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Abstract: In machine learning and data science, feature selection is considered as a crucial step of
data preprocessing. When we directly apply the raw data for classification or clustering purposes,
sometimes we observe that the learning algorithms do not perform well. One possible reason for this
is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence,
feature selection methods are used to identify the subset of relevant features that can maximize the
model performance. Moreover, due to reduction in feature dimension, both training time and storage
required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-
based feature selection framework for the purpose of medical report-based disease detection. In
the first stage, an ensemble was formed by four filter methods—Mutual Information, ReliefF, Chi
Square, and Xvariance—and then each feature from the union set was assessed by three classification
algorithms—support vector machine, naïve Bayes, and k-nearest neighbors—and an average accuracy
was calculated. The features with higher accuracy were selected to obtain a preliminary subset of
optimal features. In the second stage, Pearson correlation was used to discard highly correlated
features. In these two stages, XGBoost classification algorithm was applied to obtain the most
contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed
the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in
order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed
feature selection framework on four publicly available disease datasets taken from the UCI machine
learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results
confirm that the proposed method can perform better than many state-of-the-art methods and can
detect important features as well. Less features ensure less medical tests for correct diagnosis, thus
saving both time and cost.

Keywords: feature selection; filter method; wrapper method; whale optimization algorithm; arrhyth-
mia; disease classification; cancer dataset

1. Introduction

In the domain of machine learning (ML) and statistics, feature selection is treated
as an important step of data preprocessing. It is used to detect the subset of relevant
features or attributes that maximizes the model performance [1,2]. Apart from this, there
are other benefits of applying feature selection, including shorter training time, reduced
dimensionality of the original feature vector, and simplification of the models by making
them easier to be interpreted by the users, thus building faster models. This, in turn, also
helps to gain a better understanding of the processes described by the data by focusing only
on the required subset of features. In many instances, it has been seen that datasets contain
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unnecessary, noisy, or redundant information and such unrequited data can be eliminated
by applying feature selection methods without losing any salient data. It has been proven
to be very essential in the field of medical diagnosis. With this exponential growth of invest-
ments in information technology of health service provisions and widespread collection
and generation of data by medical establishments, there are increased irregularities such
as large numbers of disease markers. Some of the disease markers are not helpful, while
some even affect the diagnosis negatively [3].

Feature selection algorithms basically revolve around the idea of selecting the optimal
subset of features from the original feature set, which will help in marking the prime
features as well as will improve the ML models’ performance. The easiest way to find out
the optimal one would be to select every possible permutation of the subset and select
the one that maximizes the performance of the model. However, this process would be
very vigorous as well as computationally expensive, and for a large dataset in particular it
can take a large amount of time to keep track of every subset. Generally, feature selection
approaches can broadly be classified into wrapper, filter, and embedded methods [4].
Moreover, hybrid combinations of these approaches are also used by researchers [5].

In the filter method, prime attributes are chosen from the properties of the datasets
only without considering any classification model. It rejects the least contributing attributes,
and pivotal attributes are selected on the basis of statistical significance to either classify
or predict data. On the contrary, the optimal subset is chosen from the feature set on
the basis of a specific ML algorithm in a wrapper method. On the basis of a particular
evaluation criterion, some intelligent search approaches are followed by a wrapper method
by evaluating various combinations of feature subsets. Embedded methods are quite
similar to wrapper methods, with only difference being that feature selection is performed
during the model training only. It helps to choose better features for that model in less time.
Only one downside of embedded methods is that the feature selection occurs depending
on the classifier hypothesis. However, it is very obvious that it may not give the best result
if any other classifier is used, and it is also dataset-dependent. Hybrid approaches are very
simple, as they use the combined power of different filter and wrapper methods to select
the optimal feature set.

As discussed above, the main objective of any feature selection method remains the
same, which is to maximize the model’s predictive performance. Hybrid methods are a
promising approach for an improved selection process. The major advantage of hybrid
methods is that they attain the top advantages from each feature selection method, which
in turn results in predicting higher accuracy and reducing the computational complexity
than wrapper methods. The basic goal is to produce a better predictive model by tak-
ing advantage of the different algorithms and also overcoming their weaknesses at the
same time.

Keeping the above facts in mind, a new tri-stage wrapper-filter feature selection
framework is proposed in this work. Five filter methods have been used in two phases,
and a wrapper method is used in the third and the final phase. An ensemble of four filter
methods, namely, Mutual Information (MI), ReliefF (RFF), Chi Square (CS), and Xvariance
(XV) is used in the first phase, whereas Correlation is used in the second phase. Finally,
a meta-heuristic, called Whale Optimization Algorithm (WOA), is used as the wrapper
method in the last phase to obtain the optimal feature subset. Union of the best-chosen
features selected by the four filters individually has been formed to utilize their common
strength. Then accuracy of each feature is calculated on the basis of three popular ML
algorithms—support vector machine (SVM), naïve Bayes (NB) and k-nearest neighbors
(KNN), and then mean accuracy value is taken. This step ensures if an important feature
is anyhow wrongly eliminated by a particular filter method, any other filter method can
include them in the set. Next, highly correlated features are rejected to confirm that
redundant attributes are neglected, and at the end, WOA makes certain that only prime
attributes are chosen to achieve the highest accuracy.
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The study in this paper was performed on four clinical datasets, namely, arrhyth-
mia [6], leukemia [7,8], diffuse large b-cell lymphomas (DLBCL) [9], and prostate cancer [10].
Among these, the prostate cancer dataset consists of as many as 12,533 attributes but only
102 instances. On the other hand, the arrhythmia dataset contains only 279 attributes
but 452 instances. Thus, the proposed tri-stage method was applied for datasets of any
dimension—large or small—and its performance was measured. As far as medical datasets
are concerned, from a medical analysis perspective, it is of immense importance to find
and select only necessary attributes and completely discard the noisy and irrelevant ones.
Lesser attributes mean there will be less medical tests to diagnose correctly. This would en-
sure a reduction in the diagnosis time with a lesser number of medical tests and treatment
can be started earlier, and at the same time it will certainly aid in lessening the economic
burden on the patients, thus expanding the coverage of the community.

Contributions

The contributions of the proposed work can be highlighted as follows:
1. A tri-stage wrapper-filter-based feature selection framework was proposed for the

purpose of medical report-based disease detection.
2. At the first two stages, four filter methods were applied judiciously to obtain a

preliminary subset of optimal features.
3. In the next stage, the obtained feature subset was fed to a meta-heuristic, called

WOA, to obtain a more optimized subset of features.
4. Three commonly used classifiers—SVM, NB, and KNN—were used to prove the

non-biasness of the feature selection framework toward any particular classifier.
The structure of the paper is as follows: Section 2 is dedicated to the literature survey

and motivation behind the present work whereas in Section 3, the methodology for the
proposed tri-stage wrapper-filter feature selection method is discussed along with a de-
scription of the datasets. Section 4 contains a detailed discussion about the results obtained
and Section 5 finally concludes the paper.

2. Literature Survey

As feature selection is considered to be a crucial data preprocessing part, over the years,
many researchers have proposed different kinds of novel feature selection approaches on
disease datasets. In this section, some of the methods applied on arrhythmia, leukemia,
DLBCL, and prostate cancer datasets are briefly mentioned.

