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Abstract: With the development of human motion capture (MoCap) equipment and motion analysis
technologies, MoCap systems have been widely applied in many fields, including biomedicine,
computer vision, virtual reality, etc. With the rapid increase in MoCap data collection in different
scenarios and applications, effective segmentation of MoCap data is becoming a crucial issue for
further human motion posture and behavior analysis, which requires both robustness and compu-
tation efficiency in the algorithm design. In this paper, we propose an unsupervised segmentation
algorithm based on limb-bone partition angle body structural representation and autoregressive
moving average (ARMA) model fitting. The collected MoCap data were converted into the angle
sequence formed by the human limb-bone partition segment and the central spine segment. The limb
angle sequences are matched by the ARMA model, and the segmentation points of the limb angle
sequences are distinguished by analyzing the good of fitness of the ARMA model. A medial filtering
algorithm is proposed to ensemble the segmentation results from individual limb motion sequences.
A set of MoCap measurements were also conducted to evaluate the algorithm including typical body
motions collected from subjects of different heights, and were labeled by manual segmentation. The
proposed algorithm is compared with the principle component analysis (PCA), K-means clustering
algorithm (K-means), and back propagation (BP) neural-network-based segmentation algorithms,
which shows higher segmentation accuracy due to a more semantic description of human motions
by limb-bone partition angles. The results highlight the efficiency and performance of the proposed
algorithm, and reveals the potentials of this segmentation model on analyzing inter- and intra-motion
sequence distinguishing.

Keywords: MoCap; IMU; ARMA; DTW; limb motion sequence segmentation; ensemble median filtering

1. Introduction

Motion capture (MoCap) is a technology that uses either optical or inertial motion
(IMU) sensors on a human body to record the body motions in three-dimensional space.
The body motions contain a variety of action types with different semantic information [1].
Through statistical analysis of the motion data, one can obtain the motion sequences
of different action types to realize the segmentation of human motion. As the basis of
MoCap data analysis, motion segmentation classifies and divides different semantic action
types in motion sequences, which divides a long motion sequence into different types of
short motion sequences. The motion segmentation further provides a basis for the reuse,
editing, and modification of a single motion sequence [2], which becomes the basis for
body motion analysis.

From the perspectives of realistic MoCap applications, available data samples are
usually sparse given various motion sequence types. Furthermore, motion sequence vari-
ation of the same type can be further enlarged among the samples due to the subject’s
height, age, pace, etc. This poses some critical data pre-processing and algorithm general-
ization challenges for both statistical-model-based and neural-network-based segmentation
methods. To balance the problems between algorithm efficiency and data sample require-
ments, and to best explore the temporal motion features of the human body, compared
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with the traditional ARMA model, we combine the prediction and fitting characteristics
of the ARMA model in time series with the regularity of human motion in time series.
The temporal inflection points in human motion sequence are calculated, and the inflection
points are identified and extracted by a fitness algorithm to achieve motion sequence
segmentation. This method overcomes the limitation that the ARMA model is only suitable
for short-term sequence prediction, and allows the ARMA model to perform long motion
sequences segmentation.

Figure 1 describes the general structure of our proposed algorithm, which is split into
five major parts.

1. Motion sequence downsampling is performed to compress the data given the obser-
vation that most of the motions are low frequency compared with the sampling rate.

2. Limb bone partition angle based body structural representation is performed by
calculating the angles between the limb bones partition to the central spine partition
for more semantic description of motion state changes.

3. ARMA modeling of separated limbs is performed based on the limb-bone partition
angle representation and individual parameterization of each limb’s ARMA model.

4. Determination of segmentation point is performed with a goodness-of-fit algorithm to
find the point with large deviation between the fitting sequences and the measurement
sequence of the ARMA model.

5. Ensemble median filtering of segmentation result of each limb was performed to
obtain the final segmentation results.
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Figure 1. Algorithm flow and design.
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From an application perspective, according to the process of frame by frame fitting of
each frame data in the motion sequence according to the ARMA model, and combined with
the fitness algorithm, we calculate the fitness of each frame data. The algorithm proposed
in this paper can be applied to the following three major sequences.

1. Segment the motion sequence of a single motion type from the complex motion sequence.
2. When there are redundant unknown motion sequences in the target motion sequence

of a single action type, the unknown motion sequence can be separated from the
target motion sequence to realize the cleaning of the motion sequence.

3. Further subdivide the motion sequence of a single motion type, realize the fragmenta-
tion of a single motion type.

Innovation and Contribution

In this work, we aim to design improved motion sequence segmentation methods
with better semantic description and more robust to motion sequence variations. The main
innovations and contributions of the present study are as follows.

1. We propose an autoregressive moving average (ARMA)-model-based segmentation
method with a limb-bone partition angle based human body structural representation
model. The ARMA-model-based segmentation algorithm is capable of analyzing and
segmenting motion sequences without a large number of training data, neither does it
depend on the type of motion sequences. The algorithm is then considered as robust
to unknown motion sequences, which largely improves the segmentation efficiency
and reduces time consumption of the algorithm tuning.

2. We combine two algorithms for limb-bone partition angle characterization and the
ARMA model fitting. Given that the ARMA model is suitable for short-term prediction
of motion sequence, we determine that the deviation between the predicted value
and the actual value of the limb motion sequence inflection point after the ARMA
model fitting becomes larger via the fitness algorithm, and this is used to calculate
the segmentation points.

3. To design and evaluate the proposed segmentation algorithm, MoCap data [3] are mea-
sured on four subjects, including one female (165 cm) and three males (170∼180 cm).
The MoCap data are collected by an IMU MoCap equipment of model Perception
Neuron Pro by the Noitom Inc. Block A, Putian Desheng, No. 28, Xinjiekou outer
street, Xicheng District, Beijing.

