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Abstract: Intelligent systems are transforming the world, as well as our healthcare system. We
propose a deep learning-based cough sound classification model that can distinguish between
children with healthy versus pathological coughs such as asthma, upper respiratory tract infection
(URTI), and lower respiratory tract infection (LRTI). To train a deep neural network model, we
collected a new dataset of cough sounds, labelled with a clinician’s diagnosis. The chosen model
is a bidirectional long–short-term memory network (BiLSTM) based on Mel-Frequency Cepstral
Coefficients (MFCCs) features. The resulting trained model when trained for classifying two classes
of coughs—healthy or pathology (in general or belonging to a specific respiratory pathology)—
reaches accuracy exceeding 84% when classifying the cough to the label provided by the physicians’
diagnosis. To classify the subject’s respiratory pathology condition, results of multiple cough epochs
per subject were combined. The resulting prediction accuracy exceeds 91% for all three respiratory
pathologies. However, when the model is trained to classify and discriminate among four classes
of coughs, overall accuracy dropped: one class of pathological coughs is often misclassified as the
other. However, if one considers the healthy cough classified as healthy and pathological cough
classified to have some kind of pathology, then the overall accuracy of the four-class model is above
84%. A longitudinal study of MFCC feature space when comparing pathological and recovered
coughs collected from the same subjects revealed the fact that pathological coughs, irrespective of the
underlying conditions, occupy the same feature space making it harder to differentiate only using
MFCC features.

Keywords: LRTI; URTI; asthma; cough classification; respiratory pathology classification; MFCCs;
BiLSTM; deep neural networks

1. Introduction

Cough is a prevalent clinical presentation in many childhood respiratory pathologies
including asthma, upper and lower respiratory tract infection (URTI and LRTI), atopy,
rhinosinusitis and post-infectious cough [1–3]. Because of its wide range of aetiologies,
the cause of cough can be misdiagnosed and inappropriately treated [1]. Clinical differ-
entiation for pathological respiratory conditions takes into consideration the history of
the presenting respiratory symptoms as well as clinical signs such as pyrexia (i.e., raised
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body temperature), respiratory rate, shortness of breath and chest auscultation of pathog-
nomonic breath sounds. In some cases, additional investigations such as chest radiographs,
laboratory blood tests, bronchoscopy and spirometry are required to reach a definitive di-
agnosis. These investigations often require hospital visits and place demands on healthcare
resources. Moreover, such visits may create a negative social economic impact on the ill
child and on his/her family (such as time away from work and childcare arrangements).
Furthermore, some of these investigations such as chest radiographs, and blood tests can
result in more harm than benefit, if performed indiscriminately.

There is a growing interest in characterizing acoustic features to allow objective
classification of cough sounds originating from different respiratory conditions. Previous
studies have looked at medical screenings based on cough sounds [4–8]. Abaza et al. [4]
analysed the characteristics of airflow and the sound of a healthy cough to train a classifier
that distinguishes between healthy subjects and those with some kind of lung disease. Their
model incorporates a reconstruction algorithm that uses principal component analysis. It
obtained an accuracy of 94% and 97% to identify abnormal lung physiology in female and
male subjects, respectively. Murata et al. [5] used time expanded wave forms combined
with spectrograms to differentiate between productive (i.e., coughs producing phlegm)
and non-productive coughs (i.e., dry coughs). Cough sound analysis has also been used to
diagnose pneumonia [6] and Swarnkar et al. [7] used it to assess the severity of acute asthma.
The latter reported that their model can predict between children suffering from breathing
difficulties involving acute asthma and can characterize the severity of airway constriction.
In [9], tuberculosis (TB) screening was investigated using short-term spectral information
extracted from cough sounds. They reported an accuracy of 78% when distinguishing
between coughs of TB positive patients and healthy control group. Furthermore, it was
noted that the TB screening accuracy increased to 82% when clinical measurements were
included along with features extracted from cough audio. The cough sounds used in
some of the aforementioned investigations were carefully recorded in studio environments,
whereas the database used in this investigation is collected using a smartphone in a real
hospital setting (see Section 2). This type of ecological data collection (or unconstrained
audio collection) is of more practical use to physicians, and may also help in developing a
mobile phone app in the future that will be more robust when performing early diagnosis
of respiratory tract infections in a real-life setting.