2.1. Arrhythmia

Heart arrhythmia [6] is a disorder that affects the rate or rhythm at which the heart
beats. It is considered to be the most major sign of a heart disease and can be responsible
for causing strokes or cardiac arrest. It can even damage the brain, lungs, and other vital
organs if it interferes with the blood flow. Thus, it is very crucial that they are detected and
treated to avoid any life-threatening situation.

Xu et al. [11] experimented with different feature selection methods and classification
algorithms to increase the classification accuracy of the heart arrhythmia dataset. They
achieved best accuracies by using neural networks only, deep neural networks only, Fisher
discriminant ratio + deep neural network, and principal component analysis + deep neural
network, and they used 10-fold cross-validation with each method to achieve 82.22%,
81.42%, 82.96%, and 75.22% accuracies, respectively, for each method. Singh et al. [12]
implemented three feature selection methods, namely, symmetric uncertainty, CS, and gain
ratio to choose the optimal feature set and used the classification algorithms, namely, linear
SVM, random forest, and a decision tree algorithm named JRip to classify. They obtained
85.58% accuracy with a 30 feature subset using gain ratio and KNN classifier.

Sahebi et al. [13] proposed a novel wrapper-based feature selection named GeFes.
They used a new operator in genetic algorithm (GA) that has increased the performance
of mutation and crossover operators used in GeFes. The GeFes uses KNN classifier and
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an integrated nested cross-validation process. They achieved an accuracy of 99.02% with
135 selected features. Cui et al. [14] proposed a feature selection technique that combines
the benefit of both minimum redundancy maximum relevance (mRMR) method and
improved dragonfly algorithm (IDA), naming it hybrid improved dragonfly algorithm
(HIDA). Firstly, they used mRMR to discard irrelevant features and then they introduced
dynamic swarming factors and quantum local optimum and global optimum to amplify the
exploitation capability of IDA. They achieved 74.77% accuracy for the arrhythmia dataset
and selected an average of 169.4 features.

Kadam et al. [15] introduced a two-stage feature selection method. In the first stage,
they used GA to select the optimal feature set and selected 72 features in this stage. In
the final stage, they implemented SVM Ensemble with bootstrap aggregating (Bagging)
for both classification and evaluation purposes. They achieved 88.72% accuracy with
92 features. Wang et al. [16] applied an oversampling technique named SMOTE to balance
the dataset, and next K-part Lasso was also applied to remove the existing redundant
features. In the final step, they formed a feature selection method, named RF-RFE, by
combining recursive feature elimination and random forest classifier together. This method
obtained an accuracy of 98.68% with a total of 89 features.

2.2. Leukemia

Leukemia [7,8] is the most common blood cell cancer, being found in children younger
than 15 years. Two most frequent types of leukemia among children are acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML). ALL in particular affects children
aged 2–10 years, whereas AML can be found in approximately 20% of adult acute leukemia
cases and has a more aggressive impact.

Wang et al. [17] developed an advanced adaptive elastic net algorithm combined
with conditional mutual information, naming this algorithm AEN-CMI. They applied this
method on a leukemia dataset and compared their method with many state-of-the-art
methods such as SVM, Adaptive Lasso, and different variants of elastic net algorithm.
They ran AEM-CMI 20 times and achieved an average accuracy of 91.05%, selecting almost
27 features. Sun et al. [18] implemented the neighborhood multi-granulation rough sets
(NMRS)-based feature selection method. They integrated Lebesgue and entropy measures
in the NRMS method to analyze and reduce the uncertainty measures of incomplete
neighborhood decision systems. Lastly, the Fisher linear discriminant method has been
applied to select important features. The KNN and C4.5 classification algorithms have
been used to measure the accuracy. The method was named PDJE-AR and it has achieved
an average accuracy of 87.5% with an average of 7.6 features using KNN classifier.

Khamess et al. [19] presented a hybrid feature selection technique that combines sine
cosine algorithm with cuckoo search algorithm to obtain the optimal feature set. They
achieved 90.88% accuracy for the leukemia dataset with an average of 27.91 features.
Kilicarslan et al. [20] implemented a unique hybrid method. At first, they used RFF and a
stacked autoencoder method as filter methods, and then used convolution neural network
(CNN) and SVM as classifiers. They then carried out the experiment with 60–40%, 70–30%,
and 80–20% split train–test data and achieved a mean accuracy of 99.86% with 36 selected
feature subsets by using RFF-CNN combination.

Santhakumar et al. [21] proposed a hybrid feature selection method combining two
optimization algorithms, namely, ant colony optimization (ACO) and ant lion optimization
(ALO). The proposed ant lion mutated ant colony optimizer feature selection technique
achieved an accuracy of 95.45%, whereas ACO and ALO achieved 93.94%, and 90.91%,
respectively. Sheikhpour et al. [22] implemented a feature selection method based on
l2,1-norms and graph Laplacian as filter method to remove the redundant features. They
applied SVM, Gaussian kernel density estimation-based classifier (GKDEC), KNN, and
linear discriminant classifier (LDC) to classify the leukemia dataset. Among these four
classifiers, the KGDEC and LDC obtained 100% accuracy with eight selected features



Sensors 2021, 21, 5571 5 of 24

2.3. DLBCL

DLBCL [9] is the most common subtype of non-Hodgkin’s lymphoma (NHL), globally
constituting up to 40% of all cases. In the United States alone, out of 100,000 people, it
affects about 7 every year. It is fast-growing and is a very aggressive form of NHL. It is
fatal if left untreated, but with appropriate treatment at the correct time, roughly about
two-thirds of individuals can be cured.

Peng Zhou et al. [23] performed an online feature selection based on the dependency
in KNN, called K-OFSD, and gained a maximum accuracy of 95.4% with 10 features using
KNN as classifier for the DLBCL dataset. Chuanze et al. [24] presented a new feature
selection technique, named rL-GenSVM, using relaxed lasso and generalized SVM (Gen-
SVM). At first, they applied z-score normalization, then used relaxed lasso for the feature
selection process, achieving 100% accuracy with eight selected features using Gen-SVM as
classification algorithm. Yan et al. [25] proposed a tournament selection (TS) method and
simulated annealing (SA) algorithm in combination with a coral reef optimization (CRO)
to design a hybrid algorithm named BCROSAT. This BCROSAT algorithm gained a highest
accuracy of 77.49% using KNN classifier as evaluator for the DLBCL dataset.

Bir-Jmel et al. [26] implemented a novel two-stage hybrid method named MWIS-ACO-
LS. In the first stage, they used a combined approach of a new graph-based technique
(named MWIS) and Fisher score, which acted as a filter method. In the second stage, a
modified ACO and a local search (LS) algorithm using the neural network classifier were
coupled together to assure the quality of the feature subsets. This method achieved the
highest accuracy of 100% with six selected features for the DLBCL dataset. Authors of the
work [14] implemented the proposed hybrid improved dragonfly algorithm (HIDA) method
on DLBCL dataset and obtained 100% accuracy with an average count of 16 features.

Alirezanejad et al. [27] developed two filter methods, namely, XV, mutual congestion
(MC), and two hybrid approaches combining these two methods, namely, XV-MC and MC-
XV. At first, fitness for all the features was calculated with the proposed method and then
they were given ranks. Next from the ranked list, on the basis of forward feature selection,
10 subsets of features were selected using Monte Carlo cross validation. Then, majority
voting was applied over the best 10 features, and the highest accuracies achieved were 88%,
89%, 86%, and 85%, respectively, with NB used as classifier for the DLBCL dataset.