The remainder of this paper is divided into six sections. Section 2 provides the related
work to motion sequence segmentation algorithms. Section 3 presents the generation of
limb-bone partition angle sequences. In Section 4, the ARMA modeling of limb-bone parti-
tion angle motion sequence is introduced. Section 5 presents the algorithm of constructing
the segmentation function of the ARMA model of limb-bone partition angle sequences.
Section 6 evaluates and compares the segmentation accuracy and computation time of
the proposed algorithm, the PCA, the K-means, and the BP-net segmentation algorithms.
Finally, Section 7 provides conclusions.

2. Related Work

Research of motion sequence segmentation can be divided into three categories. The
first approach is based on statistical analysis. The work in [4] proposed the benchmark data
partition principle, and the number and location of segmentation points can be determined
automatically by using the piecewise polynomial model and Bayesian binding strategy.
The work in [5] proposed a string-based motion type labeling algorithm, which can be used
for motion compression and segmentation. The works in [6,7] constructed an unsupervised,
hierarchical, bottom-up motion segmentation framework, using the hierarchical alignment
clustering method to segment motion. This approach relies on statistical results and needs
a large number of data samples to describe the motion sequence statistics.

The second approach is based on the analysis of geometric characteristics. In [8],
the distance between each joint and the center point is calculated, and the PCA is used for
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motion segmentation. To obtain the segmentation points, Refs. [9,10] analyze and compare
shapes in a Riemannian manifold (RM) of the human pose. This kind of segmentation
algorithm only uses the low-level physical information of MoCap data, resulting in a lack
of semantic information in the segmentation results.

The third approach is based on deep learning and machine learning, which, similarly
to the second approach, requires large data samples for model and algorithm training.
In [11], the kernel time slicing (KTC) algorithm is used to make a linear search over a
sliding window, which takes the minimum time point in the objective function as the
output of the segmentation point. In [12], the deep semantic information of Laban motion
analysis (LMA) sequences is used in a neural network algorithm, and the motion sequences
in the motion database are compared for segmentation. The study in [13] used behavior
cycle data to carry out double threshold multidimensional segmentation to decompose
a complex motion sequence into simple dynamic linear model sequences. The study
in [14] treated the segmentation as a clustering problem, and proposed a kernel sparse
subspace clustering segmentation algorithm. The work in [15] used similar information in
neighborhood graphs to aggregate motion sequences into motion segments of different
types. In [16], the graph cutting method is used to construct an undirected weighted graph,
and a Nystrom method (NM) is used to cluster data to complete motion segmentation. The
work in [17] combined a density peak clustering (DPC) algorithm and an aligned clustering
analysis (ACA) algorithm. The study in [18] proposed a new model for recognizing
human actions from video sequences by integrating repetitive, gated recurrent neural
networks across multiple scales with shearlet-based image segmentation. The idea is to
increase training robustness and improve segmentation through the use of the shearlet
transform. In [19], a deep learning method is provided that extracts the articulated parts
of an object from a set of 3D structures corresponding to different states of the object.
The segmentation module aggregates the deformation flows into piecewise rigid motions
to find the articulated parts, and is based on a recurrent part extraction network. This
method can segment independent and dependent motions and operates on 3D point clouds
of the object under observation. The study in [20] proposed a method that simultaneously
discovers suitable deep representations, as well as clusters and temporal boundaries,
with the clustering process providing supervisory cues for updating temporal boundaries
and training the proposed deep learning architecture. The coordinate descent optimization
method is used to segment the motion sequences. In [21], a motion recognition method
for multi-joint industrial robots based on end-arm vibration and back propagation (BP)
neural network is proposed. A three-axis vibration sensor is installed on the last joint of the
multi-joint industrial robot to obtain the vibration signals and then segment the acquired
signal according to the length of time and extract the features.

The strengths and weaknesses of three kinds of segmentation approaches in the related
literature are shown in Table 1.

Table 1. Comparison of related work on motion sequence segmentation.

Type of Segmentation
Algorithm References Strengths Weaknesses

Statistical characteristics [4–7]

1. It can make full use of the data
contained in the sequence.
2. The segmented sequence has strong
semantics.

1. A large sample of data is needed to
describe it.
2. Relying too much on statistical
results.

Geometric characteristics [8–10] 1. The algorithm structure is relatively
simple and easy to extend.

1. The segmented sequence may lack
action semantics.

Deep learning and
machine learning [11–21]

1. These methods can be trained to
extract motion segments with high
precision and speed.
2. By enhancing the quality of training
samples, the semantic features of
segmentation results can be improved.

1. A large number of training samples
are required.
2. Such algorithms usually require a
training step. The training phase highly
affects the performance of these
methods.
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3. Model of Skeleton and Acquisition of Limb-Bone Partition Angle Sequences

During human limb motion, the limb-bone partition angle sequences are obtained
according to the different semantics and postures of the motion. There are four main
parts: the acquisition of motion sequences, the extraction of human motion information,
the establishment of bone direction vectors, and the formation of limb-bone partition
angle sequences.

3.1. Structural Representation of Human Body

For MoCap applications, the human skeleton is represented by three parts, as shown
in Figure 2a. It consists of the upper limbs, the lower limbs, and the spine.
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Figure 2. Human skeleton and Euler angle.

The motion sequence is represented by the spatial location coordinates of each joint
point; therefore, the data of the rotation angle of each joint point are converted into the
coordinates of the joint point. Figure 2b shows the rotation order of Euler angle in the
Cartesian coordinate system Z-X-Y, where the roll angle is denoted by r, the yaw angle is
denoted by y, and the pitch angle is denoted by p. The node rotation matrix, denoted by
M, is calculated according to the rotation order, as by Equation (1) [22].

