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Abstract: In smart farming, precision agriculture irrigation is essential to reduce water consumption
and produce higher crop yields. Closed-loop irrigation based on soil moisture measurements has
demonstrated the capability to achieve a considerable amount of water savings while growing healthy
crops. Automated irrigation systems are typically implemented over wireless sensor networks,
where the sensing devices are battery-powered, and thus they have to manage energy constraints
by implementing efficient communication schemas. Self-triggered control is an aperiodic sampling
strategy capable of reducing the number of networked messages compared to traditional periodical
sampling. In this paper, we propose an energy-efficient communication strategy for closed-loop
control irrigation, implemented over a wireless sensor network, where event-driven soil moisture
measurements are conducted by the sensing devices only when needed. Thereby, the self-triggered
algorithm estimates the occurrence of the next sampling period based on the process dynamics.
The proposed strategy was evaluated in a pecan crop field and compared with periodical sampling
implementations. The experimental results show that the proposed adaptive sampling rate technique
decreased the number of communication messages more than 85% and reduced power consumption
up to 20%, while still accomplishing the system control objectives in terms of the irrigation efficiency
and water consumption.

Keywords: energy-efficient communication; wireless sensor network; self-triggered control; precision
agriculture

1. Introduction

Smart farming aims to reduce costs and increase productivity while optimizing natural
resources through the processing and analyzing of data obtained from sensor devices [1].
Hence, its implementation requires higher demands for data collection and network com-
munication [2]. Perception, interconnection, and decision-making, through the use of
modern technology, comprise the three main tasks for precision agriculture [3]. Crop and
environmental variables, such as soil moisture, leaf wetness, air temperature, atmospheric
pressure, relative humidity, and solar radiation, are commonly monitored in different
agriculture applications [4].

Soil moisture may be the most complex variable to measure due to its high spatial and
temporal variability and nonlinear behavior. The relevance of measuring the soil moisture
has recently increased as closed-loop irrigation, based on this variable, has become one of
the most effective strategies to improve water efficiency by applying the right amount of
water to crops at the right time [5].
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Typically, closed-loop irrigation systems collect data via the implementation of a
wireless sensor network (WSN) over large crop area fields with multiple sensing devices
placed in different locations to obtain representative soil moisture values. During the last
ten years, different works [6–12] demonstrated the relevance of soil moisture measurements
implemented over a WSN to achieve effective and optimum water utilization for irrigation
in large crop areas.

Implementing WSNs for agricultural applications requires efficient energy manage-
ment since several battery-powered sensing devices may comprise the network [13]. Energy
is mainly dissipated during communication; therefore, power reduction can be achieved by
implementing a sleep/wake-up strategy [14], where wireless devices enter standby mode
and stop communication until the next transmission time.

One of the early used techniques is duty cycle scheduling [15], where nodes are
programmed to turn on and turn off on a pre-established basis; however, this approach
presents a trade-off between energy efficiency and sensing quality. Recently, adaptive
sampling rate techniques based on process dynamics have accomplished significant energy-
efficient improvements by activating transmissions only when relevant measurements are
required [16].

From a control perspective, digital closed loops have been traditionally implemented
using periodical sampling. However, event-driven aperiodic strategies began gaining
attention due to the efficiency improvements achieved in the processing time and data
communication [17]. Furthermore, event-driven control demonstrated a considerable
reduction in communication messages while still achieving the control objectives [18].
Specifically, self-triggered control (STC) implements model-based algorithms to estimate
the next sampling event by predicting the instant where the following measurement should
take place based on process dynamics [19]. Recently, different self-triggered implementa-
tions over WSN have been proposed [18,20–23], obtaining relevant control performance
and communication efficiency results. In every case, the experiments were either simulated
or conducted on laboratory conditions where the controlled processes had well-known
state–space models.

The work presented in this paper proposes an adaptive sampling rate energy-efficient
communication strategy to reduce power consumption from the remote nodes in a wireless
sensor network using self-triggered algorithms to implement closed-loop control for preci-
sion agriculture irrigation. The objective is to reduce the number of messages in the network
by transmitting sensor data only when relevant while accomplishing the irrigation control
objectives of using water efficiently and avoiding unhealthy crops due to water stress. The
proposed strategy was evaluated and compared with duty cycle periodical-scheduling
implementations in four irrigation areas of a pecan crop experimental field.

