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Abstract: Hall-effect sensors are used to detect metal surface defects both experimentally and
numerically. The gap between the specimen and the sensor, called the liftoff, is assumed to remain
constant, while a slight misplacement of a sample may lead to incorrect measurements by the
Hall-effect sensor. This paper proposes a numerical simulation method to mitigate the liftoff issue.
Owing to the complexity of conducting precise finite-element analysis, rather than obtaining the
induced current in the Hall sensor, only the magnetic flux leakage is obtained. Thus, to achieve
a better approximation, a numerical method capable of obtaining the induced current density in
the circumferential direction in terms of the inspection direction is also proposed. Signals of the
conventional and proposed approximate numerical methods affected by the sensor liftoff variation
were obtained and compared. For small liftoffs, both conventional and proposed numerical methods
could identify notch defects, while as the liftoff increased, no defect could be identified using the
conventional numerical method. Furthermore, experiments were performed using a variety of liftoff
configurations. Based on the results, considering the threshold of the conventional numerical method,
defects were detected for greater liftoffs, but misdetection did not occur.

Keywords: damage detection; magnetic flux leakage; Hall sensor; liftoff; numerical analysis; experi-
mental analysis

1. Introduction

All structures have a service life during which time they should be able to withstand
certain loads and weather conditions. A damaged structure may not be able to fulfill
the anticipated load capacity, possibly causing partial or total failure of the structure. To
prevent structural failure, structures should undergo regular inspections. Initially, non-
destructive testing (NDT) started with basic visual inspection [1] and gradually improved
over time. Currently, many more advanced defect-detection techniques exist. Conventional
health-monitoring methods that take advantage of propagating wave phenomena can be
classified as follows: mechanical wave-based techniques (e.g., ultrasonic guided waves [2,3]
and acoustic emission [4,5]) and electromagnetic wave-based techniques (e.g., magnetic
flux leakage (MFL) [6,7] and eddy current testing [8,9]). Among the different types of
NDT health-monitoring techniques, the MFL inspection method is one of the most popular
inspection methods for identifying both surface and internal defects [10]. This method
is capable of identifying corrosion [11], cross-sectional damage [12], axial cracks [13],
circumferential cracks [14], and internal defects [15].

Kim and Park [16] proposed a damage detection and quantification method using
signal processing in the case of an MFL Hall sensor. In their approach, damage indexes
were obtained for a variety of artificial notches with multiple depths, widths, and lengths by
applying an enveloping process to the signals obtained from Hall sensors. Park et al. [17]
developed a cable-climbing robot using an MFL sensor probe that contained an array
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of Hall sensors arranged circumferentially, and the performance of the apparatus was
experimentally investigated. Xiucheng et al. [18] designed and produced a tailor-made
tunnel magnetoresistive (TMR) device with sensors mounted in a circular array. To address
the missed detection issue of axial cracks in the pipelines, Wu et al. [13] proposed using
an alternating magnetic field excitation. Their apparatus was a combination of alternat-
ing current induction coils and permanent magnets along with an array of Hall sensors.
Wang et al. [19] investigated the effects of high-speed inspections on Hall sensor signals.
They observed that, by increasing the specimen’s speed, the amplitude of the MFL signal
increased also.