2.4. Prostate Cancer

Prostate cancer [10] is the second most frequently occurring malignancy in men
worldwide, numbered at 1,276,106 fresh cases and being the cause of 358,989 deaths (which
is around 3.8% of all cancer-based deaths in men) in 2018.

Liu et al. [28] implemented a hybrid GA with wrapper-embedded approach, namely,
HGAWE, which combines GA and embedded regularization methods together. This feature
selection method achieved a maximum accuracy of 94.17% with 22 attributes.

The authors of the work [26] implemented the proposed method MWIS-ACO-LS
for the prostate cancer dataset, achieving a highest classification accuracy of 100% with
21 selected features. The work performed by Sun et al. [18] implemented the novel PDJE-
AR method to the prostate cancer dataset, achieving an average accuracy of 91.2% with
four features using C4.5 as classification algorithm.

Prabhakar et al. [29] proposed a transformation-based three-stage feature selection and
classification of the prostate cancer dataset using wavelets. In the first stage, the wavelets
are applied to mark important features. In the second stage, the four filter techniques—RFF,
information gain, signal to noise ratio (SNR), and Fisher’s score—were applied to select
the most relevant features. Finally, the four optimization techniques—migrating birds
optimization algorithm (MBOA), marriage in honey bee optimization algorithm (MHBOA),
salp swarm optimization algorithm (SSOA), and WOA—were applied. They achieved a
best highest classification of 99.48% with 100 features with SNR + WOA method and used
artificial neural network (ANN) as a classifier.
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Cahyaningrum et al. [30] implemented another novel hybrid approach using ANN
and GA. They used the principal component analysis method in the first stage for dimen-
sionality reduction and selected 10 features with highest eigenvalues. Next, they used
ANN along with GA, where GA was responsible for weights and bias optimization and
ANN only computed feed-forward calculation. They achieved an accuracy of 76.47% by
this method for the prostate cancer dataset. Deng et al. [31] presented a two-phase hybrid
approach. In the first phase, they used the XGBoost algorithm, and in the second phase,
they used a multi-objective optimization GA (MOGA) to obtain the relevant features, nam-
ing this method as XGBoost-MOGA. They ranked the features and taken relevant ones
by using XGBoost algorithm and then used MOGA to mark the most important features
among the selected ones from the first phase. They achieved 98% accuracy with 54 selected
features using SVM as classifier for the prostate cancer dataset

2.5. Motivation

In a real-life scenario, datasets usually consist of a large number of features, and it
becomes very difficult to differentiate noisy and useful features, as well as to interpret
most contributing features. Due to the presence of redundant and unwanted features in
the dataset, at times, classification of the entire dataset can lead to wrong decisions that
can cause fatal damage in many cases, especially in the medical fields. Apart from this,
the classification of a huge dataset without any feature selection is also computationally
immensely costly. To outplay this issue, researchers have been working on different
kinds of feature selection methods in order to obtain the optimal combination of features.
Besides feature selection of medical datasets [32–34], researchers have utilized feature
selection techniques in various domains such as handwritten script classification [35,36],
facial emotion recognition [37], speech emotion recognition [38], and spoken language
identification from audio signals [39,40] and have achieved notable classification accuracy
improvement over the years. However, the two-phase filtering with the combination of four
kinds of filter methods and classification, as well as one more phase of wrapper algorithm
for the mentioned datasets have not been explored thus far. This motivates us to implement
a tri-stage wrapper-filter feature selection framework for the disease datasets. To the best
of our knowledge, this method is proposed for the first time for medical report-based
disease classification.

3. Materials and Methods

In this section, the proposed tri-stage wrapper-filter feature selection method is de-
scribed. The features are selected by a three-phase process. A flowchart of the proposed
method is shown in Figure 1.
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Figure 1. Flowchart of our proposed tri-phase hybrid wrapper-filter feature selection method.

3.1. Phase 1

Different kinds of filter-based rankers were applied on the whole dataset, and sets
of ranked lists were produced. The following four rankers produced the best results in
terms of accuracy—MI, CS, RFF, and XV. A union of top-m features from each ranked
set were taken. The value of m varied according to the different dataset sizes. A KNN
classification algorithm was applied for preliminary assessment on the individual features
from the union set, and the accuracy obtained by each feature was noted. Next, the other
two classification algorithms, namely, SVM and NB, were applied on every feature from
the union set, and their corresponding accuracies were noted.

When all the accuracies from the three classification algorithms were obtained, an
average accuracy was taken for each feature and the features were sorted according to the
descending value of the average accuracy. After this, the top-k features with the highest
accuracy were selected for Phase 2. The value of k was determined by running the XGBoost
classifier in the sorted union set, and it varied from 1 to the total number of features
available in the sorted union set. The XGBoost classification algorithm was selected to
determine the value of k as being a decision tree-based ensemble method, making the
proposed method generalized for all the datasets. The value of k for which accuracy was
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not increasing (or was the same or the had decreased) after a certain value meant that many
k number of features were chosen as the final feature subset. In this step, a large number of
features were rejected, and only pertinent ones were selected. The ranker methods as well
as classification algorithms used are described in detail in the following subsections.

3.1.1. Ranker Methods Used

• MI:

In information theory and probability theory, the MI [41] of two particular variables is
a measure of how mutually dependent the two variables are. It indicates the measurement
of information that can be secured from a random variable by simply observing how it
is changing with respect to another random variable. It is intently linked to the idea of
entropy, as the depletion of uncertainty of a random variable can be calculated if another
variable is studied. Hence, a high MI value specifies a large depletion of uncertainty,
whereas a low value specifies a small depletion. If the MI is zero, it specifies that the two
random variables are independent of each other. Let us say M and N are two random
variables, then the MI between these two variables can be defined as

Ī(M; N) = E(M) − E(M | N) (1)

where Ī(M; N) is the MI for M and N, E(M) is defined as the entropy for M and N, and
E(M | N) is defined as the conditional entropy for M given N.

• CS

The CS (χ2) [42] statistics measure the independence between a feature and its class.
Let us say X is the number of examples, Xmn is the number of samples of Cm class within
the nth interval, and Emn is the number of samples in the nth interval. Now, the expected
frequency of Xmn is given by

χ2 =
c

∑
m=1

K

∑
n=1

(Xmn − Emn)
2

Emn
(2)

where K is the number of the intervals and c is the number of classes. If pm is the probability
of occurrence of event K, then the expected value Em = z ∗ pm, where z is the total number
of events. Lower the value of CS, and more dependence is present between the features.

• RFF

Relief [43] was originally developed by Kira and Rendel. RFF is an extension of the
relief algorithm developed after working on its limitations. Basic relief algorithm can
classify only binary class problems, whereas RFF can classify multiclass problems. Relief
algorithm essentially estimates the rank of features on the basis of to what extent the feature
can differentiate between instances that are close to each other. RFF erratically selects an
instance Ii, then it looks for k nearest hits of the same class hc and then for k nearest misses
mc for each of the other classes. Then, RFF updates the weight of each feature by averaging
the contribution of both all hits and misses. The primary difference between relief and
RFF lies in choosing k hits and misses, which ensures the algorithm concerning noise to is
more robust.