M = RPY ,

R = Rz(−r) =

cos r − sin r 0
sin r cos r 0

0 0 1


P = Rx(−p) =

1 0 0
0 cos p − sin p
0 sin p cos p


Y = Ry(−y) =

 cos y 0 sin y
0 1 0

− sin y 0 cos y

,

(1)

where R is the rotation matrix of the node around the Z axis, P is the rotation matrix of
the node around the X axis, and Y is the rotation matrix of the node around the Y axis.
By substituting r, p, and y into R, P, and Y , the calculation equation of rotation matrix M
is obtained.
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Through the rotation matrix between the parent node and the child node in Figure 2a,
the position coordinate of each joint point is obtained by Equations (2) and (3).xc

yc
zc

 = Mr ∗

Mr−1 ∗

. . . ∗

M2 ∗

M1 ∗

x0
y0
z0

, (2)

P = Proot + Or−1 + . . . + O2 + O1 + O0, (3)

where Mr is the rotation matrix of joint point, Proot is the location of the root node, and Or is
the position of the child node relative to the parent node. When the human body performs
periodic movements such as walking and running, the human limbs will switch between
bending and extending postures periodically. The limbs will then show periodic variation,
and the changes between limbs will form a correlation [23]. To this point, limb partition
angle is introduced to improve the semantic description of the motion sequences.

In Table 2, the motion characteristics of different bone partitions are determined by
the change of the size of each included angle, using Equation (4).

θ =< θA, θB >= arc cos(
θA ∗ θB

|θA||θB|
), (4)

where θ ∈ [0, 180◦], θA and θB are the direction vectors of the central spine partition and
different limb partitions, respectively. {θ1, θ2, . . . , θ8} takes the average bone partition
angles of the included bone partitions to reduce the 8-dimensional limb-bone partition
angles sequences into 4-dimensional vector sequences. Table 3 presents the low limbs and
the upper limbs bone partition angle calculation, where θi, i ∈ {a, b, c, d} are the limb-bone
partition angles.

Table 2. Composition of limbs bone partition angle.

Low Limbs Upper Limbs

θ1: RHI to RK→ Central θ5: RUA to RDA→ Central
θ2: RK to RA→ Central θ6: RDA to RH→ Central
θ3: LHI to LK→ Central θ7: LUA to LDA→ Central
θ4: LK to LA→ Central θ8 : LDA to LH→ Central

Central bone: R→ S

Table 3. Simplified calculation of limbs bone partition angle.

Low Limbs Upper Limbs

θa: Right leg→ Central θc: Right arm→ Central
θb: Left leg→ Central θd: Right arm→ Central
Central spine: R→ S

3.2. Data Availability Statement

To design and evaluate the proposed segmentation algorithm, MoCap data were
measured on four subjects, including three male (170∼180 cm) and one female (165 cm).
The MoCap data [3] were collected by a Perception Neuron Pro model IMU MoCap
equipment by Noitom Inc. This equipment includes 17 IMU located at the reference
positions in Figure 2a. Each IMU includes internal adaptive filterers and was calibrated
prior to each measurement. The measurements are then considered to contain negligible
noise and bias effects for the motion segmentation analysis. The sampling frequency of the
measurements is configured at 100 Hz to cover the bandwidth of major joint movements
of a human body. Figure 3 shows different types of motion posture in the measurement,
which are walking, running, raising hands, squatting, and leg raising. The total number of
measurement sequence samples is 300.
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(a) Walking (b) Running (c) Raising hands (d) Squatting

(e) Leg raising

Figure 3. Different motion posture in motion sequences.

The statistics of sampling frames corresponding to motion types of different heights
are shown in Table 4.

Table 4. Frame number and duration statistics of motion sequences at different heights.

Height (cm) Number of Frames Sequence Time Length (s)

165 2446∼2774 24.5∼27.7
170 2888∼3256 28.8∼32.6
175 2740∼2880 27.4∼28.8
180 2860∼3044 28.6∼30.4

3.3. Data Structure of BVH Files and Data Decomposition

BVH is a common file recording format for most MoCap systems, which is also used
in the measurement recording in this study. A BVH file mainly contains two sections of
information. The first describes the node semantic information of the 18 main nodes of
the human body as shown in Figure 2a, which start from the hip node to the root node,
and nest the definitions from the root node level by level. The second part is the motion
capture data to be processed, which contains the number of data frames and sampling
intervals. This part of the data are recorded in the form of Euler angles that is used to
decompose the angular displacement of the moving object into three rotation components.
The three rotation components refer to the offset angle of the moving object relative to
coordinate axes of Z-X-Y in Figure 2b. Table 5 further simplifies the notation of Table 3.

Table 5. Motion sequences of limbs bone partition angle.

Bone Direction Vector Limb-Bone Partition Angle Sequences

θi θit [θi1 , θi2 , . . . , θin ]



Sensors 2021, 21, 5577 8 of 21

As shown in Table 5, θit is the motion sequences corresponding to the limb-bone
partition segment vector pinch angles θi. We transform the 54-dimensional Euler angle
data of each node in the BVH file into 4-dimensional limb-bone partition segment pinch
angle data. By this process, we realize the dimension reduction and categorization of
motion sequence data.

3.4. Statistical Analysis of Data

The motion sequence measurements are first analyzed based on their statistics in
order to evaluate the temporal variation of the motions among subjects of different heights.
In Figure 4, the motion sequences are grouped by the types identified. Each type of move-
ment contains 25 sequence samples with different durations. To ensure a fair comparison,
the data of the same motion type are normalized over the time domain. The dynamic time
warping (DTW) algorithm [24] is introduced to align two motion sequences by minimizing
their Euclidean distance with an optimal path. The algorithm evaluates the statistical
consistency of the measurement among different subject’s specific type of motion via
Equation (5).