There are some studies that use a realistic cough sound database: A Gabor filterbank
(GFB) [8] was used to classify coughs sounds as being ‘dry’ or ‘productive’. They reported
an accuracy of more than 80% when incorporating acoustic cough data collected through
a public telephone hotline. Another study reported a similar accuracy in classifying wet
and dry cough sounds, though the data were collected using a smartphone [10]. Recently,
this strategy of collecting cough sounds has become popular [11–13]. Such audio-based
strategy has profound implication when examining symptomatic cough sounds associated
with COVID-19 whereby cough is a primary symptom, alongside fever and fatigue. Con-
volution Neural Network (CNN)-based systems were trained to detect cough and screen
for COVID-19, and reported accuracy exceeding 90% in [14–16] and while another study
had reported 75% accuracy [17]. Features were extracted (both handcrafted and transfer
learned) from a crowd-sourced database containing breathing and cough sounds [18] and
were used to train a support vector machine and ensemble classifiers to screen COVID-19
individuals from healthy controls. They reported an accuracy around 80%.

There is another line of research inquiry which mainly focuses on cough event detec-
tion (i.e., to identify the presence of cough events) in audio recordings [19–24]; however, in
this investigation, we manually segment the cough epochs, and thus review of such studies
is outside the scope of this report. Having said that, with the advent of deep learning,
there is good progress made in the cough event detection from smartphone recordings, and
incorporating such techniques at the preprocessing stage in the cough screening system
could bypass the tedious manual segmentation process altogether [25–27].
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This study aims to determine if a predictive machine learning model, trained using
acoustic features extracted from cough sounds, could be a useful classifier to differentiate
common pathological cough sounds from healthy-voluntary coughs (i.e., cough sounds
collected from healthy volunteers). The knowledge gained through such methods could
support with the early recognition and triage of medical care, as well as assist physi-
cians with the clinical management which includes making a differential screening and
monitoring of the health status in response to medical interventions.

In the authors’ earlier work, audio-based cough classification using machine learning
has shown to be a potentially useful technique to assist in differentiating asthmatic cough
sounds from healthy-voluntary cough sounds in children [28,29]. The current paper builds
upon this previous work (the earlier one used a simple Gaussian Mixture Model—Universal
Background Model (GMM-UBM) [28,29]) and uses the collected cough sound dataset to
train a deep neural network (DNN) model that can differentiate between pathological and
healthy-voluntary subjects. The proposed deep neural network model is trained using
acoustic features extracted from the cough sounds. Three different pathological conditions
were considered in this investigation: asthma, upper respiratory tract infection (URTI) and
lower respiratory tract infection (LRTI). The accuracy of the proposed trained model is
evaluated by comparing their predictions against the clinician’s diagnosis.

2. Data Collection
2.1. Subject Recruitment

Subjects in this study were divided into 2 cohorts: Healthy cohort (without respiratory
conditions) and the pathological cohort (with respiratory conditions which included LRTI,
URTI and asthma; LRTI included a spectrum of respiratory diseases such as bronchiolitis,
bronchitis, bronchopneumonia, pneumonia, lower respiratory tract infection). Participants
were recruited from KK Children’s Hospital, Singapore. Inclusion criteria in the patholog-
ical cohort was the presence of concomitant symptom of cough, while inclusion criteria
for the healthy cohort was the absence of active cough and active respiratory conditions.
Pathological cohorts were recruited from the Children’s Emergency Department, Respira-
tory Ward, and Respiratory Clinic. The cough sounds were recorded during their initial
presentation at the hospital. The healthy cohorts were recruited from the Children Surgical
Unit. These healthy children were first screened by the anaesthetic team and recruited for
the study.

2.2. Cough Dataset

A smartphone was used to record cough sounds from both pathological and healthy
children (i.e., without respiratory conditions). For both groups, the subjects were instructed
to cough actively. This often resulted in multiple cough epochs per participant (on average
10 to 12). Recordings were collected at a sampling rate of 44.1 kHz in an unconstrained
clinic setting, i.e., a hospital ambience with background noise such as talking in background,
beeping sounds from monitoring devices, alarm sounds, ambulance siren, etc. The collected
cough audio files were manually segmented into individual coughs (such that non-cough
signal portions are negligible) to form different entries in the dataset. Characteristics of
the resulting dataset are shown in Table 1. The working diagnosis for the aetiology of the
cough was determined by the clinician based on the clinical history, physical examination,
and for some cases investigations such as laboratory tests and chest X-rays were also used.
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Table 1. Characteristics of the collected cough dataset.