• XV

XV [27] calculates the distance between samples of one label from samples of another
label within each feature. Higher distance or XV value means the feature is better and will
be ranked higher. For a feature X, suppose there are n number of samples present of class i,
which is indicated by Xi, and m number of samples present of class k, which is indicated
by Xk. To determine the XV of feature X with respect to class, variance of n and m number
of samples belonging to Xi and Xk sample set needs to be calculated first, and the sum
would be considered as the XV for feature X.
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3.1.2. Classification Algorithms Used

• KNN

KNN [44] is a supervised ML algorithm used to solve both classification and regression
problems. KNN algorithm saves all the available data points, and when a new data point
arrives, it classifies the new data point depending on the similarity measures (e.g., distance
function). Majority voting is used to classify the new data point, and it is assigned the class
in which most of its neighbors are located. Accuracy achieved by KNN varies with the
number of neighbors or the value of k used by the algorithm.

• SVM

In 1963, Vladimir Vapnik and Alexey Chervonenkis developed the original SVM
algorithm, which can classify only linearly separable data, and in the 1990s, Vapnik used
kernel trick to extend the usage of this classification method, which can separate non-
linearly separable classes [45]. SVM is a supervised ML method mostly used in classification
problems. Let us say there is n number of features present of two classes; then, each feature
is treated as a data point, and using the feature value as co-ordinate value, they are plotted
in n-dimensional space. Then, a hyper-plane is drawn to put a margin between the two
classes so that features belonging to each class reside on the opposite side of the hyper-
plane. In this way, the classification is achieved by detecting the hyper-planes, which help
to distinguish the two classes accurately.

• NB

NB [46] is a supervised ML algorithm mostly used for classification problems. In
statistics, NBs are “probabilistic classifiers” built by applying Bayes’ theorem. NB classifier
has a presumption about the features that they are independent of each other, which means
presence of any particular feature does not have impact on any other feature of the class.
This is one of the simplest forms, and to achieve higher accuracy, they are coupled with
kernel density estimation.

• XGBoost

XGBoost [47] or extreme gradient boosting is a popular and commonly used ML
algorithm that is based on gradient boosting technique and an extension to gradient
boosted decision trees (GBM). It was developed by Tianqi Chen, and it helps in enhancing
performance and speed in tree-based (sequential decision trees) ML algorithms. It is
a faster algorithm as it has parallel and distributed computing methods. It has some
inbuilt qualities that make it different from others, such as cache optimization, variety of
regularizations to reduce overfitting, auto tree pruning, and built in cross-validation.

3.2. Phase 2

The k-features obtained from the Phase 1 are input to this phase. In this phase,
correlation is measured among the features.

Pearson correlation coefficient (PCC) was used to measure the pairwise correlation of
all 50 features. PCC can be described as a measurement of strength of a linear association
between two features or variables. It is generally notified by r, where r = 1 means the
features have a perfect positive correlation, r = −1 means they have a perfect negative
correlation, and r = 0 means there is no correlation present between the attributes. Let us
say there is i number of instances present for two variables a and b; then, PCC between a
and b can be calculated as

r = ∑(ai − α)(bi − β)√
∑(ai − α)2 ∑(bi − β)2

(3)

where ai and bi are any two random instances; α and β are the mean values for the features
a and b, respectively; and r is the PCC value between a and b.
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A correlation matrix is calculated among all features and with respect to class as well.
If two features are highly correlated, then the one that is having greater r value with respect
to the class is kept and the second one is rejected. Then, the XGBoost classifier (as explained
in Section 3.1.2) is applied on the non-correlated feature set, and the same logic of Phase 1
is applied to select top j features. These j numbers of features are then sent to Phase 3. This
process helps to reduce the less informative features.

3.3. Phase 3

The top j features obtained from Phase 2 are passed to Phase 3, and a different number
of search agents, ranging from 50 to 70, are deployed for different datasets, and maximum
number of iterations is set to 100. This algorithm is run for 20 times, and average accuracy
and feature number are noted down as final accuracy.

3.3.1. Whale Optimization Algorithm

WOA is a nature-inspired meta-heuristic algorithm proposed by Majdi [48]. Researchers
are using it as a wrapper-based feature selection method in various domains [29,49,50]. It
follows the bubble-net feeding in the foraging behavior of the humpback whales. They
swim in a ‘6′-shaped path and hunt close to the surface [51]. They trap the prey in a net of
bubbles. The algorithm mimics the behavior of the humpback whales in two main phases—
exploitation and exploration phases. In the exploitation phase, the prey is encircled in
spiral bubble-net attacking mode, and in the exploration phase, there is a search for random
prey. Each phase is described in detail in the following subsections.

3.3.2. Exploitation Phase

At first, the location of the prey is recognized by the humpback whales, and they then
encircle the prey. WOA always presumes that target prey is the best candidate solution or
at least it the closest to the optimal, as the optimal design position in the search space is
not known in advance. After the best search agent is selected, other search agents will also
therefore try to update their location according to the location of the best search agent. For
a location to be updated, Equations (4) and (5) are used.

→
B =

∣∣∣∣→J .
→
X∗(p)−

→
X(p)

∣∣∣∣ (4)

→
X(p + 1) =

→
X∗(p)−

→
K .
→
B (5)

where p, X∗, and X represent the current iteration; best solution’s position vector calculated
thus far; and the current solution X, which is the position vector, respectively. J and K are
coefficient vectors, and the rest are normal mathematical interpretations such as | |, which
is the absolute value and ·, which is an element-by-element multiplication. The value of X∗

would be updated in each iteration if any better solution is present. The coefficient vectors,
J and K, are calculated as in Equations (6) and (7).

→
K = 2

→
s .
→
v −→s (6)

→
J = 2.

→
v (7)

where, v is a random vector in [0, 1], and s decreases linearly from 2 to 0. The position of
the solution that is closest to the best solution is controlled by adjusting the values of the
vectors K and J.

Next, the shrinking encircling behavior is simulated by decreasing the value of s in
Equation (6) according to Equation (7).

s = 2− p
2

MaxIter
(8)
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where, p and MaxIter represent the iteration number and the maximum number of allowed
iterations, respectively. After the shrinking is performed according to the value of s, the
distance between the solution (X) and the leading solution (X∗) is next calculated to achieve
the spiral-shaped path. Equation (9) provides the spiral equation created between the
current solution and the best (leading) solution.

→
X(p + 1) = B′.ebl . cos(2πl) +

→
X∗(p) (9)

where, b defines the spiral’s shape, l is a random number in [−1, 1], and B is the distance
between a whale X and a prey (→

B =

∣∣∣∣ →X∗(p)−
→
X(p)

∣∣∣∣).

To model the shrinking encircling mechanism and the spiral-shaped path, we as-
sumed a probability of 50% to choose between them during the optimization, as shown in
Equation (10).

→
X(p + 1) =

 Shrinking Encircling,
→
X(p + 1) =

→
X∗(p)−

→
K .
→
B i f t < 0.5

Spiral Shaped Path,
→
X(p + 1) = B′.ebl . cos(2πl) +

→
X∗(p) i f t ≥ 0.5

(10)

where, t represents the probability and is a random number in [0, 1].

3.3.3. Exploration Phase

To enhance the performance of the exploration phase in WOA, instead of updating
the solutions on the basis of the position of the best solution obtained thus far, we utilized
a randomly chosen solution to update the solutions positions. Thus, any random value is
used for vector K, where K is greater than 1 or less than −1. This forces a solution to be
distant from the best-known search agent. Equations (11) and (12) model this mechanism
mathematically.

