and no
binning was used. Lighting was provided by 6 halogen lamps with a power of 25 W each.
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The diffuse illumination of the samples was achieved by a self-designed integration tube
made of optical PTFE (Spectralon, Labsphere Inc., North Sutton, NH, USA). This produces
a diffuse illumination without a specific angle of incidence. The movement of the samples
was controlled by a linear stage (VT 80, PI Micos, Eschbach, Germany). The control of
the system components and the data acquisition was conducted using the dedicated HSI
software suite imanto®pro (Fraunhofer IWS, Dresden, Germany).

To avoid irregularities in the lighting and to eliminate the influence of dark current, a
white and a dark correction for each wavelength according to Equation (1) was conducted.

Ic(λ) =
Io(λ)− Id(λ)

Iw(λ)− Id(λ)
(1)

Ic is the corrected image, and Io is the original image for wavelength λ. Id is the dark
signal recorded with the light source switched off and the lens covered, and Iw is the white
reference. For the white reference, an optical PTFE plate was recorded under the same
measuring conditions as the original image.
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The measurements of the samples from all of sets were performed with a working
distance of 300 mm, an exposure time of 20 ms, and a recording frame rate of 50 Hz. This
resulted in a field of view (FOV) of ~150 mm, a spatial resolution of ~150 µm, and a spectral
resolution of ~5.5 nm. The speed of the linear stage was set to 4 mm s−1 to obtain squared
pixels. The result of each measurement was a hypercube with 224 spectral bands between
400 nm and 1000 nm.

The acquisition and basic preprocessing of the hyperspectral data was achieved by us-
ing the imanto®pro software package (Fraunhofer IWS Dresden, Dresden, Germany). This
software packaged allowed us the control the measurement parameters, the visualization,
and pre-processing of the acquired hyperspectral images, which allowed modifications to
the images such as smoothing or normalization.

2.6. Data Analysis and Machine Learning

The obtained hyperspectral data and the ground truth data for the carbon content were
used to train the prediction models. The goal was to train machine learning models to pre-
dict the carbon content at each point of the sample based on its spectral information. There
were three different regression algorithms that were trained and compared—ElasticNet
regression (EN [43]), random forest regression (RF, [44]), and support vector machine
regression (SVM, [45]). For a detailed description of the algorithms, please refer to the
corresponding literature. Before model training, an optional normalization using vector
normalization (VN) or standard normal variate correction (SNV), an optional principal
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component analysis (PCA), an optional standardization to a standard deviation of one, and
a mean value of zero was performed.

For all of the algorithms an optimization of their hyperparameters was conducted.
Hyperparameters are the parameters of algorithms that are used to control the algorithms
themselves. These parameters are set before the actual training of the models and are
not learned during the training. The hyperparameters can have a large effect on the
overall classification accuracy of the trained algorithms, which is why an optimization
is useful. An example of an algorithm for the automated hyperparameter optimization
is the Bayesian optimization algorithm (BOA, [46]). A disadvantage of this optimization
procedure is that running the algorithm itself is time consuming and computationally
intensive. A quick and easy alternative is the random search algorithm (RS), which
randomly selects the next hyperparameter of the optimization routine. It has been shown
that the differences between the sets of the hyperparameters found by RS and other
hyperparameter optimization algorithms are often small [47]. Therefore, the RS algorithm
is used here for hyperparameter optimization. The optimized hyperparameters and the
ranges in which these parameters were optimized are summarized in Table A1. All of
the other parameters were left at their default settings. Hyperparameter optimization
using RS was performed on 30 epochs, which means that 30 models with different random
parameters were trained to find a good set of hyperparameters.

For the training of the prediction model, the full dataset was first split into a training
set containing 70% of the data and a test set containing 30% of the data. The training
dataset was used to optimize the hyperparameters. Therefore, a 5-fold cross validation
was used, and the root mean squared error (RMSE) was determined. The hyperparameter
combination, which led to the lowest RMSE of cross validation, was selected, and a final
model was trained using all of the training data. Thereafter, this model was used to predict
the data in the test set, and the RMSE of prediction and the correlation coefficient R2

was calculated.
All of the calculations were performed with scikit-learn (version 0.23.2., [48]) and a

Windows 10 computer with an Intel CoreTM i5-4590 with 3.3 GHz, 16 GB RAM and a
Nvidia GTX 1080 Ti graphics card with 11 GB GDDR5X memory and a processor clock of
1632 MHz.

