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Abstract: This study aims to quantitatively model rather than to presuppose whether or not air
pollution in Beijing (China) affects people’s activities of daily living (ADLs) based on an Internet of
Behaviours (IoB), in which IoT sensor data can signal environmental events that can change human
behaviour on mass. Peoples’ density distribution computed by call detail records (CDRs) and air
quality data are used to build a fixed effect model (FEM) to analyse the influence of air pollution
on four types of ADLs. The following four effects are discovered: Air pollution negatively impacts
people going sightseeing in the afternoon; has a positive impact on people staying-in, in the morning
and the middle of the day. Air pollution lowers people’s desire to go to restaurants for lunch, but
far less so in the evening. As air quality worsens, people tend to decrease their walking and cycling
and tend to travel more by bus or subway. We also find a monotonically decreasing nonlinear
relationship between air quality index and the average CDR-based distance for each person of two
citizen groups that go walking or cycling. Our key and novel contributions are that we first define
IoB as a ubiquitous concept. Based on this, we propose a methodology to better understand the link
between bad air pollution events and citizens’ activities of daily life. We applied this methodology
in the first comprehensive study that provides quantitative evidence of the actual effect, not the
presumed effect, that air pollution can significantly affect a wide range of citizens’ activities of
daily living.

Keywords: internet of things; internet of behaviours; air pollution; air quality index (AQI); PM2.5;
people’s activities of daily living

1. Introduction

Continuing human urbanisation exacerbates various physical world conditions, e.g.,
causing air pollution, traffic congestion, habitat destruction, and loss of arable land [1–3].
This threatens the sustainable development of urbanisation by governments [4]. Citizens
perceive such negative impacts and are becoming more active to counteract these effects [5].
High levels of air pollution, which can be reflected by a high air quality index (AQI)
or PM2.5 (air-borne particulate matter having a diameter of fewer than 2.5 micrometres)
concentration, have been shown to impact citizens’ health [6], labour productivity [7],
later-life educational outcomes [8] and happiness [9]. As mitigation measures, people
may choose to live in less polluted cities and in green buildings [10], to use air filtration
systems and reduce the time spent outdoors on highly polluted days [11], or decide to
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wear a breathing mask outside. Governments and businesses may also benefit from
understanding the quantitative influence of air pollution on peoples’ activities, such as
how much their citizens’ curtail their outdoor activities to avoid bad air pollution.

Although there are some derivative concepts of the internet of things (IoT) that have
been applied in many research areas such as the internet of vehicles, a clear definition
of the internet of behaviours (IoB) is lacking so we define it as follows. An internet of
behaviours (IoB) is defined as a system of IoT devices that collect, use and analyse data
about physical (and cyber) human behaviour that seeks to influence human behaviour,
i.e., through being better informed about environmental events, and to even trigger changes
in human behaviour, en mass, in time and space. One key type of human behaviour
critical to human well-being is defined as the basic activities of daily living or ADL,
e.g., personal care, mobility, and eating [12]. An IoB system can combine data from multiple
IoT environmental sensor sources with commercial customer data, citizen-driven data, data
processed by public departments and government agencies, social media, and geographic
information science (GIS) data. Based on such data sets, data mining and machine learning
enable people’s behaviour to be analysed, then an IoB can enable different stakeholders,
e.g., businesses, authorities, citizens to better interpret human behaviour en mass.

To do this, we first need to identify suitable IoB data sources that can be used to track
mass human behaviour, such as human movement. For example, call detail records (CDRs)
are produced in a cellular phone network base station to document a call, text message,
etc., and describe the time of the call, closest base station and location information [13].
Mobile users’ density distribution can be regarded as a high-sampling-rate people’s density
distribution that can be computed in time.

It’s useful to differentiate people’s habitual points of interest (POIs) associated with
ADLs, such as visiting a favourite restaurant near work. We classify this as a specific place
with a specific activity (SPSA), where a location-driven ADL (LD-ADL) occurs, e.g., eating
out. These will be differentiated from other POIs where less identifiable LD-ADLs occur
(non-SPSA class).

Next, we need to investigate how environmental changes, e.g., air quality affect
humans’ behaviour at SPSAs. However, very few studies have quantitatively assessed the
impact of air pollution on ADLs, especially at a large, city-wide scale. The main reasons for
this are: first, some ADLs are composite and difficult to describe with the data acquired.
Second, datasets that can be used to calculate ADLs in a large area, at a sufficiently high
sampling rate, can be difficult to obtain unless one works for large telecoms, internet app
or social networking companies.

To analyse how people’s ADLs are affected by bad air pollution, we used high-
frequency peoples’ density distributions calculated using CDR data, and air pollution data,
across the whole of Beijing, China in February 2015, acquired from a telecom provider
(China Mobile). According to the national time use survey bulletin of China in 2018 (2015
is relatively close to 2018), ADLs in China have changed little from the previous survey
of China in 2008 as conducted by the National Bureau of Statistics of China (http://www.
stats.gov.cn/tjsj/zxfb/201901/t20190125_1646796.html, accessed on 28 August 2020).

In Table 1, the time spent on SPSA ADLs including sleeping, eating, housework, fitness
exercise, watching TV, and transportation, account for more than 60% (=63.74%) of a day.

http://www.stats.gov.cn/tjsj/zxfb/201901/t20190125_1646796.html
http://www.stats.gov.cn/tjsj/zxfb/201901/t20190125_1646796.html


Sensors 2021, 21, 5569 3 of 37

Table 1. Average time of main activities of residents of China in 2018.

ADL Category Time
(Minutes) Percentage If Is LD-ADL

Total 1440 . -
1. Personal Physiologically
Necessary Activities 713 49.51% -

Sleeping 559 38.82% YES
Personal Hygiene Care 50 3.47% NO
Meals or Other Diet 104 7.22% YES

2. Paid Labour 264 18.33% -
Employment Work 177 12.29% NO

Family Production and
Business Activities 87 6.04% NO

3. Unpaid Work 162 11.25% -
Housework 86 5.97% YES
Accompanying and Caring

for Family 53 3.68% NO

Purchase Goods or Services
(including Medical Treatment) 21 1.46% NO

Charitable Activities 3 0.21% NO
4. Personal Discretionary
Activity 236 16.39% -

Fitness Exercise 31 2.15% YES
Listening to Radio or Music 6 0.42% NO
Watching TV 100 6.94% YES

Reading Books,
Newspapers and Periodicals 9 0.63% NO

Leisure and Entertainment 65 4.51% NO
Social Interaction 24 1.67% NO

5. Learning and Training 27 1.88% NO
6. Transportation 38 2.64% YES
Other: Use the Internet 162 11.25% NO

Hence, we select four representative types of SPSA ADLs: sightseeing (N.B. sightsee-
ing has been shown to have a strong effect on human well-being [14]), eating out, staying-in
(to rest and recuperate) and the type of transport mode used. Each type of SPSA ADL is
associated with a point of interest (POI) dataset of fixed places, except for the transport
mode used. Some transport modes, e.g., bus and subway can be detected by fixed POIs,
while others could be extracted from the movement speed. However, people who take taxis
or cars can be hard to recognize as they have no fixed POIs and can have a similar speed to
buses and cycles, during traffic congestion. According to the Beijing Traffic Development
Annual Report in 2016 (http://www.bjtrc.org.cn/, accessed on 1 August 2019), the total
average travel distance travelled using bus, subway, cycling, and walking is 26.1 km, which
accounts for 53% of the total average distance (49.2 km). Their time duration accounts for
65% of the total average travel time (485 min). Thus, we focus on four types of transport
modes: bus, subway, cycling and walking.

Our key and novel contributions are as follows:

(1) We propose a methodology to better understand the link between environmental
changes such as air pollution and citizens’ activities of daily life. It can help govern-
ment and businesses to understand better the actual effect not the presumed effect of
air pollution on the pattern of daily activities of citizens;

(2) This opens up a new perspective for understanding and exploring the interaction
between PM2.5 and in more general air pollution and people’s physical behaviour.

(3) This can not only reveal the subtle impact of PM2.5/air pollution on human ADL but
can also monitor the indirect impact of PM2.5/air pollution on some human-based
business activities, e.g., restaurants. This is challenging to do because different data
sets, such as air pollution, human movement, location contexts, etc., with different

http://www.bjtrc.org.cn/
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temporal and spatial characteristics, need to be acquired and fused. Human activities
can be complex to characterise. Individual human behaviour in a crowd needs to be
identified. Human behaviour is affected by a range of environmental factors, some of
which may not be observable, that need to be correlated.

The remainder of this article is organized as follows: Section 2 analyses related work,
Section 3 presents the data and pre-processing used. Section 4 introduces an overview
of the methodology, followed by a more detailed description. Results and discussion are
reported in Section 5. Section 6 gives our conclusions, limitations, and thoughts for future
research. The abbreviations are explained in Table 2.

Table 2. Abbreviations and explanations.

Abbreviation Explanation Abbreviation Explanation

ADL Activities of daily living MEP Ministry of Environmental Protection
AQ Air quality MPUD Mobile phone users’ density
AQI Air quality index NCDC National Climatic Data Centre

CAR Change in average revenue NOAA National Oceanic and Atmospheric
Administration

CDR Call Detail Record OLS Ordinary Least Squares
CI Cell Identity P1 Period 1
CNAAQS Chinese National Ambient Air Quality Standard P2 Period 2
CNY Chinese Yuan P3 Period 3
CSV Comma-Separated Values PCC Per Capita Consumption
CTRM Comparison Test of Reference Method P-Dinner Period dinner
EDR Effective Data Rate P-Lunch Period lunch
EPE Empty-positive-empty PM Particulate Matter
EPN Empty-positive-negative PNN positive-negative-negative
FEM Fixed Effect Model POI Point of Interest
GIS Geographic Information Science PoM Parallelism of Monitors
GSM Global System for Mobile Communication PURT Panel Unit Root Test
HT Harris-Tzavalis S1 Strategy 1
IDW Inverse Distance Weighting S2 Strategy 2

IMSI International Mobile Subscriber Identification
Number SIM Subscriber Identity Module

IoB Internet of Behaviours SPSA Specific place with a specific activity

IoT Internet of Things TEOM Tapered Element Oscillating
Microbalance

IPS Im-Pesaran-Shin UWB Ultra Wide Band
KDE Kernel Density Estimation VP Voronoi polygon
LD-ADL Location-driven ADL

2. Related Works

Several factors affect crowd activities, including human factors (such as leaving work)
and physical environment factors (such as temperature, and rain). Bad air quality can affect
the outdoor activities of residents [15]. To study how the influence of haze (air pollution
with high degrees of PM) affects different crowd activities in different urban areas, we first
consider regression models that establish regression relationships between weather factors
and specific human behaviour. De Freitas [16] observed that atmospheric conditions affect
beach user behaviour. Lin et al. [17] found that poor air quality causes the elderly to stay
indoors. Jiang et al. [18] used a social media survey and regression and variance analysis
to find that particulate pollution negatively impacts the maximum number of park visits.
R-Toubes et al. [19] analysed the relationship between weather conditions and people flow,
daily, at tourist beaches highlighting that sunshine is important. Zhao et al. [20] found via
a survey that in hazy weather, higher-income cyclists in Beijing tended to switch to use
private vehicles rather than to use public transit, while lower-income cyclists were more
likely to continue cycling. Hu et al. [21] used a multivariate regression method to study
the relationship between air quality and outdoor exercise in China. The total number of
exercise sessions, average duration and an average distance of each exercise mode, were
analysed under each air quality category (from excellent to severe).
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Omitted variable bias is a primary statistical challenge in nonexperimental research
(research that lacks the manipulation of an independent variable, control of extraneous
variables through random assignment, or both). Fixed effect models (FEMs) with panel
data were developed to address the issue of omitted variable bias in nonexperimental
research [22]. Thus, FEMs can be applied to detect the relationship between ADLs and
air pollution where the model is an estimation technique, employed on panel data that
allows one to account for time-invariant unobserved individual characteristics, i.e., other
factors such as special offers at different times of day, etc., that can be correlated with the
observed independent variables (AQI or PM2.5) [23]. For example, Gao et al. [24] studied
the impact of different air pollutants on dining-out activities and the satisfaction of urban
and suburban residents. They found that due to differences in environmental and health
awareness, the impact of air pollution on dining-out behaviours varies among urban and
suburban residents. Zheng et al. [25] studied how air pollution affects residents’ eating out
frequency and satisfaction based on the reviews from dianping.com. They proposed that
air pollution can reduce the dining-out frequency and satisfaction of residents. However,
in both studies, they collected residents’ dining-out data from only one third-party website.
This is not subjective because not everyone tends to leave a review on the website. In
contrast, CDR data is much more representative because people’s locations are recorded and
computed with a higher frequency and the data is objective. Further, when using a FEM,
both two studies did not take measures to solve the potential endogeneity issue brought
about by an omitted variable [26], which leads their results to lack robustness. Table 3
summarizes the above related work along with their ADL, data, method, and limitations.