Recently, owing to the rapid advancement of finite-element commercial software pro-
grams capable of simulating a variety of problems with reliable results, many researchers
have begun to conduct numerical analyses prior to experiments. This is because an approx-
imation of the experiment’s outcome should reduce the required trial-and-error process,
ultimately leading to an optimized solution in terms of both the time and total cost of the
experiment. Currently, the main aim of conventional numerical simulation is to obtain
changes in the MFL signal when a specimen is defective. Yu et al. [20] performed a paramet-
ric optimization through conventional finite-element analysis (FEA) and using a genetic
algorithm to obtain the optimum dimensions of the sensor head. Gao et al. [14] compared
the MFL testing method with the eddy current pulsed thermography method. In a con-
ventional numerical investigation, the orientation and depth of cracks were investigated,
and the flux leakage was visualized and plotted. Liu et al. [21] proposed a circumferential
excitation method to identify axial cracks in pipelines. Based on two-dimensional (2D)
conventional numerical simulations, axial defects were detected correctly. To overcome
the overheating issue caused by direct current (DC) in the solenoid, Liu et al. [15] devel-
oped a sensor probe that works with a biased pulse current and identified both surface
and subsurface defects. However, in their numerical simulation, the input current of the
solenoid was DC, and only the MFL signal corresponding to the DC was obtained. Liu
et al. [22] evaluated the effects of a weak magnetic field on a ferromagnetic sample. They
performed a conventional numerical simulation and validated the simulation results by
performing experimental analyses. Wu et al. [23] investigated the effects of the discon-
tinuity orientation and the scanning direction of the sensor. Ma et al. [24] improved the
MFL signal-to-noise ratio (SNR) by implementing a magnetic concentrating device in the
vicinity of the Hall sensor. Further, signal enhancement was approved by performing
both conventional numerical and experimental analyses. The sensitivity enhancement of
the MFL signal was investigated by Wu et al. [25] using a ferromagnetic support. The
efficiency of ferromagnetic support was confirmed based on both numerical simulation
and experiment results. Suresh et al. [26] designed an MFL probe that can fit inside a
small-diameter steam generator tube. Suitable dimensions of the magnetizer unit were
numerically obtained and used in the experiment. However, enhancing the signal intensity
by implementing a highly permeable ferromagnetic material may alter the output signal of
the sensor owing to the magnetic hysteresis effect and residual magnetism in a ferromag-
netic enhancer unit. Wu et al. [27] developed an MFL probe containing a TMR sensor and
Helmholtz-like coils. Furthermore, a 2D conventional numerical simulation was performed
to obtain the optimum dimensions of the sensor head.

Wu et al. [7] introduced a liftoff tolerant inspection method. To detect surface flaws,
they placed an array of coil sensors circumferentially and proposed to amplify the signal
intensity by adding a ferrite core. The influence of the ferrite core on the signal was
investigated both numerically and experimentally. Dutta et al. [28] conducted a three-
dimensional (3D) conventional numerical simulation to assess the effects of the defect’s
shape and liftoff on the MFL signal. To do so, they developed a liftoff compensation
technique to predict the defect size. However, the considered liftoff values were limited
to a maximum of 10 mm. Feng et al. [29] investigated the effects of the sensor liftoff
variation due to unwanted vibrations during inspection. Moreover, a mapping algorithm
was proposed to enhance the SNR of the MFL signal, and its influence on the signal was
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assessed both numerically and experimentally. Nonetheless, only the effects of vibration
during the inspection on signal quality were assessed and improved. Sun et al. [30]
designed an open magnetizing unit capable of reducing the magnetic interaction force
while generating a more uniform magnetic field. Furthermore, the magnetizing unit of the
apparatus was optimized using a conventional numerical method. However, the sensor
liftoff was assumed to be constant, and, hence, its influence on the MFL was not studied.

Prior to conducting an experimental test, a numerical study through FEA can be
performed to provide a reasonable approximation of the test outcome. However, precise
numerical analyses require a sophisticated multiphysics analysis of charged particles and
electromagnetic physics. Owing to the high level of complexity of this numerical analysis,
a simplified numerical analysis capable of obtaining the MFL was employed in previous
studies. This numerical analysis was conventionally performed to evaluate the MFL in the
vicinity of a defect. Due to the MFL in the region of interest being acquired by defining a
reference line in the surrounding air, and it is complicated to model the Hall sensor as well
as the induced Hall voltage based on the Hall-effect phenomenon, the Hall sensor is not
modeled in the conventional numerical analysis. Consequently, in a numerical simulation
in which the Hall sensor is disregarded, the interaction between the magnetic field and
electric field in the Hall sensor is disregarded also.

By modeling the Hall sensor’s geometry through a numerical analysis, the current
density generated in the Hall sensor by the interaction between the Hall sensor’s geometry
and MFL can be evaluated. Thus, to overcome the limitation of conventional numerical
techniques in evaluating the induced Hall voltage, this paper also proposes a numerical
approximation method capable of estimating induced current density in the circumferential
direction with respect to the inspection direction. In particular, rather than obtaining the
MFL value, the objective of the numerical simulation was to acquire the circumferential
induced current density. To achieve this goal, a conductive plate (i.e., a simplified model of
the Hall sensor) in a 2D axisymmetric space through time-dependent analysis was defined
and simulated. Subsequently, the effects of liftoff variation in both the conventional and
proposed approximate numerical methods were established and compared with each other.
Finally, the effects of the liftoff variation were investigated experimentally.