Healthy Asthma LRTI URTI
Cohort Cohort Cohort Cohort

Number of Subjects 89 89 160 78

Number of Coughs 1149 1192 2344 1240

Age in Years (SD) 9.07 (2.88) 8.51 (3.02) 6.77 (2.65) 7.21 (2.96)

Gender— (Male:Female) 80:9 60:29 94:66 35:43

Race—Chinese 38 24 73 33
Race—Malay 43 44 54 34
Race—Indian 6 14 22 7
Race—Others 2 7 11 4

Duration of history of cough at
presentation; day (SD) NA∗ 3.87 (4.23) 6.63 (5.93) 5.22 (2.72)

NA*—Not Applicable.

3. Trained Models

Using the dataset described above, five different classification models based on deep
neural networks were built.

3.1. Healthy vs. Pathology (2-Class) Model

The first model (Healthy vs. Pathology (2 class) Model) was trained to classify whether
each cough segmented is a healthy-voluntary cough or pathological. Here, we consider all
pathological coughs as one class, known as ‘pathological cough’.

3.2. Healthy vs. LRTI Model, Healthy vs. URTI Model, Healthy vs. Asthma Model

The second set of models (three in total) were trained to classify between healthy-
voluntary coughs and a particular respiratory pathology (i.e., one respiratory pathology at a
time). Healthy vs LRTI Model—was trained to predict whether a cough is healthy-voluntary
or from a subject diagnosed with LRTI; Healthy vs URTI Model—was trained to predict
whether a cough is healthy-voluntary or from a subject diagnosed with URTI; and finally
Healthy vs Asthma Model—was trained to predict whether a cough is healthy or from a
subject diagnosed with Asthma.

3.3. Healthy vs. Pathology (4-Class) Model

The final classification model was trained to predict all the four chosen classes. Thus,
Healthy vs. Pathology (4-class) Model—classifies whether a cough is healthy-voluntary or
associated with any of the three pathological conditions of LRTI, URTI, or asthma.

4. Classification Model
4.1. Long–Short-Term Memory (LSTM)

An LSTM-based network was chosen as the classification model in this investigation.
LSTM networks take sequence data as the input, and makes predictions based on their
sequence dynamic characteristics by learning long-term dependencies between time steps
of sequence data. They are known to work well for their ability to handle sequence data
due to their memory mechanism [30]. Our choice for LSTM is motivated by the sequential
nature of audio data and its ability to handle input audio features that vary in length [30,31],
as is the case with the features extracted from the collected cough sounds (see Section 5.3).

In this investigation, we used a four-layer neural network with two deep layers of
bidirectional LSTMs (BiLSTMs) (see Figure 1). Each BiLSTM layer learns bidirectional
long-term dependencies from sequence data. These dependencies will help the network to
understand the long-term dynamics present in the features and thus learning the complete
time series [32,33]. We have investigated different deep neural network types such as fully
connected deep neural networks, LSTMs, BiLSTMs, to identify the best classification model
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for our cough screening problem. In the end, BiLSTMs were chosen, as they were found
to produce better results for the chosen feature sets (These network comparison results
are not shown as they are outside the scope of this paper; a similar outcome preferring
BiLSTM was reported in [33]).

Figure 1. Deep Neural Network Architecture using BiLSTM layers.

4.2. BiLSTM Architecture

The first layer (input layer) has a dimension of 42 to match the size of the MFCC
feature vectors corresponding to every audio frame (see Section 5.3). The second layer is
a BiLSTM layer with 50 hidden units. This is followed by a dropout layer which in turn
is followed by another BiLSTM and a dropout layer. The second BiLSTM layer also has
50 hidden units. A 30% dropout was chosen for both dropout layers. Finally, depending
on the classification objective, we used either two fully connected layers (for the 2-class
classification problem) or four fully connected layers (for the 4-class classification problem).
The networks were optimized to minimize cross-entropy loss with sigmoid activation. This
particular architecture was selected after multiple hyper-parameter optimization steps. We
used grid search to find the optimal number of hidden units, the number of hidden layers,
as well as the dropout rate. The resulting combination reported in this paper was able to
reach the lowest training loss (or in other words maximum training accuracy; precluding
overfitting of the classifier) when trained for multiple cough classification hypotheses.