Different energy management schemes for WSN in agricultural and environmental
monitoring applications have been proposed by the research community, as summarized
by [14,24]. From a pure communication perspective, techniques, such as efficient rout-
ing protocols, efficient medium access control, and data-clustering, have been widely
used to reduce power consumption, as demonstrated by [25–31]. On the other hand, the
sleep/wake-up method adopted by the duty cycle scheduling and the adaptive sampling
rate techniques consider a control-communication approach.

In this regard, the work in [32] proposed a power reduction algorithm based on re-
dundant data for an agriculture irrigation system where data transmission is activated
after the difference between the soil moisture readings reaches a specific threshold. In
this case, moisture dynamics determine the adaptive sampling rate; however, the de-
fined threshold has a fixed value that does not consider the crop-weather characteristics.
In [33], the authors analyzed different duty-cycling mechanisms, including the sched-
uled and the on-demand approaches. In the first one, the node periodically wakes up
and communicates; in the latter, the node is awakened as necessary by an external event.
Although the on-demand technique can achieve better results, it relies on an additional
communication channel.
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In [34], the authors proposed an improved duty cycling algorithm to reduce the
energy consumption in an agriculture field. The algorithm determines the on–off periods
based on energy data aggregation at the base station; however, it does not consider the
agriculture process dynamics variables. The work in [35] implemented a content awareness
communication system where a sufficiently knowledgeable controller manages a WSN by
determining whether each sensor should transmit data or not; however, as stated by the
authors, this centralized approach may increase the network load.

In [36], an adaptive duty cycle scheme was proposed based on the queue size and
priority class of a packet to reduce the delay of high priority packets and support time-
bounded delivery of priority packets. This approach concentrates on energy savings based
on purely communication parameters.

The model proposed by [37] describes soil, crop, and weather dynamics for a grass
irrigation control system, and we enhanced and applied it to a pecan crop field to implement
an adaptive sampling rate sleep/wake-up strategy based on self-triggered control to
implement an energy-efficient algorithm to communicate the sensor nodes over a WSN.

The main contributions of this paper are: (1) the identification and validation of the
specific process dynamics for the pecan crop irrigation system, (2) the implementation of a
model-based self-triggered control algorithm to decrease the number of communication
messages while still accomplishing control objectives, and (3) the estimation of the energy
consumption improvement in the wireless sensor nodes due to the use of this control
approach in comparison with the duty-cycle periodical scheduling technique.

The rest of this paper is organized as follows: In Section 2, the elements that comprise
the closed-loop irrigation system are described, and the irrigation state–space model
is identified and validated with measured data. In Section 3, the implementation of
the proposed energy-efficient communication strategy based on self-triggered control is
detailed. In Section 4, the experimental control performance and power consumption
results are presented and discussed. Section 5 summarizes the conclusions and describes
future work.

2. Precision Irrigation Control System

An automated precision irrigation process can be implemented using soil moisture
readings in the crop-root zone to feedback the system; meanwhile, weather conditions
represent the system disturbance measured to compensate their effects in advance [9]. The
soil moisture indicates the percentage water content available in a specific soil volume
sample and is often referred to as the volumetric water content (VWC). The reference
evapotranspiration (ETO) represents the water loss caused by weather conditions for a
specific reference crop (grass). A crop coefficient Kc is required to convert this reference
value into a crop specific parameter. Solar radiation, wind speed, air temperature, and
relative air humidity measurements are required to calculate this parameter, according to
the FAO Penman–Monteith equation [38]. The evapotranspiration is generally expressed
in millimeters (mm) of water lost from a crop surfaced per unit of time (days).