DTW(θim , θin) = min
(

∑K
k=1 wk

K

)
, (5)

where wk = dist(θie , θi f )k
is the Euclidean distance of the k-th sampling point between

sequences. K is the number of frames in the sequence, k ∈ (1, K). The Euclidean distance
dist(θie , θi f ) of corresponding points in θim and θin sequences is calculated, e ∈ (1, m),
f ∈ (1, n), θim , and θin are the motion sequences of the same motion type of two subjects,
provided by Equation (6).

θim = {θi1 , θi2 , . . . , θie , . . . , θim},
θin = {θi1 , θi2 , . . . , θi f , . . . , θin},

dist(θie , θi f ) =

√√√√ m,n

∑
e, f=1

(θie − θi f )
2,

(6)

the sequence mapping W of two different heights of subjects is given by Equation (7).

W = {w1, w2, . . . , wk, . . . , wK},
max(im, in) ≤ K ≤ im + in − 1,

(7)

the minimum distance between the two motion sequences after regularization is calculated
by Equation (8).

r(ie, i f ) = d(θie , θi f ) + min{r(ie − 1, i f − 1), r(ie − 1, i f ), r(ie, i f − 1)}, (8)

where d(θie , θi f ) is the distance between the current θie and θi f , θiE and θiF are the corre-
sponding regulated sequences under the condition of the minimum distance r(ie, i f ) of the
two motion sequences, as given by Equation (9).
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θiE = {θ̂i1 , . . . , θ̂ie , . . . , θ̂im},
θiF = {θ̂i1 , . . . , θ̂i f , . . . , θ̂in},

rθ =

∑
iE

∑
iF

(θiEiF − θiEiF )(θiEiF − θiEiF )√
(∑

iE

∑
iF

(θiEiF − θiEiF )
2
)(∑

iE

∑
iF

(θiEiF − θiEiF )
2
)

,

rθ =

γ

∑
µ=1

rθµ

γ
,

(9)

where θiEiF is the motion sequence after DTW algorithm, γ is the number of data groups of
the same action type, rθµ

is a different motion sequence under the same motion type.
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Figure 4. A comparative study on the consistency of different heights among the same type of movement.

The results of the above analysis is shown in Figure 4, the similarity of various types
of movement between different heights are generally higher than 70%. It shows that
the motion sequences of the same type have the same characteristic among subjects of
different heights.

4. ARMA Modeling of Limb-Bone Partition Angle Motion Sequence

The ARMA model is an important model for studying time sequences. It consists of
an autoregressive (AR) model and a moving average (MA) model. In an ARMA model,
the data of a variable Yt at any time t are expressed as a linear combination of its precedent
observation Yt−1, Yt−2, . . . , Yt−p and historical random disturbance εt−1, εt−2, . . . , εt−q. The
ARMA(p, q) is shown in Equation (10) [25].

Yt = AR + MA,

AR = c + β1Yt−1 + β1Yt−2 + . . . + βpYt−p,

MA = λ1εt + λ2εt−2 + . . . + λqεt−q + c,

(10)

where p and q are the order of AR and MA, respectively. βp and λq are the calculation
coefficients of AR and MA respectively. c is the residual part.
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4.1. Transformation between ARMA Model and Motion Feature Model

The ARMA model is combined with the characteristics between each limb-bone
partition and the central spine partition in human limb motion sequences. The ARMA
model for the bone angle is expressed by Equation (11).

θit = βi0 + βi1 θi(t−1)
+ βi2 θi(t−2)

+ . . . + βin θi(t−n)
+ Zit , (11)

where θi is the data to be fitted of the limb-bone partition angles, βin is the linear approxi-
mation coefficients, and Zit is the residual.

4.2. Stationarity Test of Characteristic Sequence of Angle between Limb-Bone Partition Segments

A motion sequence, denoted as θi, can be predicted by an ARMA model under the
condition that the sequence is stationary over the time domain. For time sequences, station-
arity is denoted as wide-sense stationary, or covariance stationary, when the expectation,
variance, and autocovariance do not change over time, which is expressed in Equation (12).

E(θit) = αi, Var(θit) = σ2
i ,

Cov(θit , θi(t−j)
) = c, (j = 1, 2, . . . , t− 1), (12)

where E(·), Var(·), and Cov(·, ·) are the expectation, variance, and covariance operators,
α, σ, and c are invariants at different time observations. The stationarity evaluation of a
motion sequence can then become a good indicator of motion changes over time.

4.3. Analysis of ARMA Modeling on Limb-Bone Partition Angle Sequences

The ARMA model of bone angle sequences analyzes the correlation coefficient of
the limb-bone partition angle motion sequences, which is divided into autocorrelation
coefficient (ACF) and partial autocorrelation coefficient (PACF).

The ACF computes the autocorrelation ρk by Equation (13).

ρk =
γk
γ0

, (13)

where γk and γ0 are given by Equation (14).

γk = cov
[
θit , θi(t−k)

]
=

1
n

n−k

∑
t=1

[θit − E(θit)][θi(t−k)
− E(θit)],

γ0 =
1

n− 1

n−k

∑
t=1

[θit − E(θit)]
2

(14)

The PACF is another important statistical sequence of the ARMA model of limb-bone
partition angle sequences, expressed by Equation (15).