3. Results and Discussion
3.1. XPS and AES Measurements

From the sample surface, counts for Cu2p1/2, Cu2p3/2, C1s, O1s, Sn3d5/2, and Ag3d5/2
were collected by XPS. The copper signal is from the sample surface. The oxygen signal
is from oxides and organics. The carbon signal is from the organic residues of the flux.
Tin and silver are components of the solder paste. The carbon content in atomic percent
(At.-%) was calculated through the relative counts divided by the photoionization factors
described by the literature [49].

The carbon content from Set1 to Set7 is presented in Table 1. The variations in the
carbon were between 36–79 At.-%, depending on the measurement spot and cleaning
process parameters.

Set1 showed the highest level of carbon at 76 At.-% near the solder paste and 46 At.-%
in the center of the sample. This could be explained by Set1 having the shortest cleaning
duration and the lowest concentration of the cleaning agents A200 and CI20. For Set5, the
measured level of carbon was 63 At.-% near the solder paste and 40 At.-% in the center. The
lower carbon content is caused by the higher cleaning temperature and the higher cleaning
agent concentration. Sets6 and 7 were cleaned using the same parameters, resulting in the
lowest measured carbon contents and therefore the best level of cleanliness.
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In Figure 3, the XPS survey spectra and C1s spectra of Set1, Set5, and Set7 are shown.
These are the sets with highest, the lowest, and an average amount of carbon measured
at Spot A. The decrease of the C1s counts at 285 eV for Set7 compared to Set1 is visible.
Furthermore, in the C1s spectra of Set1, the carboxylic acid (COOR) peak is the most
pronounced. This can be explained by the higher proportion of organic salts and acids due
to insufficient cleaning.
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In Figure 4, the AES spectra of the contaminant peaks of Set4 is presented. The carbon
counts were taken from the C KVV Auger peak at 269.5 eV, and the oxygen counts were
taken from the O KVV peak at 514.5 eV. In addition, a Sn MNN peak was found in the AES
spectrum [50,51]. The AES measurements confirm that there are organic residues on the
surface. An AES line scan was used to investigate the distribution of these organic residues.
The AES line scan was started on the copper surface about 1 mm away from the solder
paste and was directed towards the center of the sample. The closer the measurement
spot was taken to the center of the sample, the farther away it was from the solder paste,
and thus, the further away it was from the origin of the organic residues. This effect was
directly reflected in the general decrease of the carbon signal intensity in the AES line
profile in Figure 4. Local inhomogeneity in the carbon contamination can be recognized
by irregularities in the intensity development of the line scan. The oxygen counts were
only observed at the first 250 µm. One can see that the contamination is higher in the first
250 µm of the line scan and is chemically different from the rest. One possible hypothesis
would be that the amount of organics on the surface depends on the geometric distance
to the solder paste boundary. The closer it is measured to the solder paste boundary, the
higher the contamination was.

The XPS and AES measurements show that the amount of organic residues on the
surface differs depending on the cleaning process parameters and the distance to the solder
paste. It was shown that a variation of the cleaning process parameters leads to different
amounts flux residues on the surface.
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3.2. HSI Data Evaluation and Modeling