2.1. State Space Model

The hydrological balance model describes the dynamics of an irrigation system where
the soil moisture changes in the root zone θ̇ were obtained from the sum of water inflows
and outflows. If we consider a plain field (no water runoff) in a dry area (no rainfall and
no water capillary rise), as stated by [37], then the system behavior is expressed as

θ̇(t) = a1ir(t− τ)− Kceto(t)− a2θ(t), (1)

where ir is the applied irrigation, eto is the reference evapotranspiration, and a1, Kc, and
a2 are constants that, respectively, denote the irrigation efficiency, evapotranspiration
coefficient to incorporate crop characteristics, and soil moisture proportionality to estimate
deep percolation. In addition, τ is the time delay required by the water to reach the crop
roots, which usually requires several minutes.
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Since a discrete model is required, Euler approximation is used to discretize
Equation (1) with a sampling period h, and then

θ(kh + h) = c1θ(kh) + c2ir(kh− τ) + c3eto(kh), (2)

where c1, c2, and c3 are discrete coefficients that absorb the previous continuous coefficients
and signs.

The model is enhanced by considering soil moisture variations as a second state
variable; therefore, δ, defined as

δ(kh + h) = θ(kh)− θ(kh− h), (3)

represents the relative moisture dynamics and indicates the changes detected in the root
zone. Now, the state–space model for an irrigation system is specified as a second order
system in the general form of

x(kh + h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh),
(4)

where the state and input and output vectors are defined, respectively, as

x(kh) =
[

θ(kh)
δ(kh)

]
, u(kh) =

[
ir(kh− τ)

eto(kh)

]
, y(kh) =

[
θ(kh)

]
, (5)

while the discrete matrices Φ ∈ R2×2, Γ ∈ R2×2, and C ∈ R1×2 define the process dynamics
coefficients to be identified.

2.2. Networked Control System

Efficient irrigation management requires real-time soil moisture measurements to
capture temporal and spatial variations in the crop root zone. However, obtaining rep-
resentative and accurate readings over large crop areas is a challenging task since the
soil hydraulic properties and spatial heterogeneity heavily influence the moisture and
crop rooting patterns, among other variables [39]. Moisture sensors use electromagnetic
principles to measure the water content; furthermore, to obtain accurate values, soil-specific
calibration is required before installation.

The sensor 10HS (METER Group Inc., Pullman, WA, USA) is a low-cost VWC sensor
with a measurement volume range of 1 dm3, and according to [40] measurement error
can be reduced from 5% to 1% if off-line calibration is conducted previous to installation.
The experimental field consists of one hectare of pecan crop (Carya illinoinensis) divided
into four irrigation areas of 25 m × 100 m, as illustrated in Figure 1. Each area contains
approximately 45 productive trees watered with a micro-sprinkler irrigation system. The
field is located in northern Mexico (Chihuahua city), which is an arid region with very low
annual rainfall.

As shown in Figure 2, the networked control system comprised one sensor node
and one actuator node for each irrigation area; there was one weather node and a single
controller for the entire experimental field. The WSN was implemented over the IEEE
802.15.4 standard, which is the basis for the Zigbee communication protocol [41]. Zigbee
has become a popular protocol due to its low cost, low power consumption, and small
communication packet size. Using a client-server communication schema, each sensor
node sends soil moisture data to the controller node, the controller uses the weather and
soil moisture information to determine if irrigation is needed, and then the control message
is sent to the corresponding actuator node.

Each sensing node includes three 10HS sensors buried in the shallow level of the
pecan effective root zone (60 cms), with a horizontal separation of 3 m among them; the
three readings’ average value provides a representative soil moisture measurement for the
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irrigation area. The sensors were previously calibrated for the specific soil texture (silty
clay loam) according to the method described by [42]. An irrigation electrovalve activates
and deactivates field watering for each actuator node, and a flow sensor measures the
water consumption. The weather node includes a solar radiation sensor (PYR sensor from
METER Group Inc., USA), a wind velocity sensor (Davis Cup sensor from METER Group
Inc., USA), and a temperature–humidity sensor (VP4 sensor from METER Group Inc., USA)
to calculate the reference evapotranspiration for the crop field.

Figure 1. Experimental pecan crop field with the sensor node locations illustrated with the red circles:
(a) Area 1 lateral view; yellow arrows indicate the sensor placements. (b) Satellite view.

Figure 2. Networked control system for precision agriculture irrigation.