Table 3. A summary of related works.

Author(s) Detected ADL(s) Data Collection Analysis Method Limitation(s)

De Freitas [16] Beach user behaviour Questionnaire survey Two-dimensional
regression analysis

Single ADL; Traditional
survey method

Lin et al. [17] Stay in behaviours of
elder people Multi-sensors Traditional machine

learning methods Single ADL; Small spatial scale;

Jiang et al. [18] Maximum number of
park visits

On-line and
off-line survey

Quantile
regression analysis

Single ADL; Small spatial scale;
cannot consider
unobservable variables

R-Toubes et al. [19] Tourist number
on beaches

Webcam images in
combination with
real-time weather

Pearson
relatsionship anaylsis

Single ADL; Small spatial scale;
cannot consider
unobservable variables

Zhao et al. [20] Cycling behaviour
Survey in various
locations during
different periods

Conceptualize the
relationship via
perceptions

Single ADL; Small spatial scale;
cannot consider
unobservable variables

Hu et al. [21] Outdoor exercise (running,
biking, and walking) APP Tulipsport users’ data Multivariate analyses

of variance
Too few samples; cannot
consider unobservable variables

Gao et al. [24];
Zheng et al. [25] Dining-out activities

Third-party website
(dianping.com), (accessed

on 26 July 2021)
FEMs Data objectivity and model

robustness have not been tested

In conclusion, current studies of how air pollution can affect physical human be-
haviour have the following specific limitations: (1) Current studies only focus on one, or
very few, type(s) of ADLs; (2) they do not clarify the differences between haze, AQI, and
PM2.5; (3) they do not study how to model the link between air quality and multiple types
of ADLs at a large spatial scale and (4), although they consider other observable impact
factors that may influence the ADLs using traditional questionnaires survey or simple
statistic regression models, there are many other unobservable or unquantified factors that
may also have a significant influence that are not considered. Even though (4) could be
solved by using a FEM, current FEM air quality studies still have problems of (5) data
objectivity and (6) model robustness. Thus, in this study, our contributions also include the
solutions to solve the six limitations mentioned above.

dianping.com


Sensors 2021, 21, 5569 6 of 37

3. Data and Pre-Processing
3.1. Data Introduction

Here, the main datasets CDR and air pollution and any preprocessing are introduced.
Other datasets, weather conditions, POI and building area are introduced in Appendix A.4.
It is challenging to identify and fuse such heterogeneous data about POIs that may have
different temporal and spatial characteristics such as resolution.

3.1.1. Call Detail Record (CDR)

People’s activities can be reflected by how their distribution density changes when
they visit different POIs derived from their anonymised individual mobile phone CDRs
via a base station positioning method [27] because of the high penetration rate of smart
mobile phones according to the World Telecommunication Development Conference (2014).
CDRs from a telecommunication operator with the highest customer number in China from
Monday 2 February to Sunday 22 February 2015 (21 days) were analysed. This dataset
includes over 4.8 billion records for more than 300 million users per day. The size of an
hourly CDR file is about 2 Gigabytes (Figure 1). The CDR processing details are reported
in Appendix A.1, Appendix A.2, Appendix A.3.

Figure 1. Daily CDR files’ sizes and AQI over the study period (N.B. the left y-axis represents the
data size in megabytes, the x-axis date represents a day in the month in February 2015. The dotted
line is a threshold AQI of 100 and represents a poor AQ in which it’s recommended that sensitive
citizen groups should cut back or reschedule strenuous outdoor activities).

Figure 1 shows how the CDR file size distribution varies with AQI over the study
period. In major national holiday periods such as the Spring Festival in China (from
18 February 2015), there is a considerable fluctuation in file size because of a significant
people movement, which makes this research close to a natural experiment [28]. Addition-
ally, because of the reasons introduced in Section 3.2 and Appendix A.4.1, the focus here is
on the analysis of the relationship between people’s activity and air quality from sunrise to
sunset and the analysis of the corresponding relationship at nighttime is omitted.

3.1.2. Air Pollution

China’s Ministry of Environmental Protection (MEP) reports real-time hourly con-
centrations for the major air pollutants such as PM2.5, PM10 (particulate matter with an
aerodynamic equivalent diameter of less than 2.5 and 10 µm, respectively), SO2, O3, NO2
and CO at about 1000 monitoring stations. Beijing has 35 of these.

Among these six pollutants, MEP defines a city’s “primary pollutant” as the pollutant
which contributes the most to the air quality degradation on an hourly basis. MEP also
releases a composite air quality measure, AQI, which is calculated hourly.
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PM2.5 seems to dominate more in recent years [29]. Its smaller size makes PM2.5 much
more harmful for people’s health than larger particulates, such as PM10. Baidu.com, China’s
most popular online search engine. which accounts for 93% of the search engine penetration
rate in 2015 (CNNIC, 2015) and 91% in 2019 (CNNIC, 2019), shows that Chinese citizens’
concerns for PM2.5 are about 12 to 500 times higher than those of other air pollutants in the
past several years (as computed using the Baidu Search Index tool http://zhishu.baidu.
com/v2/index.html#/, (accessed on 1 March 2021). Thus, we use both PM2.5 and AQI to
detect their relationship with people’s activity in our study. Other key pollutants (PM10,
SO2, O3, NO2, CO) have been considered and are reported in Appendix A.4.1.

3.2. Data Collection and Accuracy Analysis

Excluding the CDR data, the data used in this study is measured by scientific cali-
brated instruments managed by national air pollution stations and collected according to
international standards. The details of the sensors used to collect the data, including their
measurement range, resolution, and accuracy, are reported in Table 4.

Table 4. Parameters and specifications of the sensors to collect data.

Dataset Sensor Range Resolution Accuracy

PM2.5 PM2.5 0~10,000 µg/m3 0.1 µg/m3 ≥85%
PM10 PM10 0~10,000 µg/m3 0.1 µg/m3 ≥85%

SO2 SO2 0~500 ppb 0.1 µg/m3 ±2%F.S.
O3 O3 0~500 ppb 0.1 µg/m3 ±4%F.S.

NO2 NO2 0~500 ppb 0.1 µg/m3 ±2%F.S.
CO CO 0~50 ppm 0.1 mg/m3 ±2%F.S.

Temperature Thermometer −50~50 ◦C 0.1 ◦C ±0.2 ◦C
Wind Wind Speed 0~60 m/s 0.1 m/s ±(0.5 m/s + 0.03 v)

Cloud Amount - 0~100% - -

Precipitation (Rain) Tipping-Bucket Rain Gauge,
Weighing Precipitation ≤4 mm/min 0.1mm ±0.4 mm (≤10 mm),

±4% (>10 mm)

Snow (depth)
Automatic Snow Depth
Observation Instrument,

Ultrasonic or Laser Sensors
0~2000 mm 1 mm ±10 mm

Due to the different measuring principles of multi-sensors, the definitions of the
accuracy of these differ. For the p.m. data, the accuracy could be reflected by parallelism of
monitors (PoM), effective data rate (EDR) and comparison test of reference method (CTRM).
In Table 4 we only show the EDR of the p.m. (others are reported in Appendix A.4). For
other pollutants, the accuracy is defined as the indication error, while for weather condition
data, the maximum allowable error could reflect the accuracy.

Although the data collection processing should meet the request of the international
specifications, which ensures that the accuracy and repeatability of the datasets have
qualified with the specifications before they were published as an open-source, sensors
may fail which leads to inaccuracies in the data. Thus, we design our method set up as a
randomly sampled experiment which serves as a cross-check of our results. This processing
can eliminate the resulting error caused by sensor failure and other factors.

For the CDR data, we have computed the spatial accuracy to be about 500 m when
estimating mobile phone users’ density distributions, which has a high spatial resolution
to recognise the ADLs of people based on their location. More details can be found in
Appendix A.2, Appendix A.3, Appendix A.4

3.3. Data Pre-Processing

The CDR dataset is converted into hourly dynamic mobile phone users’ density
distributions to then extract people’s dynamic activity at specific POIs. First, we extract the
first 5 min of CDRs from each hour file as a representative sample of each hourly CDRs (to
reduce the computation time) and then count the unique International Mobile Subscriber
Identification Number (IMSI) as a representative sample mobile phone user. From the

http://zhishu.baidu.com/v2/index.html#/
http://zhishu.baidu.com/v2/index.html#/
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CDRs, we can derive the hourly density distribution of mobile phones corresponding to
each VP (Voronoi polygon or cell—the area representing the coverage) of the base station.
However, an unknown error may be caused by the uneven distribution of VPs, leading
to an uneven positioning accuracy resolution, even though the POIs are evenly spatially
sampled, e.g., the people density for a POI within a small VP is more accurate than for a
POI in a big VP. To alleviate this, we use the kernel density estimation (KDE) method [30]
to estimate hourly density distributions for a city (see Appendix A.3), with the raster
resolution parameter set as 500 m (as justified and reported in Appendix A.2)

Through using an inverse distance weighting (IDW) method [31] to interpolate the
point values of air quality from 35 monitor stations in a city (Beijing), we map the hourly
dynamic AQI and PM2.5 density distributions and build the corresponding two spatial-
temporal datasets. Then, we can extract the AQI and PM2.5 values for specific POIs, at a
density that is similar to the CDR-based density.

4. Methodology
4.1. Overview

Two workflows are defined for our IoB framework (see Figure 2) based on if an ADL
uses a POI that acts as an SPSA or not. Both workflows include three modules: input,
processing, and output.

Figure 2. Overview of the methodology for the IoB framework.

Workflow 1 (red parts in Figure 2) focuses on the first category of ADLs, which covers
four ADLs represented by five fixed POIs that are SPSAs: (1) sightseeing, (2) eating out
(restaurants are POIs), (3) staying-in, (4) travelling by bus (a transport mode that uses bus
stops as the POIs), and (5) travelling by subway (that uses metro stations as the POIs).
The inputs include the mobile phone users’ density distributions for these five fixed POIs
and the corresponding air pollution, weather conditions and types of day datasets. Next,
the processing module is used to build FEMs to detect the relationship between people’s
ADLs and air pollution, where any behaviour impacting indices (a coefficient in a FEM for
people’s density, e.g., β in Equation (1)), are computed as the outputs (Output 1). Based
on the overall POI distributions in the whole city, the spatial-temporal distribution of the
behaviour impacting indices is mapped (defined as Output 2).

In addition, before using CDRs to extract peoples’ density values, we analyse if the
spatial resolution of the calculated people distribution is accurate enough to extract values
to represent the four ADLs (see Appendix A.2). We conclude that except for the restaurant
POI/ SPSA ADL, all other four kinds of POIs can be used to represent the related SPSA
ADLs in Strategy 1 (S1). Thus, to decrease the estimation error when processing FEMs
for the restaurant POI, we present Strategy 2 (S2) that samples Voronoi polygons (VP)
that includes large areas of restaurants (Appendix B). Then, S2 can also be applied to
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Workflow 1. Finally, Output 3 estimates changes in restaurant revenue due to air pollution
based on the behaviour impacting indices.

Workflow 2 (green parts in Figure 2) focuses on the second category of non-SPSA
ADLs, which covers one ADL, represented by the two transport mode POIs: (1) walking,
and (2) cycling. For these inputs, a multivariate linear regression model is used to compute
how many people tend to cycle or walk and whether they would curtail the distance
travelled or change transport modes. Output 4 indicates the quantitative impact of air
pollution on the average moving distance of people walking and cycling.

Note that the testbed to build the FEM and multivariate linear regression model is
STATA16 (https://www.stata.com/, accessed on 7 August 2021), while the GIS related data
is processed in ArcGIS 10.5 (https://www.esri.com/en-us/arcgis/about-arcgis/overview,
accessed on 7 August 2021). Further, in terms of Workflow 1, we conduct random experi-
ments to extract half of the POIs in each dataset randomly 10 times, and then the effect of
air pollution on four ADLs influenced by significant changes of the AQI and PM2.5 is inves-
tigated (Tables A7–A11). Then after getting the results of the random experiments, we build
FEMs for all POIs (SPSAs) and the results are reported in Tables A12–A16. Furthermore,
the random sampled experimental settings could be regarded as validation processing. The
strategy of the validation can solve the potential endogeneity issue brought about by an
omitted variable [26], as well as eliminate the error from inaccurate sensor data. Based on
the 10 experimental results, we determine that PM2.5 as part of an AQI influences people’s
activity only when the percent of significant coefficient (p-value < 0.05) is more than 60%.