Figure 5 shows an example HSI measurement of the samples from Set2. The example
spectra show the absorption of the copper at wavelengths below 600 nm. The increase in
reflectivity at wavelengths below 450 nm is caused by stray light within the camera. In
both the spectra and in the image of the color-coded reflectivity, the differences between the
less heavily contaminated areas in the centre of the Cu samples (green crosses/spectra) and
the heavily contaminated areas near the soldered areas (red crosses/spectra) can be seen.
A stronger contamination leads to a decrease of the reflected intensity and a change in the
shape of the spectra, which is caused by absorption and scattering by the contaminants.
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To obtain data that can be used to train regression models to predict the organic
contamination on the samples, spectra from each sample of each sample set were selected
manually. For each sample set, two XPS measurements of the carbon content were per-
formed (Spot A and B). Therefore, the spectra were also taken from those two areas for
each sample (see Figure 6). From each sample set and from each of the two spots, A and B,
100 spectra were selected at random, resulting in a total of 1400 spectra for all samples from
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the HSI hypercubes. These spectra can be assigned to 14 different carbon contamination
levels. Consequently, there are considerably more spectra than ground truth values. The
obtained spectra and the ground truth values of the carbon contamination can then used
for the training, optimization, and validation of regression models.
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Figure 6. Example of the generation of training data from the HSI measurements of a sample from
Set1 (left) and Set7 (right). The image shows the color-coded reflectivity at 600 nm. The red box
marks Spot A and the green box marks Spot B.

Figure 7 shows the mean spectra for 5 of the 14 carbon contamination values. One can
see a clear trend in the spectra correlated with the amount of carbon contamination. Higher
contamination leads to a lower overall reflectivity and a change in the shape of the spectra.
Besides this, the spectra are typical for copper substrates, and there are no additional bands
that are visible. Based on these results, the prediction of carbon contamination based on
the hyperspectral data seems possible.
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With the ground truth data of the carbon content and the spectra from the HSI mea-
surements, the regression models for the prediction of the carbon content were trained.
Table 2 shows the RMSE of prediction and the R2 of the best-found models after hyperpa-
rameter optimization for each of the three algorithms. The best results with a RMSE of
prediction of 7.65 At.-% C and a R2 of 0.7were achieved for the random forest model.
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Table 2. Best found prediction RMSE and R2 for the prediction of the carbon content on the copper
surfaces. There were three algorithms after hyperparameter optimization that were examined. The
algorithms are shown in descending order, starting with the best-found one.

RMSE [At.-% C] R2

Random Forest 7.65 0.70
Elastic Net 7.85 0.68

Support Vector Machine 7.99 0.69

Figure 8 shows the prediction results of the best-found RF model. The figure and the
RMSE and R2 values obtained show that there is a correlation between the hyperspectral
measurements and the measured value of the XPS, i.e., the amount of carbon in At.-%.
However, it can also be seen that there are sometimes considerable differences within the
spectra assigned to a carbon loading, which also lead to large differences in the predicted
carbon content. This can be explained by the fact that only two XPS measurements
were conducted for each sample set, but several areas were selected as training data
in the hyperspectral measurements. It can therefore be assumed that the carbon content
within the selected areas is subject to greater fluctuations that are not covered by the XPS
measurements. These fluctuations in the carbon contamination were observed by the AES
measurements. In order to improve the accuracy of the obtained models, further XPS
measurements of the carbon loading should be conducted, and the HSI data for model
training should only be selected in the actual measurement range of the XPS measurements.
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Figure 8. Prediction of the test data by the best-found RF regression model.

Figure 9 shows the colour coded prediction results for the carbon content in atomic
percent for the samples from Set2, calculated using the best-found RF model. For some
areas (marked with a box), the mean value of the predicted carbon content is shown, and
there is a relatively good agreement in the ground truth carbon content values measured
using XPS. The results also show that there are relatively large differences in the calculated
carbon content of each sample, especially in the strongly contaminated areas next to the
soldered regions. It is assumed that these differences are real and were not captured by
the XPS measurements at only one point. As already described, this can explain the large
variation in the prediction of carbon content by the regression models.
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58 At.-% (Spot B).

Nevertheless, the results show that hyperspectral imaging in combination with ma-
chine learning is able to predict organic contamination and carbon loading on soldered
copper surfaces. Due to the fast and non-contact measurement method and the fast evalua-
tion by artificial intelligence, the developed method seems to be very well suited for the
online monitoring of the cleanliness of soldered copper samples after they have undergone
a cleaning process. Before practical implementation, however, further experiments have
to be conducted to increase the data basis. In particular, more ground truth XPS measure-
ments are needed to increase the quality of the prediction models and to have independent
data for the validation of the models.