These three types of nodes were built upon the Arduino MKR board (Arduino, USA),
which includes a 32-bit microprocessor and a 12-bit analog-to-digital converter. The
board was energized with a 3.3-V power supply, and it was capable of reducing the
current consumption from 20 mA in operation mode to 0.57 mA in standby mode. The
controller node was implemented with a Raspberry Pi 3 Model B (Raspberry Pi Foundation,
Cambridge, UK) based on an ARM Cortex-A53 64-bit processor. The controller ran four
simultaneous control tasks to implement the four loops of the irrigation system.

2.3. Process Identification and Model Validation

Soil moisture dynamics have complex non-linear behavior; however, a linear model
can be approximated by identifying the main soil moisture regions delimited by the soil
field capacity (FC) and crop permanent wilting point (PWP) thresholds. The FC refers to
the level where the soil can no longer retain water, and the PWP is the limit where below
this, the crop cannot absorb water from the crop. As shown in Figure 3, the FC and PWP
define three soil moisture regions with different dynamics: gravitational water, available
water, and unavailable water.

To properly model the soil moisture dynamics, different values for the matrices Φ and
Γ must be identified appropriately in model Equation (4) for each region. The maximum
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allowable depletion (MAD) is the reference value for crop irrigation typically located in
the middle of the available water region; below this (negative soil moisture values), the
crop will become water-stressed, while, above this (positive soil moisture values ), water
may be wasted. Sensor node readings have been normalized to provide soil moisture
measurements as a relative percentage value to this reference point.

Figure 3. Soil moisture dynamics for the different regions, figure obtained from [9].

Over four weeks, irrigation, soil moisture, and reference evapotranspiration data were
gathered at a sampling rate of 10 min, since, as suggested by [4], this represents, in practice,
the minimum sampling time to capture the irrigation process dynamics. The obtained data
was divided according to the soil moisture regions, and then coefficients values for Φ and
Γ were identified using the estimation algorithm proposed by [9] to model the process
dynamics. Table 1 shows the obtained coefficients for each irrigation area.

Table 1. Identified coefficient values for state–space model matrices according to the soil moisture
region.

Matrix Region Coefficients Matrix Region Coefficients

Φ Gravitational 0.98501 0.00001 Γ Gravitational 0.00245 −0.00004
0.00001 0.98491 0.00300 −0.00021

Φ Available 0.99998 0.00003 Γ Available 0.00136 −0.00062
0.00001 0.98495 0.00324 −0.00049

Φ Unavailable 0.99999 0.00002 Γ Unavailable 0.00123 −0.00005
0.00001 0.98488 0.00151 −0.00035

A new four-week dataset was acquired from the networked control system to validate
the identified model. We compared the latest measured data with the estimated soil
moisture values obtained from the model by using the correlation coefficient R2 defined as

R2 = 1− ∑n
i=1
(
θi − θ̂i

)2

∑n
i=1
(
θi − θ̄

)2 , (6)

where θi represents the soil moisture readings, θ̂i represents the model-based estimated
values, θ̄ is the mean value from all measurements, and n, with a value of 4032, is the
number of measurements for the validation period.

Figure 4 shows the correlation between the estimated soil moisture values calculated
from the state–space model (θ̂) and the measured soil moisture values obtained from
the sensor readings (θ). There was no automatic irrigation control during the validation
process, and we applied irregular watering to cover the different soil moisture regions.
Thus, during week 2, intensive irrigation shifted the moisture values to the gravitational
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region, and, at the end of week 3, the lack of irrigation shifted the values to the unavailable
region. The model output was not fed with measured data to avoid any correction during
the four weeks. The correlation results (R2 = 0.8616) showed that the identified model
adequately captured the irrigation dynamics for the pecan crop.

Figure 4. Validation results for process identification.

3. Energy-Efficient Communication

Once the pecan crop irrigation model was appropriately identified and validated,
we implemented the WSN communication strategy. Energy-efficient communication was
achieved by reducing the number of communication messages by the sensor node. This
node included a triggered mechanism to estimate the next sampling instance h + 1 based
on soil moisture dynamics θ and weather conditions eto. The control system implemented
a feedback/feedforward loop where soil moisture was the process variable, while weather
conditions disturbed the process dynamics. The control node sent an on–off signal ir to
the actuator node to manipulate the irrigation valve, based on the difference between the
reference level r and the measured variable θ, as depicted in Figure 5. The irrigation was
activated when the error was below −2% and deactivated when it was above +2%.