→
B =

∣∣∣∣→J .
→
Xr −

→
X
∣∣∣∣ (11)

→
X(p + 1) =

→
Xr −

→
K .
→
B (12)

where,
→
Xr is a randomly chosen whale.

Let us say there is a total of ‘n’ number of features present in the dataset, and they are
divided into feature subsets. This individual feature subset is considered as a position of a
whale. The goal is to choose less number features in the solution subset and achieve higher
classification accuracy using KNN as a classifier. A fitness function is used to evaluate each
solution subset. This fitness function depends on two objectives: number of features in the
solution subset and the solution’s accuracy. Algorithm 1 describes the algorithm of WOA.

3.4. Dataset Details

The proposed tri-phase hybrid wrapper-filter feature selection model has been used
to experiment on the arrhythmia [52], leukemia [53], DLBCL [54], and prostate cancer [55]
datasets taken from the UCI ML Repository and Biolab Repository. The detailed infor-
mation regarding the datasets used in the present work is mentioned in Table 1. The
proposed tri-phase hybrid wrapper-filter feature selection method has been implemented
using Jupyter Notebook and Google Colaboratory. RFF has been implemented using
scikit-rebate [56], and WOA has been implemented using a PY-FS package [57].
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Algorithm 1 Algorithm of WOA

Input: Number of whales (n), Max_Iter
Output: Prey or the fittest whale
Generate Initial Population Xi (i = 1, 2, . . . , n )
Calculate the objective value of each solution
X∗ = the best solution
while (p < Max_Iter )
for each solution
Update s, K, J, l, and t
if (t < 0.5 )
if (|K| < 1 )
Update the current solution’s position by Equation (5)
else if(|K| > 1)
Select a random solution (Xr )
Use Equation (12)
end if
else if (t >= 0.5 )
Update the current solution’s position by the Equation (9)
end if
end for
Check whether there is any solution present beyond the search space and update it
Calculate each solution’s fitness
If a better solution is found, update X∗

p = p + 1
end while
return X*

Table 1. Details of four medical datasets used in this work.

Sl. No. Dataset Total Number
of Attributes

Total Number
of Instances Class Distribution

1. Arrhythmia 279 452 Non-affected: 245
Affected: 207

2. Leukemia 5147 72 ALL: 47
AML: 25

3. DLBCL 7070 77 Non-DLBCL: 19
DLBCL: 58

4. Prostate cancer 12,532 102 Normal tissue: 50
Prostate tumor: 52

Table 1 summarizes the number of attributes, instances, and class distribution of the
datasets used in this work. Arrhythmia dataset, taken from UCI repository, has 16 different
classes ranging from 1 to 16, among which 2–15 are affected classes and 1 is non-affected.
Class 16 is unrecognized, but in all the related work mentioned in this study, the authors
have considered class 16 as affected, which is why in this work class 16 is also considered
as affected class. Thus, the dataset has been reclassified into two classes, non-affected
(class 1) consisting of 245 samples and affected (2–16) consisting of 207 samples, and it has
279 features. Leukemia dataset is taken from Biolab Repository, and it has 5147 features
that are lesser than the original dataset [58], as features that are not present in at least
one sample have been removed. It has 72 instances, among which 47 are of ALL and 25
are of AML class. The DLBCL dataset is also taken from the Biolab Repository. It has
samples of two classes, one being DLBCL class and another being follicular lymphoma
(FL) class. Although DLBCL and FL both are B-cell lineage malignancies, their clinical
approach and treatment method are totally different. Prostate cancer dataset, taken from
Biolab Repository, consists of 52 samples of tumor tissue and 50 samples of normal tissue,
having a total of 12,532 features.
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4. Results and Discussion

This section is divided into subsections. The first subsection contains information
about all parameters tuning used to implement the proposed method. In the second
subsection, a detailed analysis of the results obtained in each phase of the proposed method
is described. In the third subsection, comparative study was performed with the state-
of-the-art methods mentioned in the literature survey section in terms of the number of
features used and accuracies obtained. In the fourth subsection, a statistical significance
test result with respect to accuracy between state-of-the-art methods and proposed method
is described. Finally the fifth subsection, a comparative study was performed again with
three other non-medical UCI benchmark datasets in terms of the number of features used
and accuracies obtained.

4.1. Parameter Tuning

In Phase 1, the only parameter value that has been varied is the value of m. For the
arrhythmia dataset, the value of m was varied from 50 to 70 with an interval of 5, i.e., 50,
55, 60, 65, 70, and 75, and six feature subsets were obtained. Then, the four classifiers
were applied on the six subsets, and after taking mean accuracy, we sorted the features
according to their achieved accuracy. The XGBoost classification algorithm was applied on
the six sorted feature subsets. It was observed that for all six feature subsets, after the first
60 features, the accuracy either decreased or remained the same. Thus, the value of m was
selected as 50 for the arrhythmia dataset in Phase 1. In the same way, m was varied from
100 to 150 for the leukemia dataset, 150 to 200 for the DLBCL dataset, and 200 to 250 for
the prostate cancer dataset, keeping an interval value of 10 for all three datasets. The four
classifiers were used with default parameter values, and in Phase 2, similarly, the XGBoost
classification algorithm was applied with default parameter values.

In Phase 3, there were features remaining in the range of [20,25] for all the four medical
datasets. Thus, the WOA was applied for the arrhythmia dataset first. Number of search
agents was varied from 30 to 100 with an interval of 5, whereas the number of iterations
was fixed at 100. It was observed that the best optimal result was obtained when the
number of search agents was 70 and the optimal solution converged by 100 iterations. In
the same way, for DLBCL, leukemia, and prostate cancer datasets, the number of optimal
search agents was found to be 50, 60, and 50, respectively, with a fixed iteration number
of 100. The value of K in KNN varied from 3 to 7 for the datasets, and K = 5 gave better
results for both arrhythmia and prostate cancer datasets. For the DLBCL and leukemia
datasets, K = 4 produced better results. After obtaining the ideal values for the number of
agents, the number of iterations, and K value in KNN, we applied the WOA 20 times on
the four datasets, and the average value was taken in terms of both accuracy and features
as the number of features varied in the range of [1,10] for each run. Table 2 represents the
summary of parameter details used in each phase.
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Table 2. Parameters details of Phase 1 and Phase 3 for the four medical datasets.

Dataset

Parameter Details
Phase 1 Phase 3

Value of ‘m’ #Search Agents Value of ‘K’ in KNN

Arrhythmia
Range: 50–70

Interval value: 5
Final value: 50

Range: 30–100
Interval value: 5
Final value: 70

5

Leukemia
Range: 100–150

Interval value: 10
Final value: 100

Range: 30–100
Interval value: 5
Final value: 50

4

DLBCL
Range: 150–200

Interval value: 10
Final value: 150

Range: 30–100
Interval value: 5
Final value: 60

4

Prostate cancer
Range: 200–250

Interval value: 10
Final value: 250

Range: 30–100
Interval value: 5
Final value: 50

5

4.2. Experimental Outcomes and Analysis

Before evaluation, some preprocessing was applied to the aforementioned datasets.
The arrhythmia dataset had multiple missing values present for all features that were
replaced by mean values respective of classes. Other than this, as a part of preprocessing,
all four disease datasets were standardized and then normalized.