4. Conclusions

It was shown that the cleanliness of soldered copper substrates depended on the
cleaning process parameters. These parameters determine the level of cleanliness, which
can be defined as the carbon content in atomic percent (At.-%) measured by XPS. Addi-
tionally, one could see through the AES and HSI data that these carbon contaminations
were inhomogeneously distributed on the surface. A correlation between the spectra and
the amount of carbon contamination was found. A higher organic contamination leads to
a lower overall reflectivity. With the XPS and HSI measurements, the regression models
for the prediction of the carbon content were trained. The random forest regression (RF)
was the best found method, with a RMSE of 7.65 At.-% C. To further improve the accuracy
of the model, XPS measurements are necessary. The predicted values of the presented
Set2 were in good agreement with the XPS measurements. Overall, the developed method
seems to be suited for non-contact and large-area inline monitoring to quantify organic
contamination on technical surfaces. However, the results also show that more data are
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necessary to obtain a more reliable statement and to transfer the presented principle into a
technical implementation. In particular, more ground truth values (XPS measurements) are
necessary to increase the quality of the prediction models and to obtain more independent
test data for the validation of the results.
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Appendix A

Table A1. Overview of the optimized hyperparameters and the optimization ranges of machine
learning models. For a description of the hyperparameters, please refer to the literature references.

Hyperparameter Optimization Range

For all algorithms

normalization None/VN/SNV

PCA yes/no

no. of PCs used 2–10

standardization yes/no

Partial Least Squares Regression (PLS) [52] no. of components 2–10

Elastic Net regression (EN) [53] α 0.001–1000

L1 ratio 0–1

Random Forest (RF) [54]

no. of estimators 50–250

max. depth 10–100

min. samples split 2–25

min. samples leaf 1–10

Support Vector Machines (SVM) [55]

kernel rbf/linear

C 0.001–1000

γ 0.001–1000

References
1. Verdingovas, V.; Jellesen, M.S.; Ambat, R. Impact of NaCl contamination and climatic conditions on the reliability of printed

circuit board assemblies. IEEE Trans. Device Mater. Reliab. 2013, 14, 42–51. [CrossRef]
2. Hui Lee, K.; Jukna, R.; Altpeter, J.; Doss, K. Comparison of ROSE, C3/IC, and SIR as an effective cleanliness verification test for

post soldered PCBA. Solder. Surf. Mt. Technol. 2011, 23, 85–90. [CrossRef]
3. Wolfgong, W.J.; Colangelo, J.; Wheeler, J. The role of contamination in the failure of electronics—case studies. In Handbook of

Materials Failure Analysis; Butterworth-Heinemann: Texas City, TX, USA, 2020; pp. 153–178. [CrossRef]
4. Cho, S.J.; Paik, K.W.; Kim, Y.G. The effect of the oxidation of Cu-base leadframe on the interface adhesion between Cu metal and

epoxy molding compound. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 1997, 20, 167–175.

http://doi.org/10.1109/TDMR.2013.2293792
http://doi.org/10.1108/09540911111120159
http://doi.org/10.1016/B978-0-08-101937-5.00006-3


Sensors 2021, 21, 5595 13 of 14

5. Moon, B.H.; Yoo, H.Y.; Sawada, K. Optimal oxidation control for enhancement of copper lead frame-EMC adhesion in packaging
process. In Proceedings of the 1998 Proceedings. 48th Electronic Components and Technology Conference, Seattle, WA, USA,
25–28 May 1998; pp. 1148–1153. [CrossRef]

6. Berriche, R.; Vahey, S.C.; Gillett, B.A. Effect of oxidation on mold compound-copper leadframe adhesion. In Proceedings of the
International Symposium on Advanced Packaging Materials. Processes, Properties and Interfaces, Braselton, GA, USA, 14–17
March 1999. [CrossRef]

7. Kang, T.G.; Park, I.S.; Kim, J.H.; Choi, K.S. Characterization of oxidized copper leadframes and copper Epoxy Molding Compound
interface adhesion in plastic package. In Proceedings of the 3rd International Conference on Adhesive Joining and Coating
Technology in Electronics Manufacturing, Piscataway, NJ, USA, 28–30 September 1998; pp. 106–111. [CrossRef]