5. Experimental Methodology
5.1. Dataset Split

The collected dataset was randomly split (70–30%) into two non-overlapping parts:
training and test set. The resulting split sizes are shown in Table 2. We made sure that cough
sounds belonging to the same person were either in the test or in the training set, but not in
both. Since the test data have not yet been seen by the model during the training phase, one
could expect that the resulting performance of this model offers a good approximation for
what can be expected in a real scenario (i.e., when the model is asked to make a prediction
for an unseen cough).

Table 2. Number of instances of the cough sounds in the training and test set.

Class Number of Children Number of Coughs
Training Test Training Test

URTI 54 24 849 391
LRTI 113 47 1,679 665

Asthma 65 24 726 466
Healthy 51 38 645 504

5.2. Methodology

The general experimental methodology followed in this investigation is shown in
Figure 2. We first trained our deep neural network models using features extracted from
data from our training set, and then proceeded to evaluate the models using a separate
test set. The trained model is used to predict which class a cough sound belongs to. This
cough prediction was subsequently used to screen whether a subject is healthy or having
some respiratory conditions. This screening is done based on the most frequent (mode)
prediction outcome of all the cough sounds belonging to a particular subject. In what
follows, we discuss how the data have been pre-processed, which audio features were
chosen for this investigation, and how the model was built.
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Figure 2. Experimental Methodology followed in our investigation.

5.3. Cough Sound Processing and Audio Feature Extraction

The segmented cough sounds were detrended to remove any linear trends, baseline
shifts, or slow drifts, then normalized (to have a maximum sample value of one), and
finally downsampled (downsampled to 11.025 kHz from the original sampling rate of
44.1 kHz).

The pre-processed audio signals were first segmented into frames of 100 ms, after
which a Hamming window was applied, followed by the extraction of audio features. Mel-
Frequency Cepstral Coefficients (MFCCs) were chosen for this investigation owing to their
effectiveness when it comes to audio classification problems [34,35]. MFCCs are a set of
features that focus on the perceptually relevant aspects of the audio spectrum, additionally
the coefficients could contain information about the vocal tract characteristics [36,37]. In
this investigation we used 14 MFCCs with their deltas and delta-deltas, thus resulting in a
total of 42 coefficients (14 MFCCs, 14 deltas and 14 delta-deltas) for every audio frame. The
result obtained using MFCCs thus serves as a baseline against which future investigations
can be compared.

5.4. Measuring Performance

The performance of DNN models is measured by calculating the classification accuracy
and is further analysed using the receiver operating characteristic (ROC) [38] and confusion
matrix [39].

5.4.1. Accuracy

The classification accuracy is calculated by comparing the predicted outputs with the
actual outputs.

Accuracy =
Number of correct predictions
Total number of predictions

(1)

5.4.2. Receiver Operating Characteristic (ROC)

The ROC is created by plotting the true positive rates (i.e., sensitivity (or recall): the
ratio of true positives over the sum of true positives and false negatives) against the false
positive rates (i.e., (100 − speci f icity); specificity is the ratio of true negatives over the sum
of false positives and true negatives) for various decision thresholds. A perfect model
results in a ROC curve which passes close to the upper left corner, indicating a higher
overall accuracy. This would thus result in a ROC of which the area underneath (AROC)
equals 1.

5.4.3. Confusion Matrix

The performance of a classifier was further analysed using confusion matrices, whereby
the true and false positives and negatives are displayed for each class. For a good classifier,
the resulting confusion matrix will have large numbers along the diagonal (i.e., values closer
to 100%). The percentage of misclassified data is reflected in the off-diagonal elements.
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6. Results
6.1. Power Spectrum Comparison

From the original cough sounds, the power spectrum (i.e., the distribution of energy
contained within the signal over various frequencies) was estimated. These frequencies
were then grouped into five equal bins between 0 to fs/2 (whereby fs is the sampling fre-
quency) and the corresponding spectral power present in each of these bins was calculated.