ρ
(θit ,θi(t−1))|(θi(t−1),...,θi(t−k+1))=

E[(θit−E(θit))(θi(t−k)−E(θi(t−k)))]

E[(θi(t−k)−E(θi(t−k)))
2]

, (15)

where the PACF is the correlation measure of the influence of θi(t−k) on θit after eliminating
the interference of k-1 random variables in the motion sequence. If the ACF and PACF are
“tailed”, and gradually tend to zero after q-order and p-order, respectively, it is possible to
determine that the limb-bone partition angle is fitted to the ARMA model [26]. The ARMA
models of limb-bone partition angle is then denoted as ARMAi(pi, qi), given that pi and qi
are the lag orders of the model.
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4.4. Parameter Estimation of ARMA Model with Angle Feature of Each Limb-Bone Partition

We use the least-squares (LS) algorithm to estimate the parameters of the ARMA
model in Equation (20). The residual part Zt is expressed by Equation (16); therefore,
the characteristic model of the angle of each limb-bone partition by Equations (16) and (17) [26].

Zit = λi1 εi(t−1)
+ λi2 εi(t−2)

+ . . . + λiq εi(t−q)
+ c,

i ∈ {a, b, c, d}
(16)

ARMAi(p, q) : θit = βi1 θi(t−1)
+ . . . + βip θi(t−p)

+ λi1 εi(t−1)
+ . . . + λiq εi(t−q)

+ c, (17)

where βi p is the specific parameter data of lag order p, λi is the specific parameter data of
lag order q, and εi t is the residual part.

Let n + 1 < j < m, when β̂ takes the minimum parameter data, then β̂ is called β
least-square estimation, expressed by Equations (18) and (19).

Ẑij = θij − (β̂1θi(j−1)
+ β̂2θi(j−2)

+ . . . + β̂pθi(j−p)
), (18)

s(β) =
m

∑
j=p−1

(θit − βi1 θi(t−1)
− . . .− βip θi(t−p)

)2
(19)

The LS estimation of βi can be obtained by Equation (20).

yi =


θi(p+1)

θi(p+2)
...

θin

, xi =


θip θi(p−1)

. . . θi1
θi(p+1)

θip . . . θi2
...

...
...

...
θi(n−1)

θi(n−2)
. . . θi(n−p)

,

s(βi) = βT
i xT

i xiβi − βT
i xT

i yi − yT
i xiβi + yT

i yi,

t ∈ {1, 2, . . . , p, . . . , n}, i ∈ {a, b, c, d}

(20)

The parameters of the ARMA model are eventually estimated by Equation (21).

β̂ =
xT

i yi

xT
i xi

,

s(β̂i) = yT
i yi − yT

i xi(xT
i xi)− yT

i xT
i βi + yT

i yi

= in f
β

s(β̂i),

(21)

where s(β̂i) is the optimal parameter of β̂i in the ARMA model.

4.5. Residual Sequence Test for ARMA Model of Limb-Bones Partition Angle

The main purpose of model testing is to test the good-of-fitness of the model on
approximating motion sequences. The model is tested on whether sufficient information is
extracted, and on whether the residual sequences are white noise sequences or not. When
the model fails the test, the residual sequence will not be a white noise sequence. Hence,
the model has to be reselected until the residual sequence becomes white noise again.
The LS estimation of white noise variance is given by Equation (22).

σ̂2
i = 1

n−p s(β̂i)

= 1
n−p (y

T
i yi − yT

i xi(xT
i xi)

−1
xT

i yi)

= 1
n−p

n

∑
t=p+1

(θit − β̂i1 θi(t−1)
− . . .− β̂ip θi(t−p)

)
2
,

(22)
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where E(εt) = 0 and Var(εt) = σ2
ε . We determine that the ARMA model passes the residual

detection when the conditions of Equation (22) are satisfied, and the relevant information
of the residual part and Yt extraction are maximized.

4.6. ARMA Model Order Selection of Limb-Bones Partition Angle Based on Particle Swarm
Optimization Algorithm

The particle swarm optimization (PSO) [27] algorithm has a strong ability to avoid the
local extremum and achieve a global extremum; additionally, its usage is flexible and con-
vergence speed is fast. These characteristics are the reasons it is used here for the problem
of model order selection in the ARMA models, expressed by Equations (23) and (24).

vmn(k + 1) = vmn(k) + c1r1(pbestmn(k)− xmn(k)) + c2r2(gbestmn(k)− xmn(k)), (23)

xmn(k + 1) = xmn(k) + vmn(k + 1), (24)

where m is the m-th particle, n is the velocity, and k is the number of iterations. c1 and c2
are learning factors. In general, c1 and c2 are between [0,4]. r1 and r2 are random variables
subject to uniform distribution in the range of [0,1]. pbestmn(·) is the extreme value and
gbestmn(·) is the global extreme value. xmn(·) is the [p, q] value in ARMA(p, q) of iteration
k. The fitness F(p, q) of the ARMA model is used as the standard to decide whether the
order of the model is appropriate, as given by Equation (25).

F(p, q) =

√√√√ 1
U

U

∑
t=1

(θit − θ̂it)
2
, (25)

where U is the number of frames of the motion sequence. θit is the original data of limb-
bone partition angle, θ̂it is the estimation data of limb-bone partition angle.

5. Construction of Segmentation Function for ARMA Model of Limb-Bone Partition
Angle Sequence
5.1. Motion Sequence Data Type Selection

The motion sequences are evaluated with ARMA models in different differential
orders by Equation (26). Individual limb motion sequences, i.e., the right leg, left leg, right
arm, and left arm, are fitted with ARMA models in first order, second order, and third
order. We compare the similarity between ARMA fitting data and the measurements.
The similarity of each limb motion sequence after first-order difference and third-order
difference is higher than that of the second-order difference. The average fitness of the
limbs are given by Equation (27).