Figure 5. Precision irrigation control loop.

3.1. Self-Triggered Control

Closed-loop control algorithms have been traditionally implemented using periodical
sampling. Although periodicity simplifies the control system design and analysis, it also
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leads to the unnecessary use of communication, energy, and computation resources in the
system devices. Aperiodic sampling avoids this situation by conducting measurements
only when a relevant event is about to happen, and it can be implemented using either a
reactive (event-based) or a proactive approach (self-triggered). In the first one, the sampling
instant is determined when a monitored output variable reaches a specific threshold, while,
in the latter one, the next update time is predicted based on the evolution of the process
state variables.

Self-triggered control (STC) has an advantage over event-triggered control (ETC)
since it does not require dedicated additional energy-consuming hardware to conduct
continuous measurements. Instead, it uses process dynamics knowledge to implement the
model-based algorithm to estimate the next sampling event. We considered two different
self-triggered strategies: the first one calculates the measured error to estimate the next
sampling instant [17], while the second one uses the Lyapunov function to trigger the
control updates [20].

In the error-based triggering condition γ1, the process states were forced to stay within
a given error defined as a function of the norm of the measured states; thereby, the next
sampling time h + 1 was obtained when the measured error exceeded the limit that was
proportional to the current process state. Thus,

γ1 : h + 1 = min { h ≤ max_limit | |e(h)| > σ |x(kh)| }, (7)

where 0 < σ ≤ 1 denotes proportionality, max_limit is the maximum allowable sampling
period, and the measured error is defined as

e(h) = x(kh + h)− x(kh), (8)

which represents the difference between the estimated next state value with respect to the
current one.

In the Lyapunov-based triggering condition γ2, the estimation of the next sampling
instant is determined by evaluating the Lyapunov decaying rate over time ∆V. Given a
linear discrete control model defined by Equation (4), the system is asymptotically stable
in the Lyapunov sense if there is a function V that satisfies

V(x(kh)) = x(kh)T P x(kh) > 0, (9)

and
∆V(x(kh)) = x(kh)T

(
ΦT PΦ− P

)
x(kh) < 0, (10)

where
∆V(x(kh)) = V(x(kh + h))−V(x(kh)), (11)

the discrete-time Lyapunov matrix P must be a positive definite matrix, and its existence
certifies the system stability since V is always decreasing. To ensure that the Lyapunov
function rate is proportional to the current value, then the next sampling time h + 1 is
obtained when the estimated Lyapunov function decays under a limit proportional to the
current function value. Thus,

γ2 : h + 1 = min { h ≤ max_limit | V(x(h)) < σV(x(kh)) }, (12)

where 0 < σ ≤ 1 also denotes proportionality.
In any case, if the plant dynamics for the crop irrigation process are known, then the

evolution of the state variables can be estimated to predict the next update time from the
last measurement.

3.2. Algorithm Design

The proposed energy-efficient algorithm ran in each sensor node to communicate
soil moisture readings using the sleep/wake-up strategy. The algorithm implemented the



Sensors 2021, 21, 5541 9 of 17

triggering conditions defined by Equations (7) and (12) according to the specific dynamics
of the pecan crop irrigation system. First, we describe how self-triggered constant values
for σ and P were selected, and then we explain how the sensor node executed the algorithm
to estimate the next sampling instance based on the soil moisture dynamics specified by
Equations (4) and (5), with the identified coefficients denoted in Table 1.

To select suitable values for the σ constant, we conducted four-week off-line simula-
tions with different initial conditions. As seen in Figure 6 there was a trade-off between the
number of communication messages and the estimated water consumption by the irriga-
tion system. Therefore, we selected the σ values of 0.10 and 0.60 for triggering conditions
γ1 and γ2 respectively, where the message’s curve was in the inflection point, and the
expected water consumption was in the lower values.

Figure 6. Estimated transmitted messages and water consumption: (a) Error-based triggering
condition γ1. (b) Lyapunov-based triggering condition γ2.