After the preprocessing, three ML algorithms—KNN, SVM, and NB—were applied
on the datasets with 10-fold cross validation to compare the accuracy with and without
any feature selection. At Phase 1, four filter methods—MI, CS, RFF, and XV—were applied
separately to rank the features. Then, a union of top m features were taken, a KNN
classification algorithm was applied on the individual feature obtained by the union, and
their corresponding accuracies were noted. The NB and SVM classifiers were applied, and
the accuracy for individual features was noted. Next, the mean accuracy of features were
calculated and sorted according to the descending value of accuracy. It is to be noted that
the value of m was different for each medical dataset. Afterward, the top k features were
selected by running XGBoost algorithm on the union set. These top k features were passed
to Phase 2 for further processing, and in this Phase 2, the feature subset was reduced again
depending on how much correlated the features were. If any two features were highly
correlated (PCC value > 0.7), the second feature was rejected and the first one was kept.
Then, the XGBoost classification algorithm was applied on the selected non-correlated
feature set and top j features were selected. To check the best value of k and j, we applied
XGBoost classification algorithm along with 10 cross-validation (CV) in each phase. For
Phase 1, the XGBoost algorithm was applied on the union set, taking values from 5 to the
total feature number of the union set (say, s), with intervals of 5, say, 5, 10, 15, . . . , s to find
after which value of k the accuracy obtained was either decreasing or remaining the same.
In the same way, the value of j for Phase 2 was also determined by varying the value of
j from 1 to the total number of selected features after correlated features were discarded.
In Table 3, detailed values of m, k, j, and correlated features and non-correlated features
are mentioned. The reduced feature set of j features was considered to be passed on to the
wrapper method. In Phase 3, the top j features were selected from the feature set obtained
by Phase 2, and WOA was applied on the selected feature set.
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Table 3. Details of the features used to obtain the optimal feature subset in each phase.

Dataset

Phase 1 Phase 2

Number of
Features Used
for Union (m)

Numberof
Features Selected (k)

Number of
Discarded

Correlated Features

Number of
Non-Correlated

Features
Number of

Features Selected (j)

Arrhythmia 50 60 25 35 20
Leukemia 100 70 46 24 23

DLBCL 150 50 26 24 23
Prostate cancer 200 75 50 25 25

Table 3 summarizes all the features used and obtained in Phase 1 and Phase 2. In
Phase 1, a union of 50, 100, 150, and 200 features were taken by each filter method (namely,
CS, MI, RFF, and XV) participating in the union for arrhythmia, leukemia, DLBCL, and
prostate cancer datasets, respectively. Then, as mentioned previously, after applying three
classification algorithms, we sorted the features according to the non-increasing mean value
of accuracies. In order to find the optimal subset, we applied the XGBoost algorithm on the
union set. Then, for all the datasets, if their corresponding accuracies were varying in a sine
wave manner up to a certain number of feature subsets, then the accuracy would either
remain the same when more features are added in the feature subset or accuracy would
decrease. Thus, the number of features for which the accuracy was in a non-increasing
state were found to be 60, 70, 50, and 75, respectively, for all the four datasets, and these
features are then sent to Phase 2.

In Phase 2, the correlation value was calculated and the highly correlated features were
discarded. In this phase, 25 out of 60 features obtained by Phase 1 were marked as highly
correlated and discarded for the arrhythmia dataset. The XGBoost algorithm was again
applied on the remaining 35 features, and it was observed that the accuracies were varied
for the first 20 features, after which they were decreasing. Those 20 features were selected
and sent to Phase 3. In the same way, the first 23, 23, and 25 top features were obtained
by Phase 2 for leukemia, DLBCL, and prostate cancer datasets, respectively. Finally, in the
third phase, the WOA was applied on the top j features obtained from Phase 2. Table 4
shows the comparison between accuracies obtained over the whole datasets by applying
three classification algorithms (KNN, SVM, and NB) and the number of best features and
accuracies obtained after applying the proposed tri-stage method.

Table 4. Comparison in terms of accuracy, number of features selected, and computation time while experimenting on four
disease datasets with and without applying our proposed feature selection method.

Dataset

Accuracy (%) Obtained by the Proposed Method (with
Feature Selection)

Accuracy (%) on the Entire Dataset (without
Feature Selection)

Original
#Features

#Features
Selected

Accuracy
(%)

Computation
Time (s) KNN SVM NB Computation

Time (s)

Arrhythmia 279 3 94.50 238 63.06 75.44 67.71 42.8
Leukemia 5147 4 100 358 87.67 88.92 100 43.9

DLBCL 7070 4 100 545 84.10 75.35 78.75 47.5
Prostate cancer 12,532 3 100 782 85.36 84.36 62.54 55.6

Table 4 shows the detailed results obtained over the four datasets taken into consider-
ation. It clearly shows the proposed method succeeded in determining the best features
along with best accuracies. For the arrhythmia dataset, the SVM classifier achieved the
highest accuracy over the whole dataset, whereas the proposed method achieved 94.50%
accuracy with only three features. For the leukemia dataset, the NB classifier achieved
100% accuracy, but with the proposed method, 100% accuracy was also obtained with
only four features, which was remarkably helpful. Similarly, for both DLBCL and prostate
cancer datasets, the KNN classifier achieved the highest accuracies of 84.10% and 85.36%,
respectively, without using any feature selection procedure. On the other hand, our pro-
posed method achieved a 100% accuracy for both the datasets utilizing only four and three
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features, respectively. Table 4 summarizes the comparison in terms of computation time
taken by our proposed method with and without using the feature selection method. For
arrhythmia, leukemia, DLBCL, and prostate cancer datasets, the computation times needed
by our proposed method were 238, 358, 545, and 782 s, respectively. The computation times
needed to run the original feature set (i.e., without using the feature selection method)
were found to be 42.8, 43.9, 47.5, and 55.6 s for arrhythmia, leukemia, DLBCL, and prostate
cancer datasets, respectively. Figure 2 represents the classification accuracies obtained by
KNN, SVM, and NB classifiers on the whole dataset without any feature selection, and
Figure 3 represents the classification accuracies obtained by using our proposed feature
selection method along with the number of features selected for each dataset.

Figure 2. Comparison of accuracies obtained on four disease datasets using KNN, SVM, and NB
classifiers without any feature selection.

Figure 3. Comparison of accuracies, number of features, and computational time obtained on four
disease datasets using our proposed tri-stage wrapper-filter feature selection method.
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In order to calculate the highest accuracies and optimal feature sets obtained by each
phase, we applied the XGBoost algorithm on the feature set achieved by Phase 1 and
Phase 2 while determining the value of k and j for Phase 1 and Phase 2. As mentioned
previously, both the values of k and j varied from 1 to the number of features present in the
selected subset to find the value for which the accuracy obtained was the highest. Then, say
the accuracy was highest for n = 15, the XGBoost algorithm would then again be applied
for n ± 5 (i.e., from 10 to 20) to find the exact value of n where the accuracy was maximum.
Table 5 shows the accuracy, precision, recall, and F1_Score of the selected features of Phase 1
and Phase 2 of arrhythmia, DLBCL, leukemia, and prostate cancer datasets.

Table 5. Comparison of accuracy, precision, recall, and F1_Score obtained over the disease datasets
with XGBoost classifier and number of best n features obtained by Phase 1 and Phase 2.