The remainder of this paper is organized as follows. The mechanics of the Hall
sensor are briefly explained in Section 2. In Section 3, numerical simulations, including
conventional and proposed numerical simulations along with liftoff variation effects,
are explained in detail. The experimental evaluation is presented in Section 4, and the
conclusions of this research are presented in Section 5.

2. Theoretical Background
2.1. Theory of the Hall-Effect Sensor

When a defective sample is exposed to a magnetic field strong enough to induce
magnetization near saturation, an MFL appears around the defect. The leakage of magnetic
flux from a sample into the surrounding boundaries is called the MFL. It should be noted
that the necessary condition for the MFL-based method is that the magnetizing source
must provide a magnetic field strong enough to magnetize the sample up to the saturation
point [10,30]. Figure 1 presents the schematic MFL when the specimen is magnetized up to
its saturation point. The leaked magnetic flux can be detected by a Hall sensor mounted in
the correct direction. In this study, a Hall sensor was mounted in the direction in which its
sensitive axis was aligned in the direction of the radial component of the magnetic flux.
Hall sensors work based on the Hall-effect phenomenon, where an electrically conductive
plate with a known electric current running through the plate in a direction parallel to the
x-axis is placed in a magnetic field perpendicular to the current direction (i.e., parallel to
the z-axis). Owing to the electromagnetic force, which is governed by the Lorentz force
law, charge separation occurs on opposite sides of the conductive plate (i.e., the y-axis
direction). This charge separation leads to a voltage difference perpendicular to the current
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direction, and this voltage difference is called Hall voltage. This phenomenon is illustrated
in Figure 2.
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2.2. Proposed Method: Approximate Time-Dependent Numerical Simulation

A numerical simulation of the Hall sensor is generally performed as a guideline prior
to the experimental test. In conventional numerical methods, a Hall sensor is disregarded
in the numerical model, whereas only a reference line above the region of interest is defined
to acquire the MFL signal. It should be noted that, by disregarding the geometry of the
Hall sensor in the numerical simulation, the interaction between the magnetic field and
electric field is inevitably ignored. As a result, only the MFL signal corresponding to
defects can be obtained; more importantly, the conventional simulation is not capable of
acquiring any current induction. In this study, a semi-realistic FEA was performed, while
the geometry of the Hall sensor was not disregarded in the numerical model. Nonetheless, it
is computationally expensive to simulate charged particles under the influence of magnetic
force considering the actual sensor scale using FEA. Hence, rather than simulating the
exact Hall-effect phenomenon, an approximate numerical approach based on the eddy
current phenomenon was proposed in this study. To satisfy this aim, the circumferential
induced current density in the Hall sensor should be numerically evaluated. Acquiring the
circumferential induced current density requires three steps, compared to the technique
used in the conventional numerical model. First, rather than defining a reference line in
the air domain, the Hall sensor geometry is defined and modeled as a conductive plate.
Second, rather than performing a static simulation, a time-dependent simulation must be
performed. The reason for choosing a time-dependent simulation over a static simulation
is that current induction cannot be acquired in a static simulation. In a time-dependent
simulation, not only is it possible to consider and simulate the effect of the specimen’s
motion, but, owing to the time dependency of the relationship between the magnetic field
and electric field (governing Maxwell’s equation), current induction caused by MFL can
be measured accordingly. Third, rather than performing a 2D simulation, a 3D or 2D
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axisymmetric simulation should be performed to acquire circumferential current induction.
In this study, a 2D axisymmetric simulation was performed. Figure 3 shows a schematic
view of a pipe sample along with the sensing unit used in both the numerical analysis and
experimental tests.
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2.3. Governing Equations
2.3.1. Hall-Effect Phenomenon

When conducting numerical analyses based on the electromagnetic theory for a con-
ductive plate and a ferromagnetic material representative of the Hall sensor and ferromag-
netic specimen, respectively, Maxwell’s equations and the Lorentz force law (Equation (1))
are the governing equations. Initially, charge separation does not occur, and the electric
field is therefore equal to zero. Thus, the magnetic force acting on the electric charges can
be obtained using Equation (2).

F = q(E + vD × B) (1)

E = 0, · · · , FM = qvD × B (2)

where F, q, E, vD, B, and FM are the electromagnetic force, electric charge, electric field, drift
velocity, magnetic flux density, and magnetic force, respectively. After charge separation oc-
curs, the electric charges are subjected to an electric force, which is governed by Coulomb’s
law (Equation (3)). Eventually, charge separation reaches equilibrium, which emphasizes
that both electric and magnetic forces have the same magnitude. Thus, in the equilibrium
condition, the voltage difference generated in a conductive plate can be obtained using
Equation (5).