θ′it(H)
= di f fx(θit(H)

), (26)

γ =

1−
∑

g
j=1 (θ

′
it(H)
−θ
′
it(H)

)
2

∑
g
j=1 (θ̂

′
it(H)
−θ
′
it(H)

)
2

n
,

x ∈ {1, 2, 3}, j ∈ {1, 2, . . . , g, . . . , t},

(27)

where θit(H)
is the sequence of limb-bone partition angles at different heights. θ′it(H)

is the

sequence of θit(H)
after difference of different orders. θ̂′it(H)

is the fitted sequence of θ′it(H)
. γ

is the average fitness of ARMA model.
Figure 5 compares the first-order, second-order, and third-order average fitness under

the different limbs. We compare the similarity between ARMA fitting data and measure-
ment motion sequence data. The transition point, or the segmentation point, between ac-
tions in the motion sequence is not prominent enough after the first-order difference of the
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motion sequences. On the other hand, the difference is large from measurement sequences,
after a third-order difference of the motion sequences average fitness. This probably indi-
cates the motion information loss of the motion sequence, which reduces the accuracy of
segmentation; therefore, motion sequence data after second-order difference are selected
for the ARMA modeling.

diff1 diff2 diff3

The differential order
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Figure 5. The average fitness of ARMA model data after each order difference.

5.2. Selection of Segmentation Windows

The measurement sequence θi is divided into windows of equal length, and the
window length is set to 100. The stationarity of θi in each sequence window is tested.
If the window sequence does not pass the stationarity test, it is differentiated. We use the
ARMA model to fit each limb bone angle sequences, and divide the fitted sequences into
different segmentation windows. The fitting coefficient R2

θ is used to determine whether
there are segmentation points in each segmentation window and output the window with
segmentation points, by Equations (28) and (29) [25].

θ =
1
n

w

∑
i=v

θi, (28)

SSTθ =
w

∑
i=v

(θi − θi)
2
,

SSEθ =
w

∑
i=v

(θi − θ̂i)
2
,

R2
θ = 1− SSEθ

SSTθ
,

(29)

where θi is the measurement sequence of the limb-bone partition angle, θi is the average of
the measurement sequence of the limb-bone partition angle, and θ̂i is the fitting sequence of
the ARMA model. The length of the selected data segmentation window is [v, w] interval,
where v and w are the upper and lower bounds of the segmentation window. n is the
number of data in the segmentation window, i.e., n = w− v. SSEθ is the sum of squares
of the residuals. SSTθ is the sum of squares of the total deviation. Fitting coefficient R2

θ is
closer to 1, and the view of R2

θ ∈ [0, 1] is proportional to the fitness of the model. The fitness
threshold value R2

θmin
= 0.6 [25] is set to analyze the fitting coefficient of the motion

sequence segment by segment. When the fitting coefficient of the data segment is greater
than the threshold, the data segment conforms to the current model fitting. On the contrary,
the segmentation points are identified. The fitness of this data segment is calculated one by
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one by using the fitness analysis algorithm in the next section, and the minimum fitness in
this data segment is selected as the segmentation point. By this method, the whole motion
sequence is divided into different types of data segments.

5.3. Finding Segmentation Points of ARMA Model Based on Angle Feature of Limbs
Bone Partition

The key idea of segmentation is to determine whether the current fitted ARMA model
is suitable to continue to describe the subsequent sequence. The change of limb motion
state determines the occurrence of changing points in the motion sequence. The ARMA
model describes the underlying generation mechanism and relationship of data and has
accurate short-term prediction ability [23]; therefore, the prediction step size of the current
model is 1. When the predicted data are significantly different from measurement data,
it shows that existing models cannot describe these data well. In this paper, the fitness
data of the ARMA model were analyzed and calculated by the prediction information and
historical information of the ARMA model. We segment the motion sequence by observing
whether there are changing points in the sequence.

The confidence interval is used to describe the range in which measurement data falls
into the prediction range of model, by Equation (30).

P(θ̂t+k − 1.96δt+k < θt+k < θ̂t+k + 1.96δt+k) ≈ 0.95, (30)

where {θ1, . . . , θm, . . . , θt} be sequence of time t. The ARMA model M is established.
The measurement data at (t + k) are θt+k. Predicted data based on the model M are θ̂t+k,
the standard deviation of the measurement data is expressed as δt+k; therefore, A means
that the model M is used to describe θt+k, B means that the measurement data fall within its
corresponding confidence interval, and C means that measurement data are not abnormal.

Definition [25]: when data θ̂t+k fall into the 95% prediction confidence interval of
its measurement data θt+k, fitness SD of model M for θt+k is conditional probability
P(A|B) = 1. Otherwise, fitness SD is a conditional probability P = (A|B) when data θ̂t+k
are not within its 0.95 prediction confidence interval, thus fitness is calculated.

According to the definition, P(B|AC) means that the confidence interval of the se-
quence is 0.95. P(C|A) means that θt+k is the probability of abnormal data in the sequence,
which is recorded as RO

M. P(A) is the probability that model M can be used to describe a
random event, P(A) = 0.5. P(B|AC) is the probability that if it conforms to model M and
is abnormal data, then it is not in its 0.95 prediction confidence interval. According to the
discussion regarding abnormal data, we know that P(B|AC) = 1. P(C) is the probability
that the measurement data are not abnormal data, which is recorded as RN

A . P(A) is the
probability that the measurement data are not abnormal data. P(B|C) be the probability
of conforming to M model and abnormal data, which is recorded as RO. Max and Min
represent the maximum and minimum values of the data contained in model M after
removing abnormal data, respectively, and we calculate the ratio of prediction width of
wM and wt+k (expressed as max-min).

The fitness of model M for a single datum is calculated by Equation (31) [25].