4.2. Workflow 1
4.2.1. Input Module: Data Preparation and Input Set Up

At nighttime people tend to sleep and communicate less and interact less with the base
station so these CDRs do not reflect the real users’ density distribution during such a study
period. Hence, we focus on the daytime period from 6:00 a.m. to 7:00 p.m. (13 h) when
studying mobile phone users’ records and also because in this period people can visually
perceive the main air pollution. Some examples of the spatial-temporal distribution of
the CDR-based people density are given in Figure A5 which is discussed later in Section
5.1. We merge the mobile phone user’s density data with the POI-level hourly AQI, PM2.5
concentration data and weather data. Data sources, definitions and summary statistics of
the main variables are provided in Table 5.

We divide each day into different time slices for different types of ADLs. For sightsee-
ing, using different transport modes, and staying-in, we define three daily periods, from
6 to 10 a.m. (P1), from 10 a.m. to 2 p.m. (P2) and from 2 to 6 p.m. (P3). So that the three
periods each span 4 h, hence, the time slot 6 p.m. to 7 p.m. is excluded. For the eating out
ADL, we consider two periods in each day: the lunch period 11 a.m. to 2 p.m. (P-Lunch)
and dinner period 5 to 8 p.m. (P-Dinner). We omit the influence when sunset happens
after 6 p.m. for eating out. For every period, we calculate the mean value of the POI-level
hourly mobile phone user density, AQI, PM2.5 concentration data and weather data, and
then analyse these.

4.2.2. Processing Module, Output 1: Fixed Effect Model (FEM)

To study the main effect of air pollution on people’s activity, we use a FEM panel
regression approach as shown in Equation (1):

Yit = α0 + αi + βX′it + δZ′i + εit
= ui + βX′it + δUi + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T

(1)

Xit = (X1it, X2it, . . . , Xkit)
′ ,β = (β1,β2, . . . ,βk)

′ (2)

Here, Yit is the dependent variable, which changes w.r.t the time and individual.
α0 is the constant, while αi is the individual effect which is time-invariant. We can set
ui = α0 + αi, E(αi) = 0, E(ui) = α0, where the unobservable random variable ui repre-

https://www.stata.com/
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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sents the intercept term of individual heterogeneity, called the individual effect. Xit is a
k× 1 vector representing the independent variables/ β is a k× 1 vector representing the
correlation coefficients of X′ (Equation (2)). Z′i is the unobservable independent variable
which is time-invariant. εit represents the idiosyncratic error. N is the index number of the
individual. T represents the time number index.

Table 5. Variable definitions and summary statistics.

Variable Definition Obs. Mean Std.

Mobile phone users’ density (MPUD) variables (Person/Km2)
Sightseeing MPUD for the sampled sightseeing POIs 92,232 529.287 469.586
Eating out MPUD for the sampled restaurant POIs 95,256 519.974 440.782

Stay in MPUD for the sampled house POIs 100,593 539.684 452.293
Bus Stop MPUD for the sampled bus stop POIs 49,811 562.951 418.586

Subway Station MPUD for the sampled underground
station POIs 49,310 620.532 509.309

Sources: CDR data is from China Mobile Limited Company (Beijing Branch), POI dataset is from AutoNavi Software Limited Company.

Pollution variables
AQI Hourly air quality index 17,640 153.025 93.099

PM2.5 Hourly PM2.5 concentration (µg/m3) 17,640 107.929 89.774

Source: Ministry of Environmental Protection of the People’s Republic of China

Weather variables
TEMP Mean temperature of the site in Beijing (◦F) 504 34.381 8.642

WIND Mean wind speed of the site in Beijing
(m/s) 504 6.871 5.412

CLOUD Cloud coverage score (0 to 3), 3 = full, 0 =
none 504 0.325 0.741

RAIN One-hour liquid precipitation of the site
(inches) 504 0 0

SNOW One-hour snow depth of the site (inches) 504 0 0

Source: Daily weather data are collected from the National Oceanic and Atmospheric Administration

Type of day variables

Spring Festival 1 = today is in Spring Festival Holiday, 0 =
otherwise - - -

Weekend 1 = today is weekend, 0 = otherwise - - -
Valentine’s Day 1 = today is Valentine’s Day, 0 = otherwise - - -

Source: None

Note: Obs. refers to the number of observations. Std. refers to standard deviation.

The FEM method estimates the coefficient of air pollution impacting on people’s ADLs,
which is shown as below: First, fixing the i in Equation (1), the time is averaged, giving:

Yi = ui + βX′i + δZ′i + εit (3)

Yi ≡
1
T

T

∑
t=1

Yit (4)

While X′i and εit have similar definitions. Then, using Equation (1) minus Equation (3)
we get:

Yit −Yi = β
(
Xit − Xi

)′ + (εit − εi) (5)

In this step, Zi and ui have been eliminated. Then we define Ỹit ≡ Yit − Yi,
X̃it ≡ Xit − Xi, ε̃it ≡ εit − εi, we get:

Ỹit = βX̃it + ε̃it (6)

Finally, we use the ordinary least squares (OLS) method to estimate β, which is called
the Fixed Effect Estimator, β̂FE.

In our study case, the dependent variable is an ADL, represented by the CDR-based
people density for a specific POI. Independent variables are classified into three categories:
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pollution (AQI/PM2.5), weather conditions (temperature, wind speed, cloud cover rate,
rainfall, snowfall) and type of day. Because in the study period, there is no rainfall or
snowfall, FEM is defined in Equation (7):

DENSITYit = ui + α1POLLUTIONit + α2TEMPt + α3WINDt + α4CLOUDt + α5TDt + δZ′i + εit,
i = 1, 2, . . . , N, t = 1, 2, . . . , T

(7)

DENSITYit and POLLUTIONit represent the people density and the pollution level
of POI i at time t, respectively. In the FEM, we use AQI and PM2.5 concentrations as the
pollution variable, respectively. TEMPt, WINDt, CLOUDt represents temperature, wind
speed, cloud cover rate (it only has a t index as all the POIs have the same weather values at
the same time). TDt refers to a type of day dummy variable. To control the time-invariant
unobservables that vary across cities, we include the POI fixed effect δZ′i . Note that unob-
served factors are not classified, they are known unknowns and just grouped. Coefficient α1
(is the corresponding coefficient of β̂FE) reflects people’s pollution responsiveness, which
should be negative, while other coefficients α1, α2, α3, α4, and α5 correspond to other
independents observed variables. N is set as the POI number. T is set as 21 (days).

Before using the FEM in our method, the panel unit root test (PURT) is applied to each
variable to see if it is unstable or not, which can avoid spurious regressions [32]. We chose
the Im-Pesaran-Shin (IPS) test [33] method for this. Then we use the Harris-Tzavalis (HT)
method to test for stationarity to see if the statistical properties of the time series change
over time [34]:

H0 : ρi = 1
H IPS

1 : ρi < 1, i = 1, 2, . . . , N1; ρi = 1, i
= N1 + 1, N1 + 2, . . . , N

lim
N→∞

(N1/N) = H0, 0 < δ1 ≤ 1

(8)

Equation (8) shows the IPS hypotheses, H0 and H IPS
1 . If the test result rejects H0, that

means the tested data is stable. Further for the HT test shown in Equation (9), if the test
result rejects H0, this means the tested data is stable:

H0 : ρ = 1HHT
1 : |ρ| < 1 (9)

The results show that the variables are all stable even though they span the Spring
Festival holiday period, which means the condition of our datasets satisfies this requirement
and hence, we can effectively use a FEM.

The type of day, such as weekday, weekend day, festival day, may cause a major
impact on people’s activity in different periods, we thus represent the influence of the
type of the day as a dummy variable in the FEM. Furthermore, in many similar previous
studies [9], weather-related conditions also play a key role in the analysis using FEMs.

In the next step, we input weather conditions, such as the temperature value squared to
examine the non-linear effect of it on people’s activities following [9]. We give the variable
definitions and summary statistics in Table 5. We recognise that the actual relationship
between air quality and people’s activity may be generated by omitted variables that
represent unknown factors that vary hourly for individual POIs. For example, historical
POI sights in Beijing may be visited by tour groups outside Beijing, whose time plan would
not likely be changed by bad air quality and even weather conditions as there may be no
alternative day to visit such a sight.

4.2.3. Output 2: Spatial-Temporal Distribution of Behaviour Impacting Indices

We create and display a summary of the spatial-temporal distribution of the area
impacted by air pollution, city-wide as follows. First, a city is divided into grids of
5 km× 5 km cells. Second, five types of POIs for the four ADLs are counted in every cell.
Then the corresponding correlation coefficient is used as a weighting factor to create a
summary behaviour impacting index and map the 3-dimension distributions for the three



Sensors 2021, 21, 5569 12 of 37

different 4-h daily periods. Equation (10) computes the summary behaviour impacting
index for every cell as follows:

INDEXcell =
m

∑
i=1

Ai Ni (10)

where Ni is the i-th POI number that represents ADLs in a cell, m is the number of
types of POIs, 5 in this study. A is the corresponding value of the correlation coefficients
(Tables A12–A16). The final INDEXs are shown as the different bars for the three periods.
The index for each different period of a day is computed independently, so there are three
distributions. We use two colours to distinguish the negative and positive final effects of
air pollution: red means negative and green means positive.

4.2.4. Output 3: Estimating the Revenue Change

Then we describe how the influence of air pollution on the revenue of restaurants
in Beijing is calculated. We use the correlation coefficient to represent the impact of AQI
and PM2.5 on people who eat out in restaurants during the lunch period. After getting the
significant value (p-value) from the AQI or PM2.5 impact αr

1 by the FEM, which means that
when AQI or PM2.5 change by one unit quantity, the density of sampled people reflected
by mobile phone users’ density in the restaurant VP decreases by αr

1 people/km2. Then
because we use mobile phone users as the sampled people in Beijing, there is a sampling
rate SR. Thus, if PM2.5 increases by 1 µg/m3, the density of people in a restaurant VP
would decrease by αr

1 × SR people/km2. Then the average area of the sampled restaurant
A is computed. Based on the per capita consumption (PCC), considering the different cost
levels of restaurants is 19 Chinese Yuan (CNY) [35], we can calculate that if the AQI or
PM2.5 change by one unit quantity. The total number of people who go to the restaurant for
lunch would change by αr

1× SR and the change in average revenue (CAR) of all restaurants
in Beijing is computed using Equation (11) in one day as follows:

CAR = αr
1 × SR× A× PCC (11)

To estimate the total change of the revenue of the restaurant when air pollution comes,
the change in air pollution (Set to unknown x unit quantity) is used to estimate the final
change in revenue of the restaurant by multiplying x by CAR.

4.3. Workflow 2
4.3.1. Input Module: Walking and Cycling People Data

We consider if the other two transport mode groups, cycling and walking, are impacted
by air pollution. For each group, two indicators of the responding people’s number and
movement distance are calculated hourly during the study period. These constitute six time
series. After combining the weather conditions and type of day, we test the autocorrelation
for each time series using the Ljung–Box test method [36], drawing the conclusion that
all the time series have at least a first-order autocorrelation. Then we input the data into
the Transport mode options analysis model as shown above and we use the Prais-Winsten
method [37] to estimate the relationship between the activity of the two groups and air
quality respectively.

From the CDRs, we can also extract a single user’s trajectory based on a person’s
unique identity IMSI. The base station records a user’s IMSI with a timestamp when this
is combined with the location of the base station. We can derive the distance between
two or more base stations to represent people’s movement and then we can calculate the
speed of people moving in a specific period. We define these two features as people’s
CDR-based moving distance and CDR-based moving speed. When this speed is within
a range, it is believed that the mobile phone user is using a specific transportation mode.
The experiments of Wang et al. [38] confirm that this method can generally obtain an
80–90% accuracy when inferring simple transportation modes, e.g., walking and driving.
Furthermore, within the same case region, Beijing, Wang et al. [39] utilize CDR data to
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analyse travel distance between traffic zones and conclude that CDR data use for traffic
mode analysis is feasible. Bwambale et al. [40] use the logit model to prove that CDR can
capture the expected behaviour towards overlapping routes. All these studies demonstrate
that CDR-based trajectories have very similar features to the ground truth ones for distance
and speed.

According to [41], the average bike speed was 9.1 km/h in Beijing, and the walking
speed was on average 5 km/h [42]. In each hour, the first 5 min is still sampled, and then
all unique users are extracted using the unique IMSI. For each user or sample person, we
get all the records sorted based upon continuous-time nodes and calculate the distance
and speed in each section (defined as when one person moves from one base station to the
next base station). If the speed is within 7 to 10.5 km/h in one section, we judge the user
as a bike-riding person and then add one to the total number of this group and calculate
the total distance in all cycling sections for this person. Walking has a speed lower than
7 km/h. Finally, we sum the number of people and total distance travelled respectively for
each group. We get the two-time series datasets for distance and speed.