From Equations (9) and (10), we observed that, for V to be a Lyapunov function, it is
necessary and sufficient that there exist a positive definite matrix P that satisfies

ΦT P Φ− P < −Q, (13)

where Q is positive definite. One way of determining the Lyapunov function is to choose a
positive definite matrix Q and then obtain P from Equation (13), if P is positive definite
then the system is asymptotically stable [43]. Typically an identity matrix is chosen for
Q; however, for this specific problem, we assigned more weight to state variable δ than
variable θ, since we were more interested in increment sampling based on soil moisture
variations rather than the soil moisture value. Therefore, to calculate P for any value of Φ
given by Table 1, we use matrix

Q =

[
0.002 0

0 1.5

]
. (14)

For the algorithm, each node is required to wake up, take soil moisture readings,
transmit data to the controller, estimate the next sampling instant, and go to sleep again,
as described by Algorithm 1. Function read_input_sensors() conducts the measure-
ment from the three sensors providing an average soil moisture value, then select_
coefficients() obtain from a lookup table the proper values for matrices Φ and Γ
according to the moisture region. Finally, the sensor node communicates with the controller
and calculates the time for the next sampling instance before going into standby mode.

For periodic sampling, the function that calculates the next sampling instant returns a
fixed time value. For aperiodic sampling, a function in Algorithm 2 implements the error-
based triggering condition γ1 and Algorithm 3 describes the Lyapunov-based condition γ2.
In the Lyapunov approach, function select_P_matrix() obtains from a lookup table
the pre-calculated value of P that solves Lyapunov Equation (13). In self-triggered control,
usually, there is an upper bound sampling period in order to provide robustness guarantees
for the controller, for the current implementation max_limit is defined with a value of
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120 min in order to ensure that the sampling period does not go beyond this limit. This value
limits the number of cycles in the loop, thus, avoiding excessive processing loads.

Algorithm 1: Sensor node algorithm.
i = 0;
while true do

θi = read_input_sensor();
δi = θi - θi−1;
[Φ, Γ] = select_coefficients(θi);
send_message(θi);
[iri, etoi] = receive_message();
[hi+1] = calculate_next_sampling(θi, δi, iri, etoi, Φ, Γ);
sleep(hi+1);
i++;

end

Algorithm 2: Next sampling estimation based on error measurements.
Function calculate_next_sampling(θ, δ, ir, eto, Φ, Γ):

σ = 0.10;
x = [θ; δ]; u = [ir; eto];
x0 = x;
for i=1 to max_limit do

xi+1 = Φ xi + Γ u;
e = xi+1 - x0;
if ( eT e > σ xT

0 x0 ) then
break;

end
t = t + 1;

end
return t;

Algorithm 3: The next sampling estimation based on Lyapunov dynamics.

Function calculate_next_sampling(θ, δ, ir, eto, Φ, Γ):
σ = 0.60;
Q=[0.002 0; 0 1.5];
x = [θ; δ]; u = [ir; eto];
x0 = x;
P = select_P_matrix(Φ,Q);
for i=1 to max_limit do

xi+1 = Φ xi + Γ u;
if ( σ xT

0 P x0 > xT
i+1 P xi+1) then

break;
end
t = t + 1;

end
return t;

4. Results and Discussion

This section presents the experimental results obtained from the performance of the
closed-loop irrigation system during an evaluation period of four weeks. First, we show the
results of each one of the four sampling strategies according to the evaluation parameters.
Then, we analyze each transient response to identify the differences for every sampling
algorithm. Finally, based on the experimental results, we estimate the power consumption
for each strategy. It is important to highlight that, as a result of the use of four different
sampling strategies; there were no significant differences in the vegetative evolution of
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the crops; this means that, in general, the control system worked correctly in the four
irrigation areas.

4.1. Evaluation Parameters

Two periodical (duty cycle scheduling) and two aperiodical (adaptive sample rate)
sampling strategies were considered for the experimental evaluation:

• γ0, a time-triggered approach with a sampling period of 10 min.
• γ1, a self-triggered approach based on error measurement.
• γ2, a self-triggered approach based on Lyapunov dynamics.
• γ3, a time-triggered approach with a sampling period of 80 min.