Dataset

XGBoost Classifier

Accuracy
(%)

Precision
(%)

Recall
(%)

F1_Score
(%)

No. of Best
n Features

Arrhythmia Phase 1 96.46 94.21 98.57 96.34 26
Phase 2 96.24 93.82 98.41 96.06 17

Leukemia
Phase 1 96.25 90 87.5 88.73 8
Phase 2 97.32 80 80 80 6

DLBCL
Phase 1 92.14 68.33 70 69.15 8
Phase 2 93.39 73.33 70 71.62 9

Prostate
cancer

Phase 1 95.18 96.57 94.89 95.72 19
Phase 2 94.18 96.57 93.55 95.03 5

Table 5 also summarizes the best n features selected by Phase 1 and Phase 2 separately.
It is noticeable that except for the DLBCL dataset, for all other datasets, the number of
optimal n features decreased exceptionally, even though the measures were not almost the
same. This accentuates the idea of Phase 2 that the correlated features were unnecessary
and that this model can achieve either same or better accuracy using any other measure
when the redundant features are discarded. For the arrhythmia dataset, after the execution
of Phase 1, a subset of 26 features attained an accuracy of 96.46%, and after the execution of
Phase 2, a subset of 17 features attained comparatively lesser accuracy, whereas precision
and other measures were almost same. For the leukemia dataset, eight features were
selected by Phase 1 and six were selected by Phase 2 as the best n features. Although
accuracy increased by 1% after Phase 2, the precision, recall, and F1_measure decreased.
For the DLBCL dataset, the best n feature numbers were eight and nine, respectively, for
Phase 1 and Phase 2. For the DLBCL dataset, all the measures achieved by Phase 2 were
greater than Phase 1. Finally, for the prostate cancer dataset, the difference between the
number of features, for which the highest accuracy was achieved by Phase 1 and Phase 2,
was huge. However, almost the same accuracy, precision, recall, and F1-Score values were
achieved while using nearly four times less features. Figure 4 represents the comparison of
best n features obtained by each phase when highest accuracies were achieved for all the
four datasets.
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Figure 4. Comparison of number of features obtained by each phase of our proposed tri-stage
wrapper-filter feature selection method for all the four disease datasets considering the highest
accuracy achieved in each phase.

4.3. Comparison with State-of-the-Art Methods

Tables 6–9 show the comparison (in terms of both number of features and accuracies
obtained) between some past methods and the proposed tri-stage wrapper-filter feature
selection method for arrhythmia, leukemia, DLBCL and prostate cancer datasets, respectively.

Table 6. Comparison in terms of accuracies (%) and number of selected features obtained by the
proposed method with some state-of-the-art methods for the arrhythmia dataset (highest accuracy
and lowest #features are highlighted in bold).

Dataset Method No. of Features
Selected

Classification
Accuracy (%)

Arrhythmia

Xu et al. [11] 236 82.96
Singh et al. [12] 30 85.58
Sahebi et al. [13] 135 99.02

Cui et al. [14] 169 74.77
Kadam et al. [15] 92 88.72
Wang et al. [16] 89 98.68

Proposed 3 94.50

Table 7. Comparison in terms of accuracies (%) and number of selected features obtained by the
proposed method with some state-of-the-art methods for the leukemia dataset (highest accuracy and
lowest #features are highlighted in bold).

Dataset Method No. of Feature
Selected

Classification
Accuracy (%)

Leukemia

Wang et al. [17] 27 91.05
Sun et al. [18] 7.6 87.5

Khamess et al. [19] 27.91 90.88
Kilicarslan et al. [20] 36 99.86

Santhakumar et al. [21] NA 95.45
Sheikhpour et al. [22] 8 100

Proposed 4 100
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Table 8. Comparison in terms of accuracies (%) and number of selected features obtained by the
proposed method with some state-of-the-art methods for the DLBCL dataset (highest accuracy and
lowest no. of features are highlighted in bold).

Dataset Method No. of Features Selected Classification Accuracy (%)

DLBCL

Peng Zhou et al. [23] 10 95.4
Chuanze et al. [30] 8 100

Yan et al. [25] NA 77.49
Bir-Jmel et al. [26] 6 100

Cui et al. [14] 16 100
Alirezanejad et al. [32] 10 89

Proposed 4 100

Table 9. Comparison in terms of accuracies (%) and number of selected features obtained by proposed
method with some state-of-the-art methods for the prostate cancer dataset (highest accuracy and
lowest no. of features are highlighted in bold).

Dataset Method No. of Features Selected Classification Accuracy (%)

Prostate cancer

Liu et al. [28] 22 94.17
Bir-Jmel et al. [26] 21 100

Sun et al. [18] 4 91.2
Prabhakar et al. [29] 100 99.48

Cahyaningrum et al. [30] 10 76.47
Deng et al. [31] 54 98

Proposed 3 100

For the arrhythmia dataset, Sahebi et al. [13] obtained the highest accuracy of 99.02%,
whereas the proposed method achieved 94.50%. However, the mentioned work also chose
a subset of 135 features, whereas the proposed method selected only three features, being
is 45 times less than the former. Among the other mentioned works, Wang et al. [16]
achieved an accuracy of 98.68% with a subset feature of 89, which was again almost
30 times larger than the number of features chosen by our proposed method. It can be
seen from Table 6 that all the other works achieved less accuracy while utilizing more
features than our proposed method. The authors of [11,14,15] selected a very large number
of features (236, 135, and 169 features, respectively) as an optimal feature set and achieved
82.96%, 74.77%, and 88.72% accuracies, respectively. Authors of the work [12] succeeded in
selecting a comparatively lesser number of features (30 features), but the accuracy obtained
was 85.58%.

For the leukemia dataset, Sheikhpour et al. [22] obtained the highest accuracy of 100%,
and the proposed method also achieved the same. However, the number of features selected
by the proposed method was comparatively less. The authors selected eight features, and
the proposed method selected only four features. Kilicarslan et al. [20] achieved a notable
accuracy of 99.86% using 36 features. Santhakumar et al. [21] obtained 95.45% accuracy,
but they did not mention any number of features in particular. Authors of works [17,19]
achieved almost the same accuracy of 91.05% and 90.88%, respectively, while using the
same number of optimal features (27 features). Sun et al. [18] succeeded in selecting only
seven features and attained only 87.5% accuracy for the leukemia dataset.

For the DLBCL dataset, the work mentioned in [14,26,30] attained an accuracy of
100% but the number of features selected by the authors were greater than the number of
features selected by our proposed method. They utilized 16, 6, and 8 features, respectively,
whereas the proposed method selected only four features as the optimal feature set. All the
other works mentioned gained lesser accuracy than the proposed method. The authors
of both [23,32] selected 10 significant features to attain a maximum accuracy of 95.4%
and 89%, respectively. Yan et al. [25] achieved 77.49% accuracy using a hybrid algorithm
named BCROSAT.

For the prostate cancer dataset, Bir-Jmel et al. [26] achieved an accuracy of 100%,
selecting 21 features. However, the proposed method also obtained the same accuracy
while utilizing only three features. Although the work performed by the authors in [29,31]
attained accuracies of 99.48% with 100 features and 98% with 98 features, respectively,
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they chose 33 times and 28 times more features than the proposed method, respectively.
Sun et al. [18] attained an optimal feature set with only four features, but the accuracy
also decreased. They attained 91.2% accuracy with the selected four features. The work
conducted by the authors of [28,30] implemented different hybrid GAs and achieved
accuracies of 94.17% with 22 features and 76.4% accuracy with 10 features, respectively.