FE = qEH (3)

FM = FE → EH = vDB (4)

VH = EHd = vDBd (5)

where FE, EH, VH, and d are the electric force, Hall’s electric field, Hall’s voltage difference,
and the width of the conductive plate, respectively. According to the charge conversion
principle, the drift velocity can be obtained using Equation (6). Finally, by substituting
Equation (6) into Equation (5), a simplified form of the Hall voltage difference can be
obtained using Equation (7).

Iave =
∆Q
∆t

, ∆Q = q(nA∆x), ∆x = vD∆t→ vD =
Iave

nqA
(6)

VH =
IaveB
nqt

(7)
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where Iave, Q, n, A, x, and t are the average current, charge transferred through the cross-
section over time, charge carrier density, cross-sectional area of the conductive plate, length
of the conductive plate, and thickness of the conductive plate, respectively.

2.3.2. Proposed Analytical Method

Similar to the Hall-effect phenomenon, Maxwell’s equations are the governing equa-
tions in the case of current induction based on the eddy current phenomenon. In addition,
Ohm’s law (Equation (8)) was used to derive the induced current density. Thus, for a
moving magnetized specimen with an MFL value of BMFL and velocity v, the induced
current density in a fixed conductive plate is obtained using Equation (9).

J = σE (8)

Ji = σ(E + v× BMFL) + Je, (9)

where J, σ, Ji, v, and Je are the current density, electrical conductivity, induced current
density, velocity of the specimen, and external current density, respectively.

3. Numerical Simulation
3.1. Description of the Simulation Setup

To investigate the effects of varying the liftoff, conventional and proposed precise
simulation models were prepared and simulated using COMSOL Multiphysics, as shown in
Figure 3. In particular, to consider the electromagnetic physics and motion of the specimen
in the numerical simulation, the magnetic field physics from the AC/DC module [31] and
the deformed mesh physics from the mathematics module were selected. In the numerical
analysis, low-carbon steel 1006, low-carbon steel 1002, and copper were selected as the
materials for the specimen, ferromagnetic yokes, and Hall-effect sensor, respectively, as
shown in Figure 3 and Table 1. Figure 4 shows the BH curves of low-carbon steel 1002 and
1006. Moreover, the surrounding air in the experiment was modeled as an air domain in
the numerical model.

Table 1. Material properties.

Object Material Electrical Conductivity (MS/m) Relative Permeability

Air Air 0 1
Hall-effect sensor Copper 59.98 1

Ferromagnetic yoke Low-carbon steel 1002 8.41 (BH curve was used)
Specimen Low-carbon steel 1006 8.41 (BH curve was used)
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In this study, four steel pipe specimens with defects at different depths were modeled,
as illustrated in Figure 5. The outer and inner diameters of the specimens were 60 mm and
50 mm, respectively. The defects were modeled as a circumferential notch with the same
width of 5 mm and four different depths of 1, 2, 3, and 4 mm.
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Based on the MFL inspection theory, an inspection must be conducted when the speci-
men is either saturated or near saturation [10,30]. As shown in Figure 6, the magnetization
level of the specimen was maintained well beyond the saturation point, which is equal
to 1.5–1.6 T. Hence, the saturation requirement of the specimen was satisfied for all of the
numerical simulations conducted in this study.
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3.2. Conventional Method

Conventionally, a simple 2D or 3D static simulation is performed to obtain any changes
in the MFL from the specimen into the surrounding space in the presence of a flaw. This
MFL is obtained by assigning a reference line with a relatively small liftoff right above the
defect in the simulation model. It is worth noting that the use of a reference line in air or
vacuum may simply disregard the Lorentz force and interaction between the magnetic
and electric fields. Consequently, the current induction that appears in a conductive plate
(i.e., Hall-effect sensor) is neglected also. In this study, a conventional numerical simulation
was conducted by assuming a static simulation over a 2D axisymmetric domain. Defects
were modeled as a circumferential notch with the same width equal to 5 mm and four
different depths equal to 1, 2, 3, and 4 mm. Moreover, the reference line was defined above
the defects with a 5 mm liftoff.