For the number of people in a group, we can easily calculate this from the CDR data,
while we use Equation (12) to calculate the distance travelled by people:

DISTANCEt =
n

∑
i=0

m

∑
j=0

Dti
(

Ptij, Pti,j+1
)

(12)

where DISTANCEt represents the summary distance of all people who have moved at hour
t; n is the number of people who have moved in hour t. i is the identity. Dti

(
Ptij, Pti,j+1

)
is

the final distance of Personi in hour t, calculated using the accumulated length from point
j to point (j + 1).

4.3.2. Processing Module: Multivariate Linear Regression Model

After getting the number and distance of each group of people, we calculate the
average value of AQI, PM2.5 concentration and weather conditions within the whole
of Beijing. Then we use a multivariate linear regression model from Equation (13) to
estimate the impact of air quality on people’s activity of these two groups respectively. The
dependent variable is the number of, or the distance moved by people, which is defined
as an ND-features of people. The independent variables include air quality, weather
conditions and type of day as follows:

NDFEATUREt = β0 + β1POLLUTIONt + β2TEMPt + β3WINDt + β4CLOUDt + β5TDt + εt,
t = 1, 2, . . . , T

(13)

where NDFEATUREt represents the ND-features and POLLUTIONt (AQI/PM2.5), while
β2TEMPt, β3WINDt, β4CLOUDt and β5TDt control the weather conditions and type of
day effects. β1 reflects the relationship between the ND-feature and air pollution. Because
all variables are time series data, they have the potential for autocorrelation. Thus, we
use the Prais-Winsten method [37] to estimate β1, which aims to decrease the influence of
temporal autocorrelation.

4.3.3. Output 4: Average Distance Changing of Walking and Cycling People

β1 represent a feature unit that changes when POLLUTION changes by one unit. For
example, if the results of β1 are significant, at a 95% confidence level (p < 0.05), when AQI
changes by one unit, the number of people who cycle changes by β1 units. If we get the two
statistically significant level values β1 of the number, and the distance of, people walking
or riding a bike, the relationship function between POLLUTION and AverageDistance of
the specific group can be calculated directly using Equation (14) as follows:

AverageDistance =
D− βd

1·POLLUTION
N − βn

1 ·POLLUTION
− D

N
(14)
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where N is the hour-average number of each group and D is the hour-average distance of
people moving during the study period. βn

1 is the β1 when an input feature is the number
of people moving in the group, and βd

1 is β1 when the feature is the corresponding distance.

The function consists of two parts, where the D−βd
1·POLLUTION

N−βn
1 ·POLLUTION part returns the average

distance impacted by POLLUTION, and D/N part calculates the original average distance
for every person in the group. The difference between these two values reflects the changing
average distance that varies with pollution where N, D, βn

1 and βd
1 are all constants.

5. Results and Discussion
5.1. Spatial-Temporal Dataset Description

For the CDR-based people density distribution spatial scale (Figure A5), in the ur-
ban area such as Dongcheng, Xicheng Districts, the people density is much higher than
the suburban area such as Huairou, Yanqing Districts, which suggests that the density
decreases from the city centre to the surrounding areas. At a temporal scale, peoples’
daily activities are reduced early in the morning (e.g., 6:00 a.m., Figure A5a,e), while the
density gets higher in some same urban, central, areas in the afternoon time (e.g., 6:00 p.m.,
Figure A5b,f).

In Figure A6, it is obvious that the distributions of AQI in the study period has some
irregular features. The overall trend of the AQI is from a high-value to low-value, to
middle-value, to high-value, return to low-value, (Figure A6a–u), corresponding to the line
chart in Figure 1. Daily, the AQI changes slightly during the morning, noon, and afternoon.
However, in a few daily cases, as shown in Figure A6a–c, a slight change in air pollution
(AQI > 300) from southeast to outside of Beijing is recognized. Similar patterns also happen
on the 11 February (Figure A6j–l), 14 February (Figure A6m–o), 17 February (Figure A6p–r),
in 2015.

The spatial-temporal distributions of PM2.5 are very similar to that of the AQI, es-
pecially for the overall temporal trend changes during the study period for the whole of
Beijing. However, there are some daily differences between the AQI and PM2.5 distribu-
tions. The spatial-temporal changes in PM2.5 in one day is much more obvious than for
the AQI. For example, on 14 February 2015, the PM2.5 concentration is above 300 µg/m3 in
southeast Beijing in the morning (Figure A7m), but in the middle of the day (Figure A7n),
it starts to spread to other places, resulting in the concentration in southeast Beijing de-
creasing to about 300 µg/m3 but the southwest and northeast Beijing start to suffer more
serious air pollution with a concentration of PM2.5 above 200 µg/m3. Afternoons, almost
all regions of Beijing have a PM2.5 above 200 µg/m3.

5.2. Output 1: Fixed Effect Model Results

Figure 3 documents the relationship between pollution (AQI and PM2.5) and people’s
activities during different daily periods. According to the right part of each subplot, we
see that the overall AQI, and more specifically PM2.5, impacts specific kinds of human
activities in the three specific four-hour daytime periods. We note that in the first period
(P1, 6–9 AM), air pollution has a positive influence on people staying-in (Figure 3c), which
indicates people are more willing to stay in, in the morning, while the pollution conditions
seem to have far less or little impact on other kinds of activities (except the dining-out
activity). During the second period (P2), peoples’ activities of staying-in, using bus stops
and subway stations, seem to be affected by air pollution, as shown in Figure 3c–e. For
those who need to use transport, they tend to select bus and subway as their choice as they
represent relatively closed-off areas that lessen the exposure to outside air pollution [43]. In
P2, people tend to spend more time staying-in, at home, compared with P1. This is because
period P2 covers lunchtimes, while in period P1 people generally work weekdays. In the
third period (P3), air pollution impacts people who visit tourist sites, which has a negative
relationship, indicating the higher the air pollution, the fewer the people who would visit
these (Figure 3a). It is not hard to explain this because, since 2013, citizens living in China
have improved their awareness to avoid the potential risk of illness when bad air pollution
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manifests itself as hazy weather (Lu et al., 2018). Air pollution tends to lower the desire of
people to go to a restaurant (Figure 3b), as people may choose to cook food themselves as
represented by the increasing staying-in ADL coefficient shown in Figure 3c. People eating
out seem not to be impacted so much by air pollution in P3. This is after sunset when
people cannot so easily visually appraise haze (in the dark). There are some differences
between the overall AQI and more specifically PM2.5 that influence people’s activities. For
example, the most significant influence is from PM2.5 especially in the latter part of a day
(P2 and P3), while AQI’s impact is less significant and occurs mainly during P1.

Figure 3. The effects of air pollution on people’s living activities. (a–c) are the results of sightseeing,
eating out, and the staying-in ADLs, while (d,e) represent the use of different transportation modes
ADL reflected by the situation at bus stops and subway stations. The bottom green bars in the left of
each subplot show the percentage of the probability value (p-value) that are less than 0.05, which
means the corresponding coefficients are significant within a 95% confidence interval among the
10 times they are repeated with different datasets. The red bars to the left of each subplot represent
the percentage of the p-value is higher or equal to 0.05, which means there is no obvious relationship
between the people’s activity and AQI or PM2.5 concentrations. We determine that PM2.5 as part of
an AQI influences people’s activity only when the percent of significant coefficient (p-value < 0.05) is
more than 60% (as indicated by a single length of green bar in the left graphs). We plot the mean
correlation coefficient value and standard error for every group of experiments to the right of the
Figures represented by blue (if the value > 0) and purple (if the value < 0) with the error bars (if it
is no more than 60%, we do not plot anything in the right-side graphs). The results are reported
in Tables A7–A11.

5.3. Output 2: Spatial-Temporal Behaviour Impacting Indices of Air Pollution on ADLs

Figure 4a–c illustrate the spatial distribution of the final summary index that reflects
that ADLs are affected by air pollution. Here we note that in the morning period, fewer
people are impacted by air pollution for most of the days when they go to work as usual,
while the green pattern means that the impact is mainly positive because staying is the
main part of the index. For the middle of the day, the impacted area of air pollution starts
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to cover the suburbs of Beijing as shown in the greener parts in Figure 4b, w.r.t morning
period. Considering that people’s activities may be affected both negatively and positively,
the distribution patterns appear more complex—there could have both red and green parts
at the same time. In the afternoon period, the main impacted activity is eating out, so all of
the affected areas have a negative relationship with air pollution. A city centre may tend to
have more accessible, well-known, frequently visited, tourist sites and entertainment sites,
hence, the index is much higher than in regions away from the city centre.

Figure 4. Summary behaviour impacting indices of air pollution on people’s living activity from 6:00 a.m. to 6:00 p.m.
(a–c) are the spatial distributions of the influence of air pollution on all activities in period 1 (6:00 a.m. to 10:00 AM), period
2 (10:00 a.m. to 2:00 PM) and period 3 (2:00 p.m. to 6:00 PM). The green bars represent the positive effect of air pollution
while the red bars represent the negative effect.

The results of the map of the summary behaviour impacting indices indicate that
the impact of air pollution on ADLs not only has a spatial but also a temporal, disparity.
We define the no data area as an empty area disparity. These impacts appear in three
different patterns temporally in one day: full positive (e.g., P1), positive and negative
mixed (e.g., P2) and full negative (e.g., P3). Similarly, at the spatial scale, the impact of
such patterns is also seen. For example, in the middle of Beijing, it appears to be positive in
P1, then negative in P2, and still negative in P3, thus, this pattern could be classified as a
positive-negative-negative (PNN) group. While in some suburbs in north Beijing (e.g., the
northernmost Huairou district), the patterns include empty-positive-negative (EPN) and
empty-positive-empty (EPE).

5.4. Output 3: Restaurant Business Loss Estimation Due to Air

The average correlation coefficient value of the random experiments’ result is −0.236
(p < 0.001) from the PM2.5 impact, which means that when PM2.5 increases by 1 µg/m3, the
density of people reflected by mobile phone users’ density in the restaurant VP decreases
by 0.236 people/km2. Thus, it is estimated that air pollution tends to cause a revenue loss
for restaurants. Because we sample the mobile phone users in the first 5min of every hour
and their average sample number is 1.1 million each time during daytime, we use a scaling
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factor to project this to the whole of the (Beijing) city population. In 2015, Beijing had
21.7 million people, so the scaling factor is roughly 20. Thus, if PM2.5 increases by 1 µg/m3,
the density of actual people in the restaurant VP would decrease by 4.72 people/km2.

In a similar study, Zheng et al. [25] focused on how PM2.5 can affect people’s eating
out in Beijing. They conclude that when the concentration of PM2.5 increased by one
standard deviation, the number of people eating out decreased by 1.05%. In our case, if
PM2.5 increases by 1 standard deviation (92.99 µg/m3), the density of actual people in the
restaurant VP would decrease by 4.72× 92.99 ≈ 438.9 person/km2, equal to a decrease in
10% of people eating out for lunch. The number is much higher than the study of Zheng,
this may be because they combine types of eating out for breakfast, lunch and dinner,
while our study only considers lunchtime and dinner. Further, another similar study, Gao
et al. [24] concludes that for every 1% increase in the concentrations of PM2.5, the dining-out
frequency of urban residents reduces 0.059% around Beijing in 2016. In our case, if PM2.5
increases by 1% (0.97 µg/m3), the density of actual people in the restaurant VP would
decrease by 4.72× 0.97 ≈ 4.59 person/km2, equal to a decrease in 0.44% for people eating
out for lunch. The qualitative results of the two studies are consistent with ours.

Further, according to Equation (12), because the average area of a sampled restaurant A
is 225m2 the CAR (using Equation (12)) could be computed as 4.72× 20× 225× 10−6 × 19,
roughly equal to 0.4. This means that if the PM2.5 increases by 1 µg/m3, the average
revenue of one restaurant would decrease by 0.4 CNY in one day. There are several changes
from a good air quality day to a polluted day in Beijing during the study period, for
example, from 13 February to 14 February 2015, the AQI jumped from 108 to 248, and the
PM2.5 concentration increases at least 125 µg/m3. Hence, it estimated that for example
on 14 February 2015, the average revenue of one restaurant would decrease roughly by
at least 50 CNY compared to February 13. In Beijing in 2015, there were 0.59 million
restaurants (From 2017 China Restaurant Industry Survey Report of P.R.China. Available
at http://www.chinahotel.org.cn/ChoiceOSP/upload/file/20170609/217614969979071
54.pdf, accessed on 1 March 2021). When air pollution sweeps the whole city, the loss of
catering could reach 29.5 million CNY for just lunchtime.

5.5. Output 4: Changes in the Average Distance Travelled by People Walking and Cycling

Table 6 summarises the results. More details are given in Tables A17–A19. It is
seen that both the numbers of people and distance of movement are impacted by AQI,
negatively, when groups consist of people walking and riding (normal, manual) bikes. For
the walking group, the value of the correlation coefficient between the number of them
and AQI is −7.466 with a 0.031 p-value, while the correlation coefficient of the distance of
movement and AQI is −1.201 with a 0.032 p-value.