The distribution of the power spectrum for 500 randomly chosen cough samples (of
different respiratory conditions) is shown using a boxplot (see Figure 3). The median is
shown using a red line. The bottom and top edges of each of the boxes indicate the 25th
and 75th percentile, respectively. The likely range of variation (i.e., inter-quartile range
(IQR)) is given by distances between the tops and bottoms [40].

Figure 3. Boxplot showing the distribution of the power spectrum across various frequency bins:
Bin 1—0 to 1.1 kHz, Bin 2—1.1 to 2.2 kHz, Bin 3—2.2 to 3.3 kHz, Bin 4—3.3 to 4.4 kHz, Bin 5—4.4 to
5.5 kHz

The median line corresponding to every bin (for both the healthy and pathological
coughs) does not appear to be centred inside the box (i.e., the possible mean of each bin),
thus indicating that the power distribution is slightly skewed for each bin. IQR is found
to be slightly larger in spectral power bins of pathological cough when compared to the
healthy spectral bin. Overall, there are no clear trends between the median value of the
spectral bin for healthy and pathological coughs. The asthmatic spectral bins tend to
have a slightly higher median value compared to the spectral bins of healthy coughs. The
opposite trend was found when comparing spectral bins of LRTI and URTI against that of
healthy. We speculate that this may be due to the fact that both these conditions (LRTI and
URTI) include inflamed airway tissues, which may increase acoustic damping (especially
at high frequency). This postulate requires further investigation. In addition, the difference
observed maybe attributed to variability in subject characteristics between the groups such
as age, gender between groups (see Table 1).

6.2. Feature Analysis—MFCCs—Extracted for Investigation

The objective of this feature analysis is to understand if cough sounds contain any sub-
tle cues to distinguish between healthy and pathological subjects. The higher-dimensional
MFCC features extracted from various respiratory pathological coughs were compared
against the healthy coughs after transforming them to a lower dimension using Principal
Component Analysis (PCA) [41]. Such dimensionality reduction techniques often give
some insight into the feature space of the chosen classes. The resulting visualisation of the
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first three PCA components (the first three principal components correspond to the largest
three eigen values and capture more than 95% of the variance (information) in this dataset)
is shown in Figure 4. MFCCs extracted from 5000 audio frames from each of the categories
were used for this visualisation. All these audio frames were part of the training set used
for training the BiLSTM network.

No clear clusters are visible in the feature space (see Figure 4). This is true for all
the four investigated cases: features of healthy versus pathological cough sound signal,
and features of healthy coughs when compared to features from each individual respi-
ratory pathologies (see Figure 4a–d). This reflects anecdotal observations that clinicians
themselves find it hard to distinguish these pathologies based on cough sound alone.

Figure 4. MFCC feature visualisation after transforming the original 42 dimensions to 3 dimensions
using PCA: (a) Healthy vs. Pathology, (b) Healthy vs. Asthma, (c) Healthy vs. LRTI, (d) Healthy
vs. URTI.

6.3. Feature Analysis—MFCCs—Longitudinal Study

The objective of this longitudinal study is to understand the evolution of the feature
space of MFCCs over time for the different classes of respiratory conditions. For this study,
the cough sounds were collected and organised in a two-stage process. In the first stage,
51 subjects recruited from the hospital were asked to make multiple voluntary cough
sounds (on average 10 to 12 coughs). There were 24 subjects with asthma, seven with
URTI and 20 with LRTI. In the second stage, these 51 subjects were followed up upon
recovery after hospital discharge (approximately two weeks after hospital discharge) and
voluntary cough sounds (on average 10 to 12) were again collected. It is important to note
here that Stage 1 coughs were a part of the cough dataset used for training the BiLSTM
model; however, Stage 2 coughs were not used in any training process. The cough sounds
were recorded as described in Section 2.2.

MFCCs were extracted from the coughs collected from these 51 subjects as described
in Section 5.3. There was a total of 3810 frames analysed as part of this longitudinal study:
1675—recovered, 746—LRTI, 399—URTI and 990—Asthmatic. The extracted MFCCs’
dimensionalities were then reduced using PCA for visualisation purposes (see Figure 5).
Stage 1 coughs can be considered to be pathological whereas Stage 2 coughs (i.e., recovered)
can be considered to represent healthy-voluntary coughs. The evolution of the MFCC
feature space is explored here, since the coughs were collected from the same subject over
a period of time. As in Figure 4, no clear clusters are visible when analysing evolution
of the extracted features (see Figure 5). Additionally, it can be seen that MFCC features
extracted from Stage 1 coughs occupy relatively the same feature space irrespective of the
underlying respiratory conditions (see Figure 5b).
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Figure 5. MFCC feature evolution from pathological to recovery. The plot is created after transform-
ing the original 42 dimensions into three using PCA: (a) Recovered vs. Pathology, (b) Recovered vs.
LRTI vs. URTI vs. Asthma.