SDt+k =

 1, θt+k ∈ [θ̂t+k ± 1.90σt+k]
(1−0.95)+0.5RO

M

RO+RN
A (1−RO−

wt+k
wM

)
, else , (31)

which is a probability data SDt+k ∈ [0, 1]. RO, RN
A , RO

M, and wM are constants, set as
Rθmin = 0.6, RN

A = 0.95, RO
M = 0.01, RO = 0.025, wM = 30, where Rθmin is the fitness

threshold [25]. For the analysis, RO
M is the probability of abnormal data in the model fitting

sequence data, RN
A is the probability of normal data in the actual data sequence, RO is

the probability that the data in the actual data sequence are abnormal and not in its 95%
confidence interval, and wM is the length of set segmentation window.
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5.4. Convergence Demonstration

We expect that the proposed algorithm will achieve fast convergence of the fitness
of the ARMA model to motion sequence, and can calculate the optimal fitting model.
The convergence of the algorithm is demonstrated in Figure 6. The model fitness in the
figure shows a clear monotone convergence after 20 iterations, confirming the effectiveness
of the proposed algorithm.
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Figure 6. Convergence demonstration of the ARMA model segmentation algorithm.

6. Experimental Results and Analysis

Based on the measurement description in Section 3, the proposed algorithm was
evaluated and compared with other segmentation algorithms. Manual segmentation points
are used as reference segmentation points to calculate the segmentation accuracy.

6.1. Data Downsampling

The body motions are generally much slower than the sampling rate of the MoCap
data, causing redundant frames in the measurements for the analysis; therefore, a down-
sampling of the MoCap data may reduce the computation and accelerate the segmentation
estimation without losing action information.

6.2. Analysis of Angle Characteristics of Limb Segments Fitted by ARMA Model

In Figures 7–10, the bone angle characteristics and the model fitting characteristics
data samples from a subjects of height 180 cm are shown for the ARMA model fitting
performance. The sample shows the characteristics of the motion sequence of human limbs,
which is widely observed throughout the measurements.

Figures 7a, 8a, 9a, and 10a show that the bone partitions for the same limb have
periodicity in time sequences, which is consistent to the performance motion of the subject.
From the figure, we see the changing trend of the included angle in the adjacent bone
segments is generally similar. The lower part of Figures 7a, 8a, 9a, and 10a are the average
angle of the included angle data of adjacent bone partition of the same limb. Consequently,
the ARMA model fitting and analysis of angle data of different limb segments are simplified.
From the sequence fluctuation patterns in the figures, we conclude that the fluctuation
range of limb-bone partition angles for the same limb varies widely for different types of
movements. The fluctuation range of limb-bone partition angles is also larger for different
limbs under the same movement type. This confirms the semantic description improvement
by the introduced bone partition angle representation.
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Figure 7. Right leg limb-bone partition angle characteristics and model fit characteristics.

0 100 200 300 400 500 600 700

Sampling point/frame

0

100

A
n

g
le

Left upleg

Left downleg

0 100 200 300 400 500 600 700

Sampling point/frame

0

100

A
n

g
le

Mean value

(a) Angle characteristics of left leg

0 100 200 300 400 500 600 700

Sampling point/frame

-20

-10

0

10

20

A
m

p
li

tu
d

e

Fitting sequence

Measurement sequence

100 102 104 106 108 110
-20

-10

0

10

20

(b) ARMA fitting characteristics of left leg after sec-
ond order difference.

Figure 8. Left leg limb-bone partition angle characteristics and model fit characteristics.

0 100 200 300 400 500 600 700

Sampling point/frame

0

100

A
n

g
le

Right uparm

Right downarm

0 100 200 300 400 500 600 700

Sampling point/frame

0

100

A
n

g
le

Mean value

(a) Angle characteristics of right arm

0 100 200 300 400 500 600 700

Sampling point/frame

-20

-10

0

10

20

A
m

p
li

tu
d

e

Fitting sequence

Measurement sequence

100 101 102 103 104 105 106 107 108 109 110
-20

-10

0

10

20

(b) ARMA fitting features of right arm after second
order difference

Figure 9. Right arm limb-bone partition angle characteristics and model fit characteristics.
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Figure 10. Left arm limb-bone partition angle characteristics and model fit characteristics.

Figures 7b, 8b, 9b, and 10b show the fitting characteristic of the second-order difference
of the angle of each limb-bone partition. The result shows clear deterioration of the ARMA
model fitting characteristic at the around changing point. As seen in the figure, the fit of the
measured and model-fitted sequences is poor in the frame segment with inflection point.
This confirms the design of the segmentation result in Equation (31).
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6.3. Segmentation Determination

The segmentation points is extracted of the sequence of the limbs bone partition
angle of each limb. The median filtering is applied to obtain the final set of predicted
segmentation points, by Equation (32).

Si = [Sa, Sb, Sc, Sd]

=


Sa1 Sb1 Sc1 Sd1
Sa2 Sb2 Sc2 Sd2

...
...

...
...

San Sbn Scn Sdn

,

s = median(Si),

(32)

where Sa, Sb, Sc, and Sd are the set of segmentation points with limb-bone partition angles.
median(Si) is the median value of each row vector in Si. s is the final set of predicted
segmentation points and n is the number of predicted segmentation points.

6.4. Analysis of Average Segmentation Accuracy and Average Calculation Time

The segmentation result obtained by manual segmentation is used as the reference to
evaluate the segmentation of the proposed ARMA model. The index accuracy RI is used
to quantitatively measure the effectiveness of the algorithm, by Equation (33).

RI = 1− ER

= 1− |s− N|
N

∗ 100%,
(33)

where ER is the error rate, N is the total number of frames to be segmented, and N is the
total number of frames per type of motion sequence. For example, when the segmented
action sequence is walking before running, N is the actual number of frames in the walk-
ing state. Figure 11 is an example of segmentation point comparison between different
algorithms. The BP-net [21] segmentation algorithm is based on training the limb-bone
partition angle data set of the motion sequence in this paper, and then outputting the labels
corresponding to each motion of the test sequence data set. The last split point is output by
identifying the switching point in the label. Set the maximum training times to 1000 times
and the global minimum error to 0.0001.