The periodical sampling of 10 min represents the minimum practical time interval
typically used in agriculture, while the 80 min periodical strategy has an average of a similar
number of sampling events compared with the self-triggered approaches. The experimental
evaluation was conducted simultaneously in the four irrigation areas, depicted in Figure 1,
for four weeks. The evaluated strategies were compared in terms of:

• J1, the number of communication messages initiated by the sensor node during the
evaluation period.

• J2, the accumulated water consumption during evaluation in m3.
• J3, the mean squared error or irrigation error obtained from

J3 =
1
n

n

∑
i=1

(θi −MAD)2, (15)

where θi is the current soil moisture measurement, and the maximum allowable
depletion MAD is the soil moisture reference value for the irrigation process. This
parameter represents how precise the irrigation is conducted, lower values means
higher precision.

4.2. Experimental Results

Table 2 shows the experimental results in terms of the number of messages, water
consumption, and irrigation error.

Table 2. Performance evaluation experimental results.

Sampling
Strategy Description Communication

Messages J1

Water
Consumption J2

Irrigation
Error J3

γ0 Periodical 10 min 4032 108.8200 7.4783
γ1 Error-based 480 108.6529 7.3970
γ2 Lyapunov-based 492 107.8835 7.4641
γ3 Periodical 80 min 504 134.3956 8.4579

Both self-triggered approaches γ1 and γ2 significantly reduced the number of commu-
nication messages compared with the periodical strategy γ0, and still achieved practically
the same control performance in terms of water consumption and irrigation error. Pe-
riodical strategy γ3 had a similar number of communication events compared with the
self-triggered strategies; however, the water consumption was considerably larger, and it
also had a higher irrigation error.

Notice that self-triggered algorithms effectively reduced the communication messages
while achieving the control objectives. When comparing both self-triggered implemen-
tations, the Lyapunov-based algorithm better reduced the water consumption, while the
error-based algorithm obtained slightly better results in terms of communication messages
and irrigation error. However, these differences are marginal, and the minimum adjustment
in the configuration parameters (σ,P) would impact these results.
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4.3. Transient Response

Transient response analysis shows the correlation between the sampling period h
and the evolution of the process state variables x1 (soil moisture) and x2 (soil moisture
variations) during irrigation events. Figures 7–9 depict four-day transient responses for the
sampling strategies γ1, γ2, and γ3 respectively.

Figure 7. Self-triggered error-based state variable evolution and sampling periods.

Figure 8. Self-triggered Lyapunov-based state variable evolution and sampling periods.

In both self-triggered strategies (Figures 7 and 8), the sampling instants became more
frequent either when the soil moisture x1 reached the set point (zero value) or when the soil
moisture variation x2 registered larger changes due to irrigation. Otherwise the sampling
period reached the maximum limit, which was set to 120 min. For the time-triggered
approach (Figure 9), the sampling period was always fixed regardless the value of the
state variables.
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Figure 9. Periodical sampling (h = 80 min) state variable evolution and sampling periods.

4.4. Power Consumption

To estimate the power consumption in the sensor nodes, we conducted current mea-
surements during the different operating states of the node; we also computed the time
spent in each state during the sampling events. Table 3 shows the obtained measurements’
average values for each one of the five identified states.

Table 3. The current measurements in the sensor node for each operation state.

Operation State Current Time

Data Acquisition 30 mA 450 ms
Data Transmission 360 mA 210 ms

Data Receiving 75 mA 210 ms
Data Processing 20 mA 0.1 ms
Standby Mode 0.57 mA -

Data acquisition. Refers to the actions required for the three sensor reads, including
a pulse to energize each sensor, which should be stabilized for at least 100 ms before the
measurement and 50 ms after the reading.

Data transmission. The microcontroller sends data frames to the RF transceiver
containing address and payload information. Then, the transceiver validates the frames,
extracts and complements the transmitting information, and finally transmits the data
and waits for each packet’s success/failure status. Transmission retries are automatically
executed as required.

Data receiving. Upon data reception, the RF transceiver identifies the source address
of each received packet, sends an acknowledgment message, and then composes the
receiving data frame to send it to the microcontroller for further processing.