With no clear clusters visible in the feature space analysis discussed in
Sections 6.2 and 6.3, our classification problem may require the introduction of non-linearity,
so as to uncover more complex, hidden, relationships. This thus presents an additional
motivation for choosing a deep neural network.

6.4. Model Performance
6.4.1. Healthy vs. Pathology Model

The cough classification accuracy (i.e., accuracy in classifying each cough segment)
and the healthy-pathology classification accuracy (i.e., accuracy in classifying entire cough
epochs to a particular respiratory pathology) on our test set are shown in Table 3. The
BiLSTM has resulted in good performance when classifying the pathological cough sounds
from healthy-voluntary cough sounds, with an accuracy of 84.5%. Furthermore, when
respiratory pathology classification of subject was made (by considering the entire cough
epochs) based on the most frequent (mode) prediction outcome of coughs from a subject
for an entire cough epoch, the accuracy is even higher (91.2%). This is to be expected, e.g.
if one assumes there are n coughs available per subject, even though model misclassifies
individual cough sounds, the respiratory pathological classification result will be wrong
only when (n/2) + 1 out of the n coughs belonging to a particular patient are misclassified
(or in other words respiratory pathological classification is more robust). Given an accuracy
rate of 84.5% for individual cough prediction, this would be very rare.

Table 3. Accuracy of the Healthy vs. Pathology Model.

Model Individual Cough
Classification Accuracy (in %)

Respiratory Pathology Classification
of Subject Accuracy Based on Entire

Cough Epoch (in %)

Healthy vs.
pathology Model 84.5 91.2

A confusion matrix was created to further analyse the results of this model (see
Figure 6). The percentage of healthy-voluntary coughs misclassified as pathological coughs
is higher compared to pathological coughs misclassified as healthy-voluntary coughs
(23.8% misclassified compared to 7.1%, see Figure 6a). This higher healthy-voluntary
cough misclassification rate further resulted in a relatively large number of healthy subjects
misclassified as having a pathology (15.6 % subjects were misclassified, see Figure 6b).
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Figure 6. Confusion Matrix of Model Healthy vs. pathology: (a) when classifying coughs, (b) when
classifying subject for respiratory pathology.

The receiver operating characteristic of this model is shown in Figure 7, along with the
corresponding AROC value. The resulting AROC values are 0.84 for cough classification
and 0.91 for respiratory pathology classification of subject, see Table 4). The AROC is
convincingly high, which means that the model has delivered good separability between
two classes. Additionally shown in Figure 7, is the optimum threshold, co-located in the
nearest point to (0, 1), which maximizes the sensitivity and specificity values (shown as a
red cross).

Figure 7. ROC of Model Healthy vs. pathology: (a) when classifying coughs, (b) when classifying
subject for respiratory pathology.
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Table 4. AROC of Healthy vs. pathology model.

Model Individual Cough
Classification AROC

Respiratory Pathology Classification of
subject AROC Based on Entire Cough Epoch

Healthy vs.
pathology Model 0.84 0.91

6.4.2. Healthy vs. LRTI Model, Healthy vs. URTI Model, Healthy vs. Asthma Model

The resulting cough classification accuracy and the respiratory pathology classification
of subject accuracy when considering one respiratory pathology at a time is shown in
Table 5. Again, the deep BiLSTM was able to produce good results when differentiating
the healthy-voluntary coughs from those resulting from various respiratory conditions.
This resulted in classification accuracy exceeding 85% for every investigated scenario.
Respiratory pathology classification of subjects, as expected, result in even higher accuracy
(exceeding 92% for every case).

Table 5. Experimental results in terms of accuracy for Healthy vs. LRTI Model, Healthy vs. URTI Model,
Healthy vs. Asthma Model.