8. Berriche, R.; Lowry, R.; Rosenfield, M.I. An oxidation study of Cu leadframes. In Proceedings of the International Symposium
on Advanced Packaging Materials. Processes, Properties and Interfaces, Braselton, GA, USA, 14–17 March 1999; pp. 275–281.
[CrossRef]

9. Davis, G.D. Contamination of surfaces: Origin, detection and effect on adhesion. Surf. Interface Anal. 1993, 20, 368–372. [CrossRef]
10. Gause, R.L. A Noncontracting Scanning Photoelectron Emission Technique for Bonding Surface Cleanliness Inspection; National Aeronau-

tics and Space Administration, George C. Marshall Space Flight Center: Newbury Park, CA, USA, 1989.
11. Petersson, L.; Meier, P.; Kornmann, X.; Hillborg, H. Effect of surface cleanliness of aluminium substrates on silicone rubber

adhesion. J. Phys. D Appl. Phys. 2010, 44, 034011. [CrossRef]
12. Onuki, J.; Koizumi, M.; Ishikawa, I. Effects of frequency and surface cleanliness of Al–Si electrode on ultrasonic bonding

characteristics of thick Al wire bonding. Mater. Trans. JIM 1996, 37, 1492–1496. [CrossRef]
13. Smith, B.A.; Turbini, L.J. Characterizing the weak organic acids used in low solids fluxes. J. Electron. Mater. 1999, 28, 1299–1306.

[CrossRef]
14. Piotrowska, K.; Jellesen, M.S.; Ambat, R. Thermal decomposition of solder flux activators under simulated wave soldering

conditions. Solder. Surf. Mt. Technol. 2017, 29, 133–143. [CrossRef]
15. Smith, P.A.; Gardner, D.R.; Drown, D.B.; Jederberg, W.W.; Still, K. Oxidized resin acids in aerosol derived from rosin core solder.

Am. Ind. Hyg. Assoc. J. 1998, 59, 889–894. [CrossRef]
16. Verdingovas, V.; Jellesen, M.S.; Ambat, R. Solder flux residues and humidity-related failures in electronics: Relative effects of

weak organic acids used in no-clean flux systems. J. Electron. Mater. 2015, 44, 1116–1127. [CrossRef]
17. Hansen, K.S.; Jellesen, M.S.; Moller, P.; Westermann, P.J.S.; Ambat, R. Effect of solder flux residues on corrosion of electronics. In

Proceedings of the 2009 Annual Reliability and Maintainability Symposium IEEE, Forth Worth, TX, USA, 26–29 January 2009;
pp. 502–508. [CrossRef]

18. Conseil, H.; Verdingovas, V.; Jellesen, M.S.; Ambat, R. Decomposition of no-clean solder flux systems and their effects on the
corrosion reliability of electronics. J. Mater. Sci. Mater. Electron. 2016, 27, 23–32. [CrossRef]

19. Zhan, S.; Azarian, M.H.; Pecht, M. Reliability of printed circuit boards processed using no-clean flux technology in temperature–
humidity–bias conditions. IEEE Trans. Device Mater. Reliab. 2008, 8, 426–434. [CrossRef]

20. Kanegsberg, B.; Kanegsberg, E. Handbook for Critical Cleaning: Cleaning Agents and Systems; 2 Volume Set; CRC Press: Boca Raton,
FL, USA, 2020; pp. 149–159.

21. Scheuerlein, C.; Taborelli, M. The assessment of metal surface cleanliness by XPS. Appl. Surf. Sci. 2006, 252, 4279–4288. [CrossRef]
22. Rossi, A.; Elsener, B.; Hähner, G.; Textor, M.; Spencer, N.D. XPS, AES and ToF-SIMS investigation of surface films and the role of

inclusions on pitting corrosion in austenitic stainless steels. Surf. Interface Anal. 2000, 29, 460–467. [CrossRef]
23. Bexell, U. Surface Characterisation Using ToF-SIMS, AES and XPS of Silane Films and Organic Coatings Deposited on Metal

Substrates. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2003.
24. Taborell, M. Cleaning and surface properties. In Proceedings of the CAS—CERN Accelerator School: Vacuum for Particle