Table 6. The effects of air quality on walking and cycling people.

Number of People Distance of Movement

AQI PM2.5 AQI PM2.5

Walk −7.466 * −0.661 −1.201 * −0.207
(0.031) (0.782) (0.032) (0.608)

Riding bike −19.540 * −2.839 −7.271 * −1.015
(0.028) (0.665) (0.044) (0.715)

Note: The dependent variable is the number of people who ride electronic bikes or their moving distance hourly
in Beijing. p-values are reported in parentheses; * = p < 0.05.

Our research demonstrates that air pollution has a specific negative impact on specific
transportation modes, which means that citizens already have an awareness to avoid
air pollution. However, in some specific cases, people may not be able to avoid bad air
pollution. Furthermore, as the number of bikes sharing schemes increases in many cities in
China, this provides greater convenience for ad hoc cyclists but may also incur a financial
expense. If bad air pollution arises, this may become under utilised, advertently.

http://www.chinahotel.org.cn/ChoiceOSP/upload/file/20170609/21761496997907154.pdf
http://www.chinahotel.org.cn/ChoiceOSP/upload/file/20170609/21761496997907154.pdf
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Equations (15) and (16) reflect the changes in the average distance for each group w.r.t
AQI changes. It is interesting to note that the relationship between these two variables is
nonlinear and has a monotonically decreasing function. This means that as AQI increases,
the average number of people walking and cycling decreases. For cycling, the hourly
average number of people in each group is 8725 km, while the hourly-average distance
moved by people is 19,276 km. The correlation coefficient result is −7.27, thus the relation
between average distance for cycling group people and AQI is as follows:

AverageDistancebike =
19, 276− 19.54·AQI

8725− 7.27·AQI
− 19, 275

8725
(15)

For the walking group, the N is 782 and D is 4485, while the correlation coefficient
result is −1.201, thus the relationship between the average distance for the walking group
and AQI is as follows:

AverageDistancewalk =
4485− 7.466·AQI
782− 1.201·AQI

− 4485
782

(16)

The curves of the two equations are shown in Figure 5 and can be used to compute
how the average size of the distance moved by people cycling or walking decreases when
air pollution worsens. For example, when AQI increases by 200, the cycling distance
decreases by about 0.096 km, while the average walking distance decreases by 0.213 km.

Figure 5. The relationships between AQI and average distance for people walking and cycling.

Hu et al. [21] concluded that when the AQI decreases from excellent to severely
polluted, the average distance of people cycling decreases by about 0.26 Km per person,
while for people walking, this decreases by about 0.8 Km per person. In our case, when the
AQI changes from excellent to severely polluted (AQI increases 300), the cycling distance
decreases by about 0.14 Km, while the average walking distance decreases by 0.32 km.
Although the study of Hu et al. was also in 2015, the data of the study were collected from
1243 mobile application users all over China, which could explain why their results differ
somewhat from ours.

6. Conclusions

In this study, we first define the internet of behaviours (IoB), then we apply an IoB
framework to explore whether, and how, air pollution changes affect people’s specific
activities of daily life quantitatively. In the IoB framework, the qualitative and quantitative
impacts of air pollution on the four ADLs could give viable advice to authorities and
businesses to better manage their service resources more appropriately. Our case study
first provides a good application for IoB, which aims to link and analyse multiple human
behaviours on mass and output this as possible feedback to the users themselves. Second,
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we also create a methodology that can contribute to the further development of IoB systems,
frameworks, or other related components such as algorithms, communication protocols,
and more diverse types of human physical behaviour detecting sensors such as millimetre
wave radar, ultra wide band (UWB) and lidar.

The methodology of an IoB system presented in our study could be applied to other
cities theoretically under specific conditions. These conditions are mainly related to the
dataset, which is summarized as follows: Because this study focuses on people’s activities
of daily living (ADL), a dataset that can estimate people’s density distribution needs to
be acquired from service providers such as Telcom companies or Internet-wide service
providers such as social media companies. To be more specific, a city fully covered with
telecom base towers could generate the CDR data, which could be applied to compute
the ADLs on mass in this study. Such data needs to be shared by a service provider but
often this is regarded as a commercial product by them even for special cases such as
scientific use, which is costly; sometimes only more historical rather than current data is
shared. If such CDR data cannot be accessed, other geographic data with similar features
(spatial and temporal resolutions, etc.) could also be used, e.g., Tencent position data
(https://heat.qq.com/, accessed on 1 March 2021), Baidu heatmap (https://mtj.baidu.
com/, accessed on 1 March 2021), etc. Besides the CDR data, other datasets including
air pollution and weather condition datasets also need to be obtained and fused which is
complex to do because data in different data sets may have different data structures, meta-
data, linked data and semantics. In addition, these datasets should have two dimensions
(individual and time) with high spatial and temporal resolutions, to be able to be used as
panel data, to apply FEMs.

An IoB framework can serve different groups of people based on their roles in society,
such as citizens, governments and businesses. Hence, we propose some practical recom-
mendations here: first, when facing the threat of bad air pollution, citizens should improve
their awareness to avoid this potential great harm and take some protective measures. At
the same time, as citizens, we can each increase our awareness to protect the environment,
or we may face more and more environment-related threats in the future.

In terms of city authorities, besides controlling air pollution from sources such as
industrial emissions, these could elect to take appropriate mitigation measures, i.e., planting
more leaf or broad-leaf tree species which have been proven to have a high dust-retention
capability in regions where particulate matter threatens people welfare more according
to behaviour impacting indices. For example, in suburban areas with a limited green
space, especially close to the bus stops or subway stations, planting high percentages of
Pinus tabulaeformis and Platycladus orientalis type trees can help to clean the air.

Further, transport companies could arrange different fees for travelling at different
times, such as, in peak hours, public transport ticket prices could be decreased to encourage
more citizens to take public transit. Businesses could use air pollution forecasts and IoB
models to conduct expedited business operations to reduce losses or gain greater profits.
For example, restaurant managers could consider business solutions, such as proposing
special offers at lunchtime to attract people, through calculating the costs and benefits
because air pollution would decrease the number of people who want to go out for
lunch. But at the same time, restaurant managers should fulfil their social responsibility
of protecting citizens’ health by reminding potential customers to implement necessary
measures, such as wearing a mask on the way to the restaurant. Further, because an
increasing (worsening) AQI would decrease the number of people who want to cycle, as
well as the average distance they ride, bike-sharing companies could adjust the charging
strategy appropriately, such as reducing the cost per hour, to attract more users to ride, to
reduce their potential loss in income. But in terms of their social responsibility, they could
also increase the cost of riding per hour, to encourage citizens to use more public transport,
to reduce their duration and exposure to air pollution outdoors.

Despite our achievements, our work still has some limitations: First, the study period
and case region could be extended to detect spatial-temporal disparities. However, it is

https://heat.qq.com/
https://mtj.baidu.com/
https://mtj.baidu.com/
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very difficult to gain access to CDR data from service providers for longer periods. The use
of this methodology in other applications/studies needs a high amount of data, that maybe
heterogeneous in character and may lack accessibility. Second, transport modes did not
consider private cars or taxis because classifying these is difficult based upon our dataset.
Third, deep machine learning could be performed to compare with the statistical models in
our study to check the robustness of our study. Fourth, no quantitative comparison can as
yet be performed with the work of others as, to the best of our knowledge, no one else has
studied the effect of air pollution changes on a wider range of ADLs such as sightseeing,
staying-in and travelling by bus or subway at this time. In the future, the methodology of
the IoB system could be applied in other cities to test its robustness and to advance some of
the limitations above.
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Appendix A Additional Description of Datasets

Appendix A.1 Additional Materials for CDR Dataset Description

A CDR contains: The International Mobile Subscriber Identification Number (IMSI)
that is a unique code for every subscriber identity module (SIM) card to identify users on
the network; a timestamp that records when interactive communication events happen;
Cell Identity (CI) corresponding to the base station location (Table A1). CDRs are generated
every 1 s (its temporal resolution of recording) and stored in a Comma-Separated Values
(CSV) file.

Table A1. Recorded data structure.

ID Name Description

1 Timestamp Interactive time of users and base station
2 CI Corresponding base station’ identity
3 IMSI The encrypted ID of users

We used the locations of all the 51,216 mobile base stations shown in the Global System
for Mobile Communication (GSM) engineering parameters inner structure (Table A2).
However, because some base stations are so close that the identified latitude and longitude
are practically the same, we combined “collocated” base stations such that their number
reduces by about 2/3 from 51,216 to 17,445. The coverage area of each mobile base station
can be approximated as a Voronoi polygon (VP) that is built around it (Thiessen, 1911).

http://www.cnemc.cn/
https://www.ncdc.noaa.gov/
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When a phone is used to make a call or send a text message, its location is found via being
in range of the specific mobile base station.

Table A2. The inner structure of GSM engineering parameters.

ID Name Description

1 CI Unique ID of the base station
2 Lat, Lon Latitude and longitude of the base station location

Figure A1 illustrates more details for hourly record number information, from which
we observe that for most days, numbers of records increase suddenly from 6 a.m. These
also become minimal from 11 p.m., which is because people call or text much less at night
when most people are asleep. However, during the daytime, the number of records reflect
better the active level of people’s activity.

Figure A1. Hourly distribution of CDR number over the whole study period.

Appendix A.2 Error Analysis When Estimating Mobile Phone Users’ Density Distributions

In many cities such as Beijing, the use of mobile phones in an urban area is larger than
in a suburban one and the density of the base stations is larger, while in a suburban area, a
single station covers a bigger circle area impacted by the requirement and terrain. Figure A2
shows the distribution areas of the base stations. It can be observed that more than 50%
of areas of base stations are less than 0.25 Km2, corresponding to a 500 m positioning
resolution if we represent or abstract the base station as a square. In Beijing, almost 80% of
people live in the urban area, which is covered by a dense mass of base stations so that we
can regard CDR-based positioning accuracy as 500 m.

Then we are concerned if the resolution of the CDR-based positioning density distri-
bution is accurate enough to let the extracted value of a vector point accurately represent
people’s density or other feature values for the POI.

A POI is a random sample point in a region because a vector point cannot represent
an area, for example, a restaurant POI does not mean this restaurant has only one sampled
point. In terms of the sightseeing ADL, these areas consist of sites such as parks that are used
for touring and for leisure and are larger than 1 Km2. Community regions have a similarly
large average area as well. In terms of the transport mode options, except for people
walking and bike-riding, we focus on people who intend to take a bus and the subway.
Bus stops and subway stations are the POIs that we use to represent the people’s density
values to investigate any potential changes in these concerning air pollution. According to
the statistics from a route planning website (https://lbs.amap.com/getting-started/path,

https://lbs.amap.com/getting-started/path
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accessed on 1 March 2021), the average distance between bus stops in Beijing is over 1 Km,
which is twice as long as the KDE density distribution with a 500 m spatial resolution in
the main urban area. Note, the average distance between two adjacent subway stations in
Beijing is about 1.5 Km [44], which is much larger than 500 m. Furthermore, the transport
bus and subway POIs sites tend to be set beside main roads in Beijing. There are fewer
other types of POI close by, such as restaurants or apartments, so we can use these POIs
to collect information on how people move by bus and subway. Thus, these POIs can
represent the situation for these two kinds of activity. However, in terms of the eating out
option, some restaurants may be part of a big mall, mixed in amongst other kinds of shops
such as clothing stores representing other human activities. Using only a single POI (only
eating out) to represent here may cause a bigger error. To solve this problem, we present
an additional strategy to decrease the error and test for this in the model and define it as
Strategy 2 (S2) while the previous one is defined as S1. The details of S2 are introduced
in Appendix B.

Figure A2. Areas proportion distribution of base station VP.

Appendix A.3 Error Control Solution When Estimating Mobile Phone Users’
Density Distributions

To decrease this unknown impact, we present a standard method for spatial resolution
as follows. First, we randomly generate an equal number of points in each VP that is equal
to the actual records of sampled mobile phone users in every corresponding VP, where
every point represents one mobile phone user. Then, we use the kernel density estimation
(KDE) method to estimate hourly density distributions for the whole of Beijing, with the
raster resolution parameter set as 500 m. The final distribution raster maps the datasets
for continuous hours with a geospatial resolution of 500 m × 500 m. Although the errors
could still be spatially uneven, this method can reduce the error when extracting values
(i.e., mobile user density, PM2.5 concentration, etc.). POI, especially when the POI is within
a bigger VP. For example, Figure A3a shows the density distribution using KDE, while
Figure A3b shows a simple symbolization method to display the density for every VP. we
divide the density into five levels in this case and as the level index increases, the density
increases. POI A and B are located at the same VP on different sides of it. In (b) the original
density distribution, A and B have the same density value; however, because of the spatial
autocorrelation theorem, A should have the value closer to level 4 or level 5. Hence, after
the KDE process stage, point A get a value at density level 3, which is more accurate.
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Figure A3. Comparison of two strategies of using density distributions. (a) illustrates an example of
S2, while (b) shows the corresponding case of S1.