Data processing. Includes all the processing and calculation activities executed by the
microcontroller, such as obtaining the average soil moisture value, creating data frames for
transmissions, extracting values from receiving data frames, executing the next sampling
instance estimation algorithm, and preparing and recovering from the standby mode.

Standby mode. Refers to the energy-saving mode for the microcontroller and the
RF transceiver.

Based on the previous measurements and considering the number of communication
events registered in each sensor node during the four-week experimental evaluation period,
the estimated average power consumption in Watts is shown in Figure 10. In addition, we
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also present the irrigation water consumption for each case, since it is a critical performance
parameter and is heavily influenced by the sampling strategy.

Figure 10. The estimated spent energy for the sensor nodes and water consumption for each
irrigation area.

The flexibility provided by the aperiodical approaches γ1 and γ2 that sampled only
when necessary reduced around 20% in power consumption and irrigation water compared
to the 10-min and 80-min periodical implementations, respectively.

4.5. Discussion

Self-triggered is a model-based control approach, and thus its implementation requires
estimating the evolution of the process state variables to predict the next relevant event to
communicate data. This capability allows the self-triggered strategies to perform better
than the periodical implementations due to adjusting the sampling period according to
the irrigation process conditions. Moreover, if the sampling period is set to save water, the
device power consumption increases due to a significant amount of messages.

On the other hand, if the periodical strategy is tuned to reduce the frequency of
communications messages, this negatively affects the control performance regarding the
water consumption and, to a lesser degree, the irrigation error. Self-triggered algorithms
provide a balanced solution where the control objectives are fully accomplished and
energy efficiency is achieved due to communication messages being transmitted only
when needed.

No significant performance difference between both self-triggered algorithms was
detected. Therefore, it is difficult to identify which one is more suitable for agriculture
applications and what advantages one may provide over the other. The tuning parameters
of each algorithm were selected empirically through simulations; however, an analytical
solution should be explored. Thus, a more profound analysis must be conducted on
self-triggered strategies optimizations for precision agriculture applications.

Another critical aspect that makes viable the implementation of self-triggered algo-
rithms in precision agriculture applications is that the inherent low dynamics of agriculture
allows real-time execution regardless of the slight increase of the computation time re-
quired to calculate the next sampling instant. This additional processor load is considerable
lower—practically insignificant—when compared with the time spent in the communi-
cation events. Smart farming relies on the use of WSN to communicate data from sensor
devices. The results obtained in this work encourage the implementation of self-triggered
algorithms to provide an energy-efficient wireless communications strategy to precision
agriculture and other environmental monitoring applications where a state–space model
can appropriately describe the process dynamics.

5. Conclusions and Future Works

We described and evaluated the design and implementation of self-triggered con-
trol algorithms to communicate soil moisture measurements in a closed-loop agriculture
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irrigation process against the traditional fixed-periodical sampling approach. First, a spe-
cific model for a pecan crop irrigation system was identified and validated. Then, four
sampling strategies were evaluated simultaneously in the experimental pecan field. Two
self-triggered aperiodical sampling algorithms were implemented, considering the state
variables to determine the next sampling instant.

One algorithm selected the sampling period based on the estimated measured er-
ror, while the other used a Lyapunov function to trigger the communication event. The
other two implemented strategies used periodical sampling with low and high fixed com-
munication rates. The experimental results showed that the self-triggered approaches
provided higher efficiency in communication messages, thus, implying a significant re-
duction of energy consumption—a critical parameter for battery-powered wireless nodes.
Both self-triggered strategies achieved the control performance objectives regarding water
consumption and precision irrigation. This approach demonstrates that the sampling strat-
egy to measure and communicate only when relevant provides an efficient communication
mechanism in terms of energy while still achieving the control objectives.

In future works, the implementation of self-triggered techniques in wireless sensor
networks can be extended to other agriculture and environmental applications where
specific model-based processes can be properly identified to achieve an energy-efficient
communication strategy. The triggering conditions for the algorithms can be refined
to guarantee optimal performance under specific evaluation parameters. Finally, self-
triggered control strategies can be compared with other energy-efficient sampling rate
adaptation techniques within the precision agriculture domain.
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