Model
Individual Cough

Classification
Accuracy (in %)

Respiratory Pathology Classification of
Subject Accuracy Based on Entire Cough

Epoch (in %)

Healthy vs. LRTI Model 86.3 94.5
Healthy vs. URTI Model 86.5 92.7

Healthy vs. Asthma Model 85.9 94.2

Confusion matrices were produced to further analyse the results from each of these
models. Figures 8–10 show the confusion matrices for Healthy vs. LRTI Model, Healthy vs.
URTI Model and Healthy vs. Asthma Model, respectively. The performance of Healthy vs.
LRTI Model and Healthy vs. Asthma Model when it comes to correctly classifying healthy
coughs from pathological coughs is comparable (see Figures 8a and 10a). Healthy vs. URTI
Model has a slightly larger number of misclassifications when predicting healthy coughs;
however, its performance on pathological coughs detection (URTI in this case) is better
compared to the other two models (see Figure 9). When it comes to respiratory pathology
classification of subject based on the entire cough epochs, as expected, the classification
models have resulted in higher correct classification rate compared to the individual cough
classification model (see Figures 8b, 9b and 10b).

Receiver operating characteristics were created for all three models, both for the case of
cough and pathology classification. The ROCs are shown in Figures 11–13 and the resulting
AROC is shown in Table 6. The AROC values are convincingly higher for all the pathology
screening results (exceeding 93%) compared to the individual cough classification models.
They support the finding from Table 5 and the corresponding confusion matrices.

Table 6. Area under the receiver operating curve (AROC) for Healthy vs. LRTI Model, Healthy vs. URTI
Model, Healthy vs. Asthma Model.

Model Individual Cough
Classification AROC

Respiratory Pathology Classification of
Subject AROC Based on Entire Cough Epoch

Healthy vs. LRTI Model 0.87 0.95
Healthy vs. URTI Model 0.87 0.93

Healthy vs. Asthma Model 0.86 0.94
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Figure 8. Confusion Matrix of Healthy vs. LRTI Model: (a) when classifying LRTI coughs, (b) when
classifying subject for LRTI.

Figure 9. Confusion Matrix of Healthy vs. URTI Model: (a) when classifying URTI coughs, (b) when
classifying subject for URTI.
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Figure 10. Confusion Matrix of Healthy vs. Asthma Model: (a) when classifying Asthmatic coughs,
(b) when classifying subject for Asthma.

Figure 11. ROC—Healthy vs. LRTI Model: (a) when classifying LRTI coughs, (b) when classifying
subject for LRTI.
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Figure 12. ROC—Healthy vs. URTI Model: (a) when classifying URTI coughs, (b) when classifying
subject for URTI.

Figure 13. ROC—Healthy vs. Asthma Model: (a) when classifying Asthmatic coughs, (b) when
classifying subject for Asthma.

6.4.3. Healthy vs. Pathology (4-Class) Model

The resulting performance of the proposed model when trained to classify different
respiratory pathological coughs and healthy-voluntary coughs (i.e., 4-Class model) is
shown in Table 7. The subject respiratory pathology classification result for this four-
class classification, based on the most frequent (mode) prediction outcome for all cough
epochs of a subject, is shown in Table 8. The overall classification accuracy of both cough
classification and each pathology classification is lower compared to the results shown
in Tables 3 and 5. The classification accuracy for the healthy-voluntary cough class and
the subsequent respiratory pathology classification is relatively high (71.2% and 84.4%,
respectively). However, the classification accuracy of pathological cough classes is relatively
low. The Asthma class has the highest misclassification rate among the three investigated
respiratory conditions. The confusion matrices are shown to further understand this
classification result (see Figure 14a). It is interesting to note in the respiratory pathology
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classification results (see Figure 14b) that none of the subjects with LRTI and asthma
are misclassified as healthy and only one subject with URTI is misclassified as healthy
(4.2% out of 24 subjects with URTI tested will be one subject). However, seven healthy
subjects were misclassified to have some kind of respiratory problems (of these seven, two
were misclassified as having URTI, another two were misclassified as having LRTI and
another three misclassified as having asthma). Among the three respiratory conditions, as
mentioned earlier, asthma was the most misclassified pathology (15 subjects out of 24 with
asthma were misclassified as having LRTI). Even though there is high misclassification
rate among the three investigated respiratory conditions, in summary, this four-class
classification model has a classification accuracy of 84.4% for correctly identifying healthy
subjects and 95.8% accuracy for identifying subjects with respiratory issues , see Table 9.