Appendix A.4 Description of Other Datasets

Appendix A.4.1 Additional Materials for Air Quality Datasets

Throughout this paper, we study the role of air pollution on people’s activities. We
recognize that there are several pollutant criteria. We have emphasized the central role
of PM2.5 both because we observe this variable’s value by POI/hour and because several
independent research studies have documented its role in raising the mortality and mor-
bidity risk, e.g., [45,46]. Our focus is on the Air Quality Index (AQI) and concentrations
of key air pollutants (PM2.5, PM10, SO2, O3, NO2, CO) and their correlations for Beijing,
see Table A3.

Scientific studies show that high concentrations of a particular matter can cause severe
air pollution problems in some Chinese cities in recent years [47,48]. The Clean Air Alliance
of China Clean Air Management Report in 2016 (CAAC Clean Air Management Report.
Bulletin on Clean Air Alliance of China in 2016. Available at http://www.cleanairchina.
org/file/loadFile/145.html, accessed on 1 March 2021) stated that particulate matter was
still the main factor of air pollution in China in 2015 and that Beijing was (and still is) one of
the most polluted cities for PM2.5 and PM10 in China. Besides these two pollutants, O3 and
NO2 emissions still exceed the standard from the Chinese National Ambient Air Quality
Standard (CNAAQS) (Chinese National Ambient Air Quality Standard. Bulletin on the
Ministry of Ecology and Environment of the P.R. China in 2012. Available at http://kjs.mee.
gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf, accessed
on 1 March 2021), which is also reflected in the study period for 1.8% of the hours for
O3 and 15.5% for NO2. According to MEP’s AQI data, PM2.5 was the primary pollutant
for 64.3% of the hours and PM10 was in 18.7% of hours the major polluting factor in our
study period.

People can visually perceive visible particulate matter in the air, thus they perceive
PM2.5 and PM10 with their eyes. SO2 is an odorous gas that is emitted with industrial
smoke and other coloured sulphides; people can see and smell it at high concentrations.
However, during this study period, its concentration was low enough not to be perceivable.
As ground-level O3 and CO are both invisible and odourless; people tend to be less likely
to perceive their effects. NO2 was always at a low concentration level during the study.
However, it reacts with some organic compounds in the air to increase other pollutants such
as O3 and PM2.5, which means it may be more indirectly, rather than be directly perceived
(see Table A3). Also note the individual elements of AQI seem to be highly correlated
with PM2.5, except for SO2 and CO, which are consistently low. PM2.5 is highly correlated
with PM10 (correlation coefficient = 0.703, p < 0.001), AQI (correlation coefficient = 0.625,
p < 0.001) and NO2 (correlation coefficient = 0.723, p < 0.001). In contrast, O3 is negatively
correlated with PM2.5. Thus, PM2.5 is the primary pollutant for the majority of days in
Beijing during our study period.

http://www.cleanairchina.org/file/loadFile/145.html
http://www.cleanairchina.org/file/loadFile/145.html
http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf
http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf
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Table A3. Air pollution Statistics Based on Beijing data.

AQI PM2.5 PM10 SO2 O3 NO2 CO

Mean concentration
(µg/m3) / 107.929 133.959 32.307 39.289 53.460 1.698

% hours when it is the primary
pollutant / 64.29% 18.65% 0.00% 1.79% 15.48% 0.00%

Whether it is easily perceived / YES YES YES NO NO NO
Correlation between it
and PM2.5

0.625
*** / 0.703

***
0.760

***
-0.626

***
0.723

***
0.832

***

Note: *** p < 0.001.

In terms of particulate matter (PM), PM10 and PM2.5 are collected by a continuous
monitoring system that consists of a sample acquisition unit, sample measurement unit,
data acquisition and transmission unit and other auxiliary equipment. The measuring
methods of the monitoring instruments configured in the system are the β-Ray absorp-
tion method and tapered element oscillating microbalance (TEOM) method, which are
performed in a PM2.5 sampler or PM10 sampler. The principles and operation details of the
two methods are specified in the related standards, which can be accessed from the Na-
tional public service platform for standards information (China) (http://std.samr.gov.cn/,
accessed on 1 March 2021) (Note all the specifications or standards in this paper refer to
this platform).

Range and resolutions are also key parameters when collecting data using sensors,
which are described in Table A4. Furthermore, the accuracy and repeatability of the data
collection, reflected by the use of parallelism of monitors (PoM), effective data rate (EDR)
and comparison test of reference method (CTRM) are reported in Table A4. The definitions
of the indicator are as follows.

PoM: Root mean square of each batch data result: In the same test environment, adjust
the inlet of the three monitors to the same height, and the distance between the monitors is
2–4 m. After the calibration and setting of the sampling flow, the instrument parallelism
test is carried out.

EDR: After debugging, the monitor will run continuously for at least 90 days to test
the effective data rate. During this period, the maintenance time and details are recorded,
and the daily average value of the three monitors to be tested, are analysed.

CTRM: At least three samplers are used for the reference method, meanwhile, an
automatic testing monitor works simultaneously. The automatic monitoring data C and
the reference method test data r in the same sampling period are taken as a data pair, and a
total of 10 groups of samples are tested. Then the reference test data and the corresponding
automatic monitoring data are analysed using linear regression, and the slope k, intercept
B and correlation coefficient r of the test regression curve are analysed.

Here we list all the referred specifications or standards in Table A4:

• HJ 655-2013 (China): Technical Specifications for Installation and Acceptance of Ambi-
ent Air Quality Continuous Automated Monitoring System for PM10 and PM2.5

• HJ 653-2013 (China): Specifications and Test Procedures for Ambient Air Quality
Continuous Automated Monitoring System for PM10 and PM2.5

• HJ 93-2013 (China): Specifications and Test Procedures for PM10 and PM2.5 Sampler

Table A4. Parameters and Specifications of the sensors to measure PM10 and PM2.5.

PM Sensor Range Resolution CTRM EDR PoM Specification

PM2.5 PM2.5 Sampler 0~10,000
µg/m3 0.1 µg/m3 Coef. ≥ 0.93 ≥85% ≤15% (1) HJ 655-2013

(2) HJ 653-2013
(3) HJ 93-2013PM10 PM10 Sampler 0~10,000

µg/m3 0.1 µg/m3 Coef. ≥ 0.95 ≥85% ≤10%

Note: Coef. indicates the coefficient in the linear regression results of a CTRM.

http://std.samr.gov.cn/
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In terms of the other four pollutants, the monitoring system consists of the sampling
device, calibration equipment, analytical instrument, data acquisition and transmission
equipment. The system collects the pollutants data using a point analyzer, which refers to
the monitoring and analysis instrument that collects the ambient air through sampling the
concentration of an air pollutant at a fixed point.

The measurement parameters, such as the measurement range and the sensor resolu-
tion, and the sensors themselves used to measure each pollutant are shown in Table A5.
The indication error represents the accuracy of the collected data, which is defined as
follows After the monitoring system runs stably, a zero-point calibration and full-scale
calibration are carried out respectively, a standard gas with a concentration of about 50% of
the range is introduced, and the display value is recorded after the reading is stable; Then a
zero calibration gas is injected. The test is repeated three times, and the indication error of
the analytical instruments are calculated according to the formulae given in specifications.

The reference standards used are given below:

• HJ 193-2013 (China): Technical Specifications for Installation and Acceptance of Ambi-
ent air Quality Continuous Automated Monitoring System for SO2, NO2, O3 and CO

• HJ 654-2013 (China): Specifications and Test Procedures for Ambient Air Quality
Continuous Automated Monitoring System for SO2, NO2, O3 and CO

Table A5. Parameters and Specifications of the sensors to measure SO2, NO2, O3 and CO.

Pollution Sensor Measure Method Range Resolution Indication Error Specification

SO2 SO2 Analyzer Ultraviolet Fluorescent method 0~500 ppb 0.1 µg/m3 ±2%F.S.

(1) HJ 193-2013
(2) HJ 654-2013

O3 O3 Analyzer Ultraviolet Absorbance method 0~500 ppb 0.1 µg/m3 ±4%F.S.

NO2 NO2 Analyzer Chemiluminescence
Detection method 0~500 ppb 0.1 µg/m3 ±2%F.S.

CO CO Analyzer

Non-dispersive Infrared
Absorption method,
Gas Filter Correlation Infrared
Absorption method

0~50 ppm 0.1 mg/m3 ±2%F.S.

Note: ppb: parts per billion; ppm: parts per million; F.S. indicates full scale.

Appendix A.4.2 Weather Conditions

Weather data are collected from the National Oceanic and Atmospheric Adminis-
tration (NOAA). The data are collected from weather stations included in the National
Climatic Data Centre (NCDC) of NOAA (https://www.ncdc.noaa.gov/, accessed on
1 March 2021). The temporal resolution of the weather data is hourly, but in space, they
are from only one pollution monitoring station because the weather conditions do not
vary across Beijing at the same time. Most of our POIs distribution is in the core area of
Beijing, where the temperate and other weather conditions vary less across this area, which
has little influence on the regression results. It is worth mentioning that in our 21-day
study period, the rain and snow value are all zero. Hence, in this study, we considered the
weather factors to only include temperature, wind speed and sky/cloud cover.

Weather sense is governed by international standards. The key parameters of the
meteorological sensors to collect corresponding data are shown in Table A6, including
the range and resolution, accuracy. Measurements made using scientific instruments are
repeatable as evidenced by the observation that readings don’t change when weather
patterns are stable.

Standard specifications can be downloaded from national public bodies according to
a unique identifier as follows:

• GB/T 35221-2017 (China): Specification for surface meteorological observation—General
• GB/T 35226-2017 (China): Specification for surface meteorological observation—Air

temperature and humidity
• GB/T 35227-2017 (China): Specification for surface meteorological observation—Wind

direction and wind speed

https://www.ncdc.noaa.gov/
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• GB/T 35222-2017 (China): Specification for surface meteorological observation—Cloud
• GB/T 35228-2017 (China): Specification for surface meteorological observation—

Precipitation
• GB/T 35229-2017 (China): Specification for surface meteorological observation—Snow

depth and snow pressure

Table A6. Parameters and Specifications of the sensors to measure weather conditions.

Weather Condition Sensor Range Resolution Accuracy Specification

Temperature Thermometer −50~50 ◦C 0.1 ◦C ±0.2 ◦C GB/T 35226-2017
Wind Wind Speed Sensor 0~60 m/s 0.1 m/s ±(0.5 m/s + 0.03 v) GB/T 35227-2017

Cloud Amount - 0~100% - - GB/T 35222-2017

Precipitation (Rain) Tipping-Bucket Rain Gauge,
Weighing Precipitation Sensor ≤4 mm/min 0.1 mm ±0.4 mm (≤10 mm),

±4% (>10 mm) GB/T 35228-2017

Snow (depth)
Automatic Snow Depth
Observation Instrument,

Ultrasonic or Laser Sensors
0~2000 mm 1 mm ±10 mm GB/T 35229-2017

Note: The accuracy is defined as the maximum allowable error of the specifications.

Note that in terms of determining the Cloud coverage in the sky, this is often determined
from visual measurements and image analysis and may even be determined manually.

(1) POI

To study how SPSAs might be impacted by air pollution, we analysed this relationship
for four situations: if people go out sightseeing, if people eat out, their transport mode
options and if they stay in options. The point of interest (POI) for every situation are
different datasets that were obtained from the AutoNavi Software Limited Company
(https://mobile.amap.com/, accessed on 1 March 2021). In terms of sightseeing, we
consider whether or not the place is free (of charge) to visit as this could influence whether
people go to visit them or not. We extract 200 sightseeing POIs that are free, such as
Chaoyang Park, Nanluoguxiang and Tiananmen Square, and 200 POIs where citizens need
to pay to visit, such as Lama Temple, The Summer Place and Yuyuantan Park. For the
eating out option, 200 restaurant POIs in Beijing have been identified or extracted. We
also extract 200 house or community POIs to study the impact of air pollution. To reflect
people’s transport mode options, we selected bus stops and subway stations as POIs (linked
to the use of bus and subway as commonly used transport modes) that are static or fixed
positions or waypoints during citizens’ use of transport. For these two kinds of transport
mode POIs, we select or extracted 100 of each to a total of 200 POIs. It is important to note
that sightseeing POIs can represent at least 1 Km2 of the area around the points, which
are also called buffer zones. This decreases the error relating to the limit of CDR-based
positioning accuracy, which is analysed in more detail in Appendix A.2. Note also that all
POIs are extracted, spatially randomly, which means they have a very dispersed spatial
distribution for each type of POI.