4.4. Statistical Significance Test

Statistical significance test was also performed to prove that the results of the proposed
method were statistically significant as compared to the other state-of-the-art algorithms
mentioned in this paper. Statistical tests provide a means to make quantitative decisions
about any process [59]. The goal was to ascertain whether there was sufficient evidence
to ‘reject’ a conjecture or hypothesis about the process [60,61]. The conjecture is called the
null hypothesis. For our case, the null hypothesis stated that the two sets of results had
the same distribution. In order to reject the null hypothesis, we performed one-sample
t-test [62] with two different significance levels, and the results are given in Table 10. Both
t-values and p-values were calculated with respect to classification accuracy. From Table 10,
it can be concluded that our proposed method is statistically significant in comparison to
other methods for all the four datasets at the 0.10 level of significance.

Table 10. Summary of statistical significance test result with respect to accuracy between state-of-the-
art methods and proposed method.

Dataset t-Value p-Value Significance Level (0.10)

Arrhythmia −1.618637 0.083225 Significant
Leukemia −2.790643 0.019208 Significant

DLBCL −1.743647 0.070839 Significant
Prostate cancer −1.871934 0.060057 Significant

4.5. Results on Other UCI Datasets

Other than medical datasets, the proposed method was applied on three UCI bench-
mark datasets—Ionosphere [63], Krvskp [64], and Sonar [65]—from different domains.
Table 11 summarizes the dataset details of three benchmark datasets. Table 12 shows the
comparison (in terms of both number of features and accuracy obtained) between some
past methods [1,2,33,34,59,66] and the proposed method for the said datasets.

The proposed method achieved an average accuracy of 95.77% with four features for
the Ionosphere dataset, whereas the authors of paper [2,59] both obtained almost the same
accuracy of 98.56% with seven features. The authors of [66] also achieved a higher accuracy
of 97.18%, but they also used more features than our proposed method. The authors of [1]
achieved lesser accuracy while utilizing more features. For the Krvskp dataset, all the
previous works [2,33,34,59] achieved higher accuracy, but they consumed a very high
number of features as well. The lowest number of features among them was 15, which
was obtained by the authors of [59] with an accuracy of 97.81%, whereas the proposed
method achieved an 95.15% accuracy with only four features. The authors of paper [2]
obtained an accuracy of 99.06% with 32 features, which was eight times more than the
number of features obtained by our proposed method. For the Sonar dataset, the authors
of [34] obtained the highest accuracy of 100% with 16 features, whereas our proposed
method achieved 92.85% accuracy with only four features. However, it was obvious that
the accuracy achieved in [34] was almost perfect (being 100%), but it is to be noted that
the reduction in the number of features (described in [34]) was found to be four times
lesser by our proposed method. Among other methods, authors of the method reported
in [66] obtained an accuracy of 97.62% with 51 features, and the method mentioned in [59]
achieved almost the same accuracy as reported by our proposed method but they used 22
features as well. The best results achieved by our proposed method for the Ionosphere,
Krvskp, and Sonar datasets were 98.05% accuracy with seven features, 98.75% accuracy
with nine features, and 94.75% accuracy with eight features, respectively.
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Table 11. Details of three benchmark non-medical datasets.

Dataset No. of Attributes No. of Instances No. of Classes Dataset Domain

Ionosphere 34 351 2 Electromagnetic
Krvskp 36 3196 2 Game
Sonar 60 208 2 Biology

Table 12. Comparison in terms of accuracy (%), and number of selected features obtained by proposed
method with some state-of-the-art methods for Ionosphere, Krvskp, and Sonar datasets (highest
accuracy and lowest no. of features are highlighted in bold).

Dataset Method No. of Features Selected Classification Accuracy (%)

Ionosphere

Ghosh et al. [1] 20 95.36
Thejas et al. [66] 6 97.18
Ghosh et al. [2] 7 98.51

Sheikh et al. [59] 7 98.56
Proposed 5 95.77

Krvskp

Chatterjee et al. [33] 20 97.81
Sheikh et al. [59] 15 97.81
Ghosh et al. [34] 11 98.6
Ghosh et al. [2] 32 99.06

Proposed 4 95.15

Sonar

Ghosh et al. [1] 27 85.07
Sheikh et al. [59] 22 92.86
Thejas et al. [66] 51 97.62
Ghosh et al. [34] 16 100

Proposed 4 92.85

5. Conclusions

In this work, a new tri-stage feature selection was proposed to reduce the attribute set
of the high-volume dataset by selecting a subset of the original features, which is essential.
If any highly important feature is missed, it may result in wrong classification, which is
especially undesirable, particularly in medical data. The proposed method successfully
marked the important features and achieved 100% accuracy for all the three cancer datasets
and 94.50% accuracy for the arrhythmia dataset. This method uses a combination of
four filter methods (MI, CS, RFF, and XV) at the Phase 1 along with three classification
algorithms (KNN, SVM, and NB) so that every possible feature with highest accuracy
independent of both filter methods and classification algorithms is selected. Then, the
XGBoost classification algorithm is applied on the union set, and k number of top features is
selected on the basis of accuracy. At Phase 2, correlation is measured using PCC among the
top k features obtained by Phase 1, and highly correlated features are discarded, ensuring
that maximum relevance minimum redundancy policy is present among the feature subset.
Again, XGBoost is applied, and top j features are obtained and sent to Phase 3. In the final
phase (i.e., Phase 3), a wrapper method, WOA, is used to finalize the optimal feature subset.
Arrhythmia, leukemia, DLBCL, and prostate cancer, four medical datasets of varying
dimensionality, were used for experimentation. The least ranked features by the ensemble
were the ones that had least importance in the dataset in terms of information, dependence,
and distance. In each phase, feature set was reduced, and after whole implementation was
performed, number of features in the optimal feature set was reduced almost 150 times for
arrhythmia, 1286 times for leukemia, 1767 times for DLBCL, and 4177 times for prostate
cancer datasets from the original feature set. Thus, the proposed method also provided
the information about the noisy, redundant, or unnecessary features in each phase, which
were then discarded. Moreover, the accuracies achieved for each dataset were found to
be satisfactory.

However, the datasets considered in the present work have a very limited amount
of samples. For all the cancer datasets, the attributes are very minuscule compared to
the enormous attribute range [67]. More particulars of different ages, sexes, heredity
information, etc. are needed to be included in all the datasets. Along with the dataset
update, there is also a large amount of room for exploration of ensemble techniques. There
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are numerous possible ways of combining multiple filter-wrapper methods, and therefore
the experimentation prospect is huge regarding the ensemble. Moreover, both leukemia
and DLBCL datasets are imbalanced, which, in future, can be handled by generating
reliable synthetic data using various over-sampling or under-sampling methods. Although
all the four diseases used in this work are incurable, they can be controlled if diagnosed
in time. Thus, the study is expected to help minimizing diagnosis time as well as to help
the community economically. Other than limited data present in the datasets, one of
the shortcomings of this algorithm is the computational complexity required to compute
accuracy of all the datasets on the basis of each individual feature in Phase 1 and to perform
the WOA algorithm. In the future, this method can be applied on other publicly available
medical datasets and can be combined with other available wrapper-filter methods while
using different classification algorithms.
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