Accelerators, Glumslöv, Sweden, 6–16 June 2017.
25. Yang, J.; McGuire, J.; Kolbe, E. Use of the equilibrium contact angle as an index of contact surface cleanliness. J. Food Prot. 1991,

54, 879–884. [CrossRef] [PubMed]
26. Williams, D.L.; O’Bryon, T.M. Cleanliness verification on large surfaces: Instilling confidence in contact angle techniques. In

Developments in Surface Contamination and Cleaning; William Andrew Publishing: Huntsville, TX, USA, 2013; pp. 163–181.
27. Bixenman, M.; Lober, D.; McMeen, M.; Langley, C. ION chromatography component specific cleanliness testing for process

acceptability. In Proceedings of the Pan Pacific Microelectronics Symposium IEEE, Big Island, HI, USA, 5–8 February 2018;
pp. 1–11.

28. Torrent JO, S.E.; Barrón, V. Diffuse reflectance spectroscopy. Methods Soil. Anal. 2008, 5, 367–387.
29. Reeves, J.B., III. Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory

versus on-site analysis: Where are we and what needs to be done? Geoderma 2010, 158, 3–14. [CrossRef]
30. Pasikatan, M.C.; Steele, J.L.; Spillman, C.K.; Haque, E. Near infrared reflectance spectroscopy for online particle size analysis of

powders and ground materials. J. Near Infrared Spectrosc. 2001, 9, 153–164. [CrossRef]
31. Driver, R.D.; Didona, K. Online high-speed NIR diffuse-reflectance imaging spectroscopy in food quality monitoring. In Sensing

for Agriculture and Food Quality and Safety; International Society for Optics and Photonics: Orlando, FL, USA, 2009; p. 73150J.
[CrossRef]

32. Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [CrossRef]

http://doi.org/10.1109/ECTC.1998.678861
http://doi.org/10.1109/ISAPM.1999.757291
http://doi.org/10.1109/ADHES.1998.742011
http://doi.org/10.1109/ISAPM.1999.757326
http://doi.org/10.1002/sia.740200507
http://doi.org/10.1088/0022-3727/44/3/034011
http://doi.org/10.2320/matertrans1989.37.1492
http://doi.org/10.1007/s11664-999-0171-2
http://doi.org/10.1108/SSMT-01-2017-0003
http://doi.org/10.1080/15428119891011063
http://doi.org/10.1007/s11664-014-3609-0
http://doi.org/10.1109/RAMS.2009.4914727
http://doi.org/10.1007/s10854-015-3712-x
http://doi.org/10.1109/TDMR.2008.922908
http://doi.org/10.1016/j.apsusc.2005.07.007
http://doi.org/10.1002/1096-9918(200007)29:7&lt;460::AID-SIA889&gt;3.0.CO;2-T
http://doi.org/10.4315/0362-028X-54.11.879
http://www.ncbi.nlm.nih.gov/pubmed/31071812
http://doi.org/10.1016/j.geoderma.2009.04.005
http://doi.org/10.1255/jnirs.303
http://doi.org/10.1117/12.822560
http://doi.org/10.1117/1.JBO.19.1.010901


Sensors 2021, 21, 5595 14 of 14

33. Feng, Y.Z.; Sun, D.W. Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. Food Sci.
Nutr. 2012, 52, 1039–1058. [CrossRef]

34. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors,
Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

35. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

36. Park, B.; Lawrence, K.C.; Windham, W.R.; Smith, D.P. Performance of hyperspectral imaging system for poultry surface fecal
contaminant detection. J. Food Eng. 2006, 75, 340–348. [CrossRef]

37. Pozo-Antonio, J.S.; Fiorucci, M.P.; Rivas, T.; López, A.J.; Ramil, A.; Barral, D. Suitability of hyperspectral imaging technique to
evaluate the effectiveness of the cleaning of a crustose lichen developed on granite. Appl. Phys. A 2016, 122, 100. [CrossRef]

38. Babichenko, S.; Gala, J.L.; Bentahir, M.; Piette, A.S.; Poryvkina, L.; Rebane, O.; Soboleva, N. Non-contact, real-time laser-induced
fluorescence detection and monitoring of microbial contaminants on solid surfaces before, during and after decontamination. J.
Biosens Bioelectron 2018, 9, 255.