(2) Building distribution

Building spatial distribution data is represented as ESRI polygon data in shape-
file format (https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf, accessed on
1 March 2021). This data covers the main urban area defined to be within the sixth ring
road in Beijing. The primary use of this dataset is to extract the area of a building within a
single base station VP (S2, Appendix B), and then to calculate the proportion of a restaurant
area in this part of a building (Section 4.2.4).

Appendix B An Additional Strategy (S2) for the Eating out ADL

Although in some areas such as large shopping malls, restaurants may be scattered
amongst other kinds of shops, we can just select those specific base stations where the POIs
nearby mainly consist of restaurants. We define a restaurant community (RC) area using
the following rules. If a base station VP has N number restaurants while the building area

https://mobile.amap.com/
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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in this region is B Km2, and they then meet the following condition N × A > B× 50%,
where A is the minimum area of 80 m2 for a restaurant based on Beijing catering enterprise
operating area access standards in 2007, the base station VP is an RC. It is worth mentioning
that we assume a restaurant with an 80 m2 area is too small to have more than one floor.
Based upon this rule, and my building distributions ever and POIs dataset, we sample 71
RCs as an additional area to study. For example, Figure A4 shows the Sanlitun area, which
is one of the most famous business districts in Beijing, but only the VP that meets the RC
judging condition would be sampled, as shown by the red outlines. Then, we extract the
average density values, air quality data and weather condition data over the polygon, and
finally, we still use the same FEM to analyse the relationship between the air quality and
the eating out the option of people.

Figure A4. Restaurants Community (RC) example for the Sanlitun area of Beijing.

Appendix C Additional Materials for Results

Appendix C.1 Spatial-Temporal Distributions for Key Datasets

This appendix aims to describe the spatial-temporal characteristics of the CDR-based
people density distribution, AQI and PM2.5 IDW result in the study period and region.
Because every hour during the 21 days’ daytime has one distribution per kind of dataset,
there are more than 2500 distribution maps. Thus, we only plot some examples for three
key datasets, CDR-based people density, AQI and PM2.5, as sampled distributions and
describe the characteristics for their spatial and temporal features here.

Figure A5. Four examples of the CDR-based people density distribution at different time points.
(a–d) show the distributions in the whole of Beijing, while (e–h) illustrate an inner area of Beijing to
show more details. (a,e) are at 6:00 a.m. 2 February 2015 while (b,f) are at 6:00 p.m. on the same day.
(c,g) are at 6:00 a.m. 19 February 2015 (Spring Festival), while (d,h) are at 6:00 p.m. on the same day.
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Figure A6. Twenty-one examples of the AQI distribution at different time points. In the layout of
(a–u), every row shows the distributions of three time points: 6:00 a.m., 12:00 p.m., and 6:00 p.m. in
the same day, while there are 7 days’ examples of date 2, 8, 11, 14, 17, and 20 in February 2015.

Figure A7. Twenty-one examples of the PM2.5 distribution at different time points. In the layout of
(a–u), every row shows the distributions of three time points: 6:00 a.m., 12:00 p.m., and 6:00 PM in
the same day, while there are 7 days’ examples of date 2, 8, 11, 14, 17, and 20 in February 2015.
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Appendix C.2 The Results of FEM Regressions

We report the FEM results for different POIs in different periods in a day in
Tables A7–A16 (using Equation (8) in the main manuscript). Tables A7–A11 show the
10 times of the conducted random experiments (see Section 4.2.2 in the main text) involving
sightseeing, eating out/restaurant, staying-in and travelling via bus stop and subway
station, POIs. Columns (i), (iii) and (v) in Table A7, Table A9, Table A10, Table A11 show
the impact of the AQI on people’s activities in three periods that have been defined in the
main text. Columns (ii), (iv) and (vi) illustrate the impact of the PM2.5 concentration on
people’s activities. Table A8 shows this for the eating out POI. It has a similar format to
the other 4 POIs but just has 4 columns because it only includes the two time periods used
mostly for eating. In Table A8, the correlation coefficient between AQI and mobile phone
users’ density (MPUD) in the lunch period (11 AM to 2 PM) and the dinner period (5 PM
to 8 PM), are reported in columns (i) and (iii), while the MPUD coefficient with PM2.5 is
reported in columns (ii) and (iv). Tables A12–A16 show the results of the FEMs that use
all POIs, where the correlation coefficients are utilized to compute the spatial behaviour
impacting indices in Section 4.2.3 of the main text. Tables A12–A16 have the same structure
as Tables A7–A11.

Table A7. Ten times of the effect’s estimation of air pollution on people’s activity on the randomly sampled sightseeing POIs.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Times Period1 Period1 Period2 Period2 Period3 Period3

1 0.0741 ***
(0.001)

0.0215
(0.117)

0.0005
(0.988)

−0.0006
(0.988)

0.0854
(0.63)

−0.6276 ***
(0.001)

2 0.0289
(0.057)

0.0067
(0.554)

−0.0065
(0.848)

−0.0153
(0.693)

0.1172
(0.512)

−0.9823 ***
(0)

3 0.0551 **
(0.006)

−0.0011
(0.93)

−0.0113
(0.752)

−0.0462
(0.262)

−0.0747
(0.719)

−0.8426 ***
(0)

4 0.0402 *
(0.039)

0.0001
(0.991)

−0.0102
(0.781)

−0.0082
(0.83)

0.1253
(0.555)

−0.5164
(0.056)

5 0.0296
(0.105)

−0.0073
(0.568)

0.0192
(0.56)

0.0084
(0.804)

0.2183
(0.284)

−0.5702 *
(0.043)

6 0.0511 *
(0.023)

0.0138
(0.297)

−0.0065
(0.858)

0.0314
(0.402)

0.1038
(0.623)

−0.7019 **
(0.003)

7 0.0428 *
(0.017)

0.0067
(0.615)

−0.0026
(0.942)

−0.0149
(0.723)

0.3725 *
(0.034)

−0.6325 **
(0.004)

8 0.0276
(0.146)

−0.0051
(0.678)

−0.0112
(0.735)

−0.0183
(0.603)

0.1539
(0.382)

−0.7492 **
(0.002)

9 0.0301
(0.076)

−0.0043
(0.732)

0.0142(
0.627)

−0.0014
(0.966)

−0.0336
(0.874)

−0.9454 ***
(0.001)

10 0.0596 ***
(0.001)

0.0111
(0.415)

0.0237
(0.501)

−0.0056
(0.889)

0.0243
(0.887)

−0.9433 ***
(0)

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A8. Ten times of the effect’s estimation of air pollution on people’s activity on the randomly sampled restaurant POIs.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5)

Times Period Lunch Period Lunch Period Dinner Period Dinner

1 0.0023
(0.94)

−0.0946 ***
(0)

0.4986 *
(0.022)

−0.1509
(0.647)

2 0.0167
(0.528)

−0.0733 ***
(0)

0.3937
(0.086)

0.4015
(0.251)

3 0.0278
(0.366)

−0.1149 ***
(0)

0.527 *
(0.031)

0.2915
(0.398)

4 0.0305
(0.311)

−0.0857 ***
(0)

0.3457
(0.199)

0.4059
(0.303)

5 −0.0303
(0.223)

−0.1288 ***
(0)

0.45
(0.065)

0.1942
(0.548)

6 0.0115
(0.7)

−0.0859 ***
(0)

0.2361
(0.363)

−0.3118
(0.391)

7 0.0041
(0.862)

−0.1055 ***
(0)

0.3577
(0.126)

0.2314
(0.519)

8 −0.0067
(0.769)

−0.0943 ***
(0)

0.5685 *
(0.012)

0.2882
(0.412)

9 0.0097
(0.728)

−0.0824 ***
(0)

0.2516
(0.268)

−0.0278
(0.932)

10 0.0037(0.89) −0.0947 ***(0) 0.4027(0.058) 0.1461(0.644)

Note: * p < 0.05, *** p < 0.001.

Table A9. Ten times of the effect’s estimation of air pollution on people’s activity on the randomly sampled on the house or
community POIs.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Times Period1 Period1 Period2 Period2 Period3 Period3

1 0.0667 *
(0.014)

0.0411 **
(0.002)

0.0742 **
(0.005)

0.2097 ***
(0)

0.4271
(0.2)

0.0218
(0.967)

2 0.0643 *
(0.014)

0.0435 **
(0.001)

0.0726 **
(0.004)

0.2099 ***
(0)

0.0996
(0.737)

−0.8888 *
(0.032)

3 0.0694 **
(0.009)

0.0452 ***
(0)

0.0453 *
(0.034)

0.2119 ***
(0)

0.3369
(0.273)

−0.1589
(0.716)

4 0.0748 **
(0.007)

0.0469 ***
(0.001)

0.0923 ***
(0.001)

0.2553 ***
(0)

−0.005
(0.987)

−0.4784
(0.267)

5 0.0675 **
(0.01)

0.0466 ***
(0.001)

0.0896 ***
(0.001)

0.2431 ***
(0)

0.3581
(0.247)

−0.1621
(0.688)

6 0.061 **
(0.008)

0.0352 **
(0.008)

0.0771 **
(0.002)

0.2109 ***
(0)

0.4108
(0.255)

−0.6785
(0.143)

7 0.0963 ***
(0.001)

0.0489 ***
(0.001)

0.0838 ***
(0.001)

0.2181 ***
(0)

0.6312 *
(0.043)

−0.5569
(0.162)

8 0.0743 **
(0.002)

0.0559 ***
(0)

0.0853 ***
(0.001)

0.2267 ***
(0)

0.2482
(0.419)

−0.6419
(0.139)

9 0.0562 *
(0.04)

0.039 **
(0.008)

0.0566 *
(0.015)

0.1986 ***
(0)

0.1134
(0.625)

−0.5035
(0.128)

10 0.071 **
(0.008)

0.0441 ***
(0.001)

0.0868 ***
(0.001)

0.2655 ***
(0)

0.5811 *
(0.03)

−0.4768
(0.237)

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A10. Ten times of the effect’s estimation of air pollution on people’s activity on the randomly sampled on the bus
stop POIs.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Times Period1 Period1 Period2 Period2 Period3 Period3

1 0.0271
(0.298)

0.0353 **
(0.007)

−0.0231
(0.43)

0.197 ***
(0)

0.5775
(0.399)

0.0459
(0.954)

2 0.0319
(0.262)

0.0246
(0.235)

0.0002
(0.997)

0.0996
(0.18)

0.1527
(0.744)

−0.2459
(0.746)

3 0.0405
(0.148)

0.0249
(0.14)

0.0244
(0.564)

0.134 *
(0.021)

0.0236
(0.958)

−0.5818
(0.428)

4 0.026
(0.233)

0.0209
(0.229)

−0.0175
(0.648)

0.1333 *
(0.013)

0.5704
(0.335)

−0.0521
(0.931)

5 0.0329
(0.195)

0.0378 *
(0.018)

−0.011
(0.736)

0.1571 ***
(0.001)

−0.3182
(0.518)

−0.6631
(0.348)

6 0.0815 *
(0.011)

0.0437 *
(0.028)

−0.0069
(0.834)

0.1378 **
(0.01)

−0.3302
(0.579)

−0.6254
(0.446)

7 0.0206
(0.542)

0.0072
(0.752)

0.0054
(0.883)

0.1078
(0.066)

0.033
(0.956)

−0.8677
(0.276)

8 0.0273
(0.316)

0.0299
(0.137)

0.0095
(0.807)

0.161 ***
(0.001)

0.0735
(0.925)

−1.2288
(0.199)

9 0.0364
(0.166)

0.0394 *
(0.039)

0.0441
(0.17)

0.1548 **
(0.002)

−0.4657
(0.408)

−1.0819
(0.256)

10 0.0406
(0.112)

0.0339
(0.073)

−0.0193
(0.607)

0.0894
(0.171)

0.6506
(0.309)

0.0991
(0.907)

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

Table A11. Ten times of the effect’s estimation of air pollution on people’s activity on the randomly sampled on the subway
station POIs.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Times Period1 Period1 Period2 Period2 Period3 Period3

1 0.0399 *
(0.046)

0.0117
(0.525)

0.0948 **
(0.001)

0.1623 ***
(0)

−0.2442
(0.793)

−1.0232
(0.466)

2 0.0521 *
(0.032)

0.0304
(0.076)

0.0376
(0.112)

0.1408 ***
(0.001)

−0.7651
(0.109)

−0.5469
(0.444)

3 0.0112
(0.628)

−0.0325
(0.082)

0.0581 *
(0.021)

0.1575 ***
(0)

0.6758
(0.329)

0.4968
(0.654)

4 0.0439 *
(0.041)

0.0321 *
(0.042)

0.0367
(0.086)

0.1616 ***
(0)

−0.4887
(0.371)

−0.2133
(0.776)

5 0.0651 ***
(0.008)

0.0341
(0.057)

0.0159
(0.482)

0.1752 ***
(0)

0.2509
(0.65)

−0.872
(0.185)