In Table 6, by comparing the average calculation time of various segmentation algo-
rithms for the sample sequence, we find that the ARMA segmentation algorithm takes the
least time and the BP-net segmentation algorithm takes the longest time. The main reason
is the ARMA-model-based segmentation algorithm is capable to analyze and segment
motion sequences without a large number of training data, which largely improves the
segmentation efficiency and reduces time consumption of the algorithm tuning. The BP-net
segmentation algorithm needs to train the sample sequence set for a long time, resulting in
a longer overall time.

The order selection of the ARMA model based on residual whiteness in Section 4.4 is
compared with that based on particle swarm optimization (PSO) [27] in Section 4.6. We
set the particle number of the PSO algorithm to 20. In Table 6, compared with the ARMA
model order selection algorithm based on residual whiteness, the calculation time of the
ARMA model segmentation algorithm of the ARMA model order selection based on the
PSO algorithm is reduced by 78.6 s. To select the model order of the ARMA model, we
have compared the fitting value of the ARMA model with the actual value. If the actual
value is similar to the predicted value, it proves that the model is established correctly.
ARMA-PSO algorithm makes good use of this, avoids the complex calculation of taking
the residual whiteness as the model order selection, and further reduces the computational
time of the ARMA model segmentation algorithm.
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Figure 11. Comparison of motion sequence segmentation points of subjects with different heights.

We used two Intel (R) Xeon (R) CPU E5-2697 v3 @ 2.60 GHz x64 processors; 64-bit
operating system. The graphics card is an NVIDIA geforce RTX2080 Ti.

Table 6. Comparison of the average calculation time of each segmentation algorithm.

Algorithm Type Time (s)

ARMA-PSO 649.9
ARMA 728.5
BP-net 1646.1
PCA 742.5

K-means 1247.7

We compare the algorithm accuracy with the PCA dimension reduction segmentation
algorithm based on joint distance sequences [8], and the K-means clustering segmentation
algorithm based on machine learning [17], as shown in Table 7. The average segmenta-
tion accuracy of the PCA segmentation algorithm is 82.0% in the segmentation of motion
sequences with different heights, the average segmentation accuracy of the K-means seg-
mentation algorithm is 90.0%, the average segmentation accuracy of the BP-net model
algorithm is 91.2%, and the average segmentation accuracy of the ARMA model algorithm
is 91.45%. The segmentation accuracy of the ARMA model is better than the PCA segmen-
tation algorithm and the K-means segmentation algorithm. The segmentation accuracy
of the ARMA model and BP-net algorithm is similar, and slightly better than the BP-net
algorithm. The main reason is that the PCA segmentation algorithm directly extracts the
main components of the distance sequences of the upper and lower limbs motion sequences
after dimensionality reduction, and it does not consider the mutual constraints between
the limbs. The K-means clustering segmentation algorithm directly carries out similar
frames for the upper and lower limbs of the human body clustering. It mainly consid-
ers the connection between frames, but does not consider the influence and connection
between limb-bone partition segments. Although the average segmentation accuracy of
the BP-net algorithm is high, the algorithm takes a long time. In contrast, the ARMA
algorithm extracts the angle sequences of different limb-bone partition; therefore, the BVH
data file is converted into the angle between each limb-bone partition and the central
spine bone, which makes it more effective to cover the semantic information of each limb
motion sequence. The ARMA model is used to fit and segment the angle data of each limb
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sequence, which better reflects the motion characteristics of each limb in different motion
states, this algorithm improves the segmentation accuracy.

Table 7. Comparison of average segmentation accuracy of each algorithm.

Height (cm) ARMA BP-Net PCA K-Means

165 92.5% 91.8% 84.0% 90.4%
170 91.0% 90.5% 84.4% 88.1%
175 91.0% 91.1% 80.7% 87.1%
180 91.3% 91.4% 79.0% 90.2%

7. Conclusions

In this paper, we propose an ARMA model motion sequence segmentation algorithm
based on the limb-bone partition angle representation of human body skeletal structures.
The algorithm is applied to long motion sequences based on different motion states, and it
is used to calculate the angle characteristics of different limb segments and a defined spine
as a central bone. The algorithm combines the accurate short-term prediction ability of
the ARMA model. A fitness matching algorithm to analyze the data segment by segment
and then calculate the fitness of the whole data to decide whether there is a segmentation
of the data. Meanwhile, the ARMA segmentation algorithm is also used for segmenting
different limb movement patterns in a single motion segment. With a comparison of the
ARMA-based segmentation algorithm to the PCA, K-means, and BP-net segmentation
algorithms. The PCA segmentation algorithm directly extracts the main components of the
distance sequences of the upper and lower-limbs motion sequences after dimensionality
reduction, which does not consider the mutual constraints between the limbs. The K-
means clustering segmentation algorithm directly carries out similar frames for the upper
and lower limbs of the human body clustering, and does not consider the influence and
connection between limb bone segments. The BP-net segmentation algorithm is based on
training the limb-bone partition angle data set of the motion sequence, which has high
segmentation accuracy, but takes a long time. The improvement of the algorithm in this
paper was achieved by introducing more semantic limb-bone partition angle representation
to describe the human motion postures, and describe the limb motion sequence in more
detail; therefore, the segmentation of the algorithm is more accurate.

The segmentation rate of motion sequences with similar motion states is slightly
lower than that of motion sequences with different motion styles, when the algorithm is
applied in segment of similar motion sequences. The main reason is that the angle of bone
joints in similar motion sequences is relatively similar, which leads to fuzzy segmentation
boundaries, and the segmentation accuracy is slightly lower than that of other motion
sequences. Future work may consider improving the segmentation accuracy of similar
motion sequences, and further realize motion prediction based on the segmentation results.
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