39. Gruber, F.; Wollmann, P.; Schumm, B.; Grählert, W.; Kaskel, S. Quality control of slot-die coated aluminum oxide layers for battery
applications using hyperspectral imaging. J. Imaging 2016, 2, 12. [CrossRef]

40. Stiedl, J.; Boldrini, B.; Green, S.; Chassé, T.; Rebner, K. Characterization of oxide layers on technical copper based on visible
hyperspectral imaging. J. Spectr. Imaging 2019, 8. [CrossRef]

41. Suja, V.C.; Sentmanat, J.; Hofmann, G.; Scales, C.; Fuller, G.G. Hyperspectral imaging for dynamic thin film interferometry. Sci.
Rep. 2020, 10, 1–8.

42. Jiang, W.; Li, J.; Yao, X.; Forsberg, E.; He, S. Fluorescence Hyperspectral Imaging of Oil Samples and Its Quantitative Applications
in Component Analysis and Thickness Estimation. Sensors 2018, 18, 4415. [CrossRef] [PubMed]

43. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw.
2010, 33, 1. [CrossRef] [PubMed]

44. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
45. Shmilovici, A. Support Vector Machines. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.;

Springer: Boston, MA, USA, 2010. [CrossRef]
46. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. 2012, 25,

1–9.
47. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
48. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine learning in

Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
49. Yeh, J.J.; Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. 1985,

32, 1–155. [CrossRef]
50. Timmermans, B.; Reniers, F.; Hubin, A.; Buess-Herman, C. Chemical effects in the Auger spectrum of copper–oxygen compounds.

Appl. Surf. Sci. 1999, 144, 54–58. [CrossRef]
51. Bubert, H.; Korte, M.; Garten, R.P.; Grallath, E.; Wielunski, M. Application of factor analysis in electron spectroscopic depth

profiling on copper oxide. Anal. Chim. Acta 1994, 297, 187–195. [CrossRef]
52. Sklearn.ensemble.PLSRegression: Scikit-Learn 0.24.0 Documentation. Available online: https://scikit-learn.org/stable/modules/

generated/sklearn.cross_decomposition.PLSRegression.html?highlight=pls (accessed on 18 March 2021).
53. Sklearn.linear_model.ElasticNet: Scikit-Learn 0.24.0 Documentation. Available online: https://scikit-learn.org/stable/modules/

generated/sklearn.linear_model.ElasticNet.html?highlight=elastic%20net (accessed on 18 March 2021).
54. Sklearn.cross_decomposition.RandomForestClassifier: Scikit-Learn 0.24.0 Documentation. Available online: https://scikit-learn.

org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 18 March 2021).
55. Sklearn.svm.SVR: Scikit-Learn 0.24.0 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/

sklearn.svm.SVR.html (accessed on 18 March 2021).

http://doi.org/10.1080/10408398.2011.651542
http://doi.org/10.3390/rs9111110
http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://doi.org/10.1016/j.jfoodeng.2005.03.060
http://doi.org/10.1007/s00339-016-9634-5
http://doi.org/10.3390/jimaging2020012
http://doi.org/10.1255/jsi.2019.a10
http://doi.org/10.3390/s18124415
http://www.ncbi.nlm.nih.gov/pubmed/30551646
http://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/978-0-387-09823-4_12
http://doi.org/10.1016/0092-640X(85)90016-6
http://doi.org/10.1016/S0169-4332(98)00764-8
http://doi.org/10.1016/0003-2670(94)00053-0
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html?highlight=pls
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html?highlight=pls
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html?highlight=elastic%20net
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html?highlight=elastic%20net
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Wet Chemical Cleaning Process 
	X-ray Photoelectron Spectroscopy (XPS) 
	Auger Electron Spectroscopy (AES) 
	Hyperspectral Imaging (HSI) 
	Data Analysis and Machine Learning 

	Results and Discussion 
	XPS and AES Measurements 
	HSI Data Evaluation and Modeling 

	Conclusions 
	
	References