6 0.0146
(0.469)

−0.0079
(0.652)

0.0307
(0.208)

0.161 ***
(0)

0.1355
(0.827)

0.8016
(0.263)

7 0.0479 *
(0.022)

−0.0045
(0.824)

0.0491
(0.095)

0.1653 ***
(0)

0.3038
(0.671)

0.1252
(0.897)

8 0.0049
(0.825)

0.0094
(0.563)

0.0394
(0.105)

0.2048 ***
(0)

0.5727
(0.345)

0.9211
(0.263)

9 0.0342
(0.142)

0.0132
(0.475)

0.0617 *
(0.027)

0.18 ***
(0)

−0.6704
(0.354)

−1.2534
(0.162)

10 0.0431
(0.061)

0.0177
(0.298)

0.0746 *
(0.011)

0.1702 ***
(0)

−0.0914
(0.881)

0.2375
(0.722)

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A12. Estimation of the effects of air pollution on people’s activity on the sightseeing POI.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Dependent
variables Period1 Period1 Period2 Period2 Period3 Period3

AQI 0.0570 *** 0.00195 0.0744
(0.0145) (0.0242) (0.1343)

PM2.5 0.00949 −0.00784 −0.794 ***
(0.0093) (0.0269) (0.1658)

Weather variables
TEMP 2.264 2.446 206.5 *** 201.9 *** 100.5 ** −19.3

(2.3320) (2.1031) (18.3392) (23.3036) (31.1725) (20.4207)
(TEMP)2 −0.0769 ** −0.0754 ** −2.701 *** −2.642 *** −2.227 *** 0.19

(0.0254) (0.0229) (0.2376) (0.2982) (0.6226) (0.4093)
WIND 2.534 *** 2.790 *** 15.58 *** 15.56 *** 54.01 *** 15.93 *

(0.2617) (0.2194) (0.9970) (0.9738) (5.7752) (7.4903)
CLOUD 7.730 *** 8.616 *** −21.49 *** −21.31 *** 0 0

(0.8331) (0.7992) (1.5167) (1.3588) − −
Constant 402.6 *** 398.0 *** −3436 *** −3346 *** −632.4 1088.0 ***

(52.2414) (47.5121) (351.9851) (450.4228) (416.5775) (298.0420)

POI fixed
effects YES YES YES YES YES YES

Type of day
fixed effects YES YES YES YES YES YES

N 4000 4000 4000 4000 2200 2200
R2 0.4525 0.452 0.277 0.277 0.3775 0.3795

Note: The dependent variable is the mobile phone users’ density (MPUD) on a POI in a period. Robust standard errors are clustered by
POI and reported in parentheses; ** p < 0.01, *** p < 0.001.

Table A13. Estimation of the effects of air pollution on the activity of eating out in restaurant POI.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5)

Dependent variables Lunch Lunch Dinner Dinner

AQI 0.00374 0.620 ***
(0.0198) (0.1661)

PM2.5 −0.0994 *** 0.391
(0.0144) (0.2482)

Weather variables
TEMP −376.0 *** −378.7 *** −244.8 *** −210.0 ***

(15.8275) (16.0107) (17.3950) (29.7944)
(TEMP)2 4.711 *** 4.748 *** 6.258 *** 5.588 ***

(0.1979) (0.1999) (0.4188) (0.6805)
WIND 23.60 *** 23.57 *** 93.60 *** 89.30 ***

(1.4692) (1.4384) (5.6235) (5.6046)
CLOUD −41.08 *** −38.94 *** 0 0

(2.8149) (2.6028) − −
Constant 7867.2 *** 7926.1 *** 2564.5 *** 2177.8 ***

(301.4089) (306.0135) (156.5763) (341.0804)

POI fixed effects YES YES YES YES
Type of day fixed
effects YES YES YES YES

N 3780 3780 2268 2268
R2 0.5421 0.5425 0.6658 0.6655

Note: The dependent variable is the mobile phone users’ density (MPUD) on a POI in a period. Robust standard errors are clustered by
POI and reported in parentheses; *** p < 0.001.
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Table A14. Estimation of the effect of air pollution on people’s staying-in activity for the house/community POI.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Dependent
variables Period1 Period1 Period2 Period2 Period3 Period3

AQI 0.0614 *** 0.0704 *** 0.375
(0.0175) (0.0171) (0.2090)

PM2.5 0.0393 *** 0.225 *** −0.403
(0.0091) (0.0144) (0.2895)

Weather variables
TEMP 14.22 *** 13.35 *** 342.6 *** 451.4 *** 240.5 *** 114.0 **

(1.7454) (1.6242) (29.4455) (34.5974) (44.3278) (37.9603)
(TEMP)2 −0.217 *** −0.206 *** −4.424 *** −5.799 *** −5.067 *** −2.511 **

(0.0192) (0.0179) (0.3826) (0.4478) (0.8937) (0.7672)
WIND 2.656 *** 2.996 *** 19.01 *** 19.78 *** 93.94 *** 66.43 ***

(0.2548) (0.2106) (1.3030) (1.3243) (8.8098) (15.2918)
CLOUD 12.40 *** 12.00 *** −18.56 *** −22.73 *** 0 0

(1.0094) (1.0000) (1.3265) (1.3514) − −
Constant 279.9 *** 296.8 *** −5923 *** −8050 *** −2277.7 *** −528.7

(40.8030) (38.2207) (562.706) (664.212) (591.1757) (549.7147)

POI fixed
effects YES YES YES YES YES YES

Type of day
fixed effects YES YES YES YES YES YES

N 4000 4000 4000 4000 2200 2200
R2 0.5943 0.5943 0.4793 0.4814 0.5618 0.5618

Note: The dependent variable is the mobile phone users’ density (MPUD) on a POI in a period. Robust standard errors are clustered by
POI and reported in parentheses; ** p < 0.01, *** p < 0.001.

Table A15. Estimations of effects of air pollution on people’s activity of transportation mode options on bus stop POI.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Dependent
variables Period1 Period1 Period2 Period2 Period3 Period3

AQI 0.036 0.0142 0.17
(0.0193) (0.0263) (0.3953)

PM2.5 0.0217 0.147 *** −0.342
(0.0136) (0.0383) (0.5427)

Weather variables
TEMP 5.526 5.049 296.6 *** 373.7 *** 190.8 * 112

(3.9977) (3.6908) (31.9462) (38.7465) (82.4009) (68.1898)
(TEMP)2 −0.129 ** −0.123 ** −3.832 *** −4.808 *** −4.059 * −2.469

(0.0433) (0.0402) (0.4170) (0.4995) (1.6581) (1.3709)
WIND 3.668 *** 3.860 *** 18.86 *** 19.31 *** 83.43 *** 63.88 **

(0.4218) (0.3523) (1.6356) (1.6282) (12.6869) (24.2800)
CLOUD 12.28 *** 12.11 *** −22.85 *** −25.77 *** 0 0

(1.2568) (1.0827) (2.1693) (1.9706) − −
Constant 522.5 *** 532.0 *** −5028.9 *** −6535.0 *** −1620.6 −517.1

(88.3302) (81.8273) (609.2183) (745.6948) (1100) (996.0337)

POI fixed
effects YES YES YES YES YES YES

Type of day
fixed effects YES YES YES YES YES YES

N 1980 1980 1980 1980 1089 1089
R2 0.5687 0.5686 0.4249 0.426 0.5603 0.5603

Note: The dependent variable is the mobile phone users’ density (MPUD) on a POI, in a period. Robust standard errors are clustered by
POI and reported in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A16. Estimations of the effects of air pollution on people’s transport mode subway station POI.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5) (v—AQI) (vi—PM2.5)

Dependent
variables Period1 Period1 Period2 Period2 Period3 Period3

AQI 0.031 0.0567 ** −0.00762
(0.0159) (0.0184) (0.4551)

PM2.5 0.00557 0.167 *** −0.18
(0.0127) (0.0272) (0.6530)

Weather variables
TEMP 10.44 ** 10.53 ** 333.8 *** 411.8 *** 183.4 161.1

(3.3324) (3.1121) (42.0320) (48.6495) (93.7985) (81.4032)
(TEMP)2 −0.186 *** −0.185 *** −4.306 *** −5.291 *** −3.935 * −3.486 *

(0.0346) (0.0325) (0.5481) (0.6306) (1.8950) (1.6519)
WIND 3.938 *** 4.072 *** 20.71 *** 21.30 *** 89.90 *** 82.09 **

(0.3957) (0.3453) (1.9061) (1.9226) (14.7067) (30.4025)
CLOUD 13.99 *** 14.47 *** −26.44 *** −29.32 *** 0 0

(1.2415) (1.1751) (2.7577) (2.5480) − −
Constant 472.7 *** 470.3 *** −5656.0 *** −7181.8 *** −1374.6 −1049.3

(78.7130) (73.8032) (800.5169) (931.2908) (1200) (1200)

POI fixed
effects YES YES YES YES YES YES

Type of day
fixed effects YES YES YES YES YES YES

N 1960 1960 1960 1960 1078 1078
R2 0.5725 0.5725 0.4474 0.4482 0.55 0.55

Note: The dependent variable is the mobile phone users’ density (MPUD on a POI in a period. Robust standard errors are clustered by POI
and reported in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001.

Appendix C.3 The Results of the Mutilative Linear Regression

We input the time series into the regression model given in Equation (14) in the main
manuscript. The Tables A17 and A18 are the results for the groups’ bike riding people and
walking people. For each table, columns (i) and (ii) show the estimation of the number of
people in the group impacted by AQI and PM2.5, while the other two columns show the
distance. Because the input data are time series, they might have an autocorrelation. Hence
use Prais-Winsten (PW) method to decrease the negative impact of this. The comparison
between the Durbin-Watson test value before and after using the PW method are shown
in Table A19, which shows the benefits of using the PW method to decrease the negative
impact of autocorrelation.

Table A17. Estimations of the effects of air pollution on people bike riding.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5)

Number Number Distance Distance

AQI −19.54 * −7.271 *
(8.6284) (3.5220)

PM2.5 −2.839 −1.015
(6.5185) (2.7622)

TEMP 255.9 −37.73 116.7 −3.994
(277.4387) (292.0201) (123.4601) (128.0484)

(TEMP)2 −6.352 −2.794 −2.831 −1.403
(3.5965) (3.8598) (1.6012) (1.6949)

WIND 124.4 95.25 56.04 * 44.06
(62.5282) (63.9672) (27.6811) (28.0982)

CLOUD −1147.5 ** −830.4 −497.8 * −360.2
(425.6531) (505.6191) (192.2372) (226.7534)

Constant 7563.8 9745.2 2855.4 3988
(5700) (5700) (2500) (2500)
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Table A17. Cont.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5)

Number Number Distance Distance

Type of day controls YES YES YES YES
Hour controls YES YES YES YES

N 73 73 73 73
R2 0.3971 0.3983 0.3838 0.3989

Note: The dependent variable is the number of people who ride a general bike, or their distance moved hourly in Beijing. Standard errors
are reported in parentheses; * p < 0.05, ** p < 0.01.

Table A18. Estimations of the effects of air pollution on people walking.

(i—AQI) (ii—PM2.5) (iii—AQI) (iv—PM2.5)

Number Number Distance Distance

AQI −7.466 * −1.201 *
(3.3690) (0.5445)

PM2.5 −0.661 −0.207
(2.3764) (0.4006)

TEMP 30.77 −35.41 7.162 −3.113
(84.8118) (90.3629) (14.7112) (15.6714)

(TEMP)2 −1.202 −0.343 −0.23 −0.103
(1.1018) (1.1933) (0.1909) (0.2069)

WIND 25.21 22.78 5.529 5.127
(19.4659) (20.3324) (3.3585) (3.5008)

CLOUD −360.4 ** −293.3 −59.49 ** −44.84
(126.2527) (151.0873) (22.0692) (26.2204)

Constant 3506.3 3132.2 542.1 506.2
(1800) (1800) (309.7733) (316.8005)

Type of day controls YES YES YES YES
Hour controls YES YES YES YES

N 73 73 73 73
R2 0.4087 0.3661 0.404 0.3682

Note: The dependent variable is the number of people who walk, or their distance moved hourly in Beijing. Standard errors are reported in
parentheses; * p < 0.05, ** p < 0.01.

Table A19. Comparison between the Durbin-Watson statistic before and after using the PW method.

Number of People Distance of Movement

AQI PM2.5 AQI PM2.5

Walk 1.818 1.778 1.889 1.818
(0.423) (0.394) (0.415) (0.391)

Riding bike 1.929 1.856 1.893 1.838
(0.404) (0.376) (0.397) (0.372)

Note: the values of the transformed Durbin-Watson statistic after the Prais-Winsten estimation are shown, while
the original Durbin-Watson statistic is in parentheses; The closer the value is to 2, the smaller the autocorrelation
sequence, and vice versa.
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