Figure 14. Confusion Matrix—Healthy vs. Pathology (4-Class) Model: (a) when screening coughs,
(b) when screening for pathology of the subjects.

Table 7. Cough classification accuracy of Healthy vs. Pathology 4-Class Model.

Overall Healthy Asthma URTI LRTI
Cough Cough Cough Cough Cough

Classification Classification Classification Classification Classification
Accuracy Accuracy Accuracy Accuracy Accuracy

(in %) (in %) (in %) (in %) (in %)

47.9 71.2 22.3 52.9 45.0

Table 8. Pathology classification accuracy for Healthy vs. Pathology 4-Class Model.

Overall Respiratory
Pathology

Classification of
Subject Accuracy
Based on Entire

Cough Epoch (in %)

Healthy Subject
Classification

Accuracy Based
on Entire Cough

Epoch (in %)

Asthmatic Subject
Classification

Accuracy Based
on Entire Cough

Epoch (in %)

URTI Subject
Classification

Accuracy Based
on Entire Cough

Epoch (in %)

LRTI Subject
Classification

Accuracy Based
on Entire

Cough Epoch
(in %)

60.0 84.4 25.0 66.7 63.8
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Table 9. Accuracy of Healthy vs. Pathology 4-Class Model.

Model Healthy Subjects Classified
as Healthy (in %)

Subjects With Respiratory Conditions
and Classified to Have Some Kind of

Respiratory Conditions (in %)

Healthy vs. pathology 4-Class
Model 84.4 95.8

6.4.4. App Rendering

We expect that such cough classification methodology should be eventually applied
to support clinicians “in the field”, if at least as a simple triage or as a preliminary screen-
ing tool. However, explicit discussions of a smartphone-deployed application (App) are
premature for the scope of the current paper. However, if allowed to speculate, we see two
possible pathways towards implementation: (1) port the whole algorithm into the smart-
phone and perform all the computational heavy lifting using the smartphone hardware
to generate the prediction result; (2) the app simply collects audio data (via the onboard
microphone) and communicates with a centralized server to perform the prediction and
the results are returned to the user. Both pathways have their operational considerations,
such as processing hardware available on the smartphone (the developer must consider
the number of floating-point operations needed to make the prediction), availability and
connection speed of the Internet (a consideration if remote deployment in rural communi-
ties is expected), among other issues. For the current setup running in a NVIDIA TITAN
Xp Graphics Card, it takes almost three hours to train a particular deep neural network
model and requires less than half a second to perform the prediction for a particular cough
sample (timings include audio preprocessing and feature extraction steps). Given the fact
that a clinical usage scenario only needs to be “quasi-real time” (a few seconds delay is
usually tolerated—clinicians are accustomed to waiting longer for other screening tests),
the second approach seems prudent for contexts with ready internet connection, so that
the App would be lighter in terms of mobile phone hardware usage.

7. Conclusions

A classifier was developed based on a BiLSTM model trained using Mel-Frequency
Cepstral Coefficient features that can differentiate cough sounds from healthy children with
no active respiratory pathology to those with active pathological respiratory conditions
such as asthma, URTI and LRTI. Four classifiers were trained as part of this investigation.
The resulting trained model that classifies cough sounds into healthy/pathological in
general or healthy/belonging to LRTI, URTI and asthma resulted in classification accuracy
exceeding 84% when predicting a clinician’s diagnosis. When a respiratory pathology
classification of subject was performed using the mode of the prediction results across
the multiple cough epochs from a particular subject, the resulting classification accuracy
exceeded 91%. The classification accuracy of the model was compromised when trained to
classify all the four classes of cough categories in one shot. However, most of the misclassi-
fication happened within the pathological classes where one class of pathological cough
was often misclassified as having another pathology. If one ignores such misclassification
and considers healthy cough to be that from a healthy subject and pathological cough to
have come from subject with some kind of pathology, then the overall accuracy of the
classifier is above 84%. This is a first step towards developing a highly efficient deep
neural network model that can differentiate between different pathological cough sounds.
Such a model could support physicians in creating a differential screening of respiratory
conditions that present with cough, and will thus add value to health status monitoring and
triaging in medical care, and potentially be deployed to support tele-medicine in remote
and developing communities.
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