Figure 7a,b illustrate the radial and axial components of the MFL acquired from the
reference line in the conventional numerical simulation, respectively. As shown in the
figures, all defects could be detected with distinguishable signal patterns and amplitudes
in the case of both the radial and axial components of the MFL. In the case of the radial
component of the MFL, a sinusoidal response with one peak and one trough corresponding
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to the notch defect was observed. This nonlinearity is caused by the opposite magnetic
polarities induced on the sides of the notch. Thus, MFL has a positive sign on one side of
the notch, while it has a negative sign on the other side [18,23]. As expected, shallower
notches corresponded to signal amplitudes, whereas deeper defects demonstrated higher
signal amplitudes.
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Figure 7. MFL signal obtained from the conventional numerical simulation.

Nonetheless, the output signals obtained using the conventional method could only
provide information about the MFL, whereas in the experiment, the output signal is directly
obtained in either the voltage or current density unit. In the case of circumferential cracks
and notches, the radial component of the MFL is the dominant and most effective compo-
nent of the MFL on the Hall sensor. As a result, from this point, the “radial component of
MFL” is referred to as “MFL.”

3.3. Proposed Approximate Method

As discussed previously, to obtain the induced current density, rather than the MFL
signal, the geometry of the Hall sensor was entered into the simulation model, and time-
dependent simulations were performed in the 2D axisymmetric dimension using the
proposed method. Compared with the conventional method, these additional steps lead to
current induction in the circumferential direction with respect to the inspection direction
(i.e., axial direction). The liftoff of the conductive plate, which is representative of the Hall
sensor, was assumed to be 5 mm (i.e., the same as conventional numerical simulation).
The same specimens used in the conventional method were used again for the proposed
method. The difference is that, in this case, the induced current density was obtained when
the specimen was passed through the sensing apparatus.

As shown in Figure 8, all defects were detected with a sinusoidal pattern with only one
difference compared to the conventional method. Two peaks and two troughs appeared,
rather than having one peak and one trough in the output signal. The main reasons for the
extra broad peak and trough with insignificant amplitudes on each side of the defect are the
magnetic flux concentration on the edges of the magnets and the slightly raised section of
the handles, which provides housing for an array of magnets, and a slightly non-uniform
distribution of induced magnetization in the region of interest (Figure 6). Although the
specimen was completely saturated in the region of interest, there was still a fluctuation in
magnetization, particularly in the vicinity of the circumferential notch, which can ultimately
lead to fluctuations in the MFL. This slight magnetic flux fluctuation causes a change in the
current density induced in the conductive plate. In addition, for the conventional method,
the length of the reference line is limited to the gap between the magnets on each side of
the yokes. Moreover, because of the extreme influence of the magnetic field in the vicinity
of the permanent magnets, it does not extend to magnets mounted on both sides of the
yokes. Unlike the proposed approximate method, by conducting stationary simulations
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using the conventional method, the velocity term of the specimen is not considered. As
observed in the conventional method, in the proposed approximate method, shallower
notches corresponded to smaller peak amplitudes, whereas deeper notches had greater
peak amplitudes.
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3.4. Effects of the Liftoff: Comparison between Conventional and Proposed Methods

Generally, to acquire a more intense output signal, the liftoff is chosen to be as small as
possible. Evidently, by providing a smaller gap between the surface of the specimen and the
sensor tip, a more intense MFL will reach the sensor; therefore, a higher signal amplitude
will be obtained. However, the excessive attraction force of permanent magnets does not
enable quite small liftoff values. In addition, misdetection may arise when this value is
set to be quite large. Under in situ conditions, the liftoff value may not be as consistent as
the ideal numerical analysis model. To reflect the significance of liftoff variation effects on
the output signal of the Hall sensor, a variety of sensor liftoff values were considered and
simulated using both conventional and proposed numerical methods. Thus, five different
liftoff values were assumed and modeled: 5, 10, 15, 20, and 25 mm. The same defective
specimens used in the previous sections were also used.

Figure 9 shows the MFL signals obtained using the conventional numerical method
by considering different liftoff values. From the results, when the liftoff is equal to 5 mm,
all defects were identified with a distinguishable sinusoidal-shape signal. Furthermore,
shallower notches surrendered smaller signal amplitude, while deeper notches demon-
strated more intense MFL signals. Meanwhile, by increasing the liftoff value to 10 mm,
all defects were detected, except for the notch with a 1 mm depth, and the amplitude of
the signals decreased compared to the signals corresponding to the 5 mm liftoff. In the
case of a 1 mm notch, which is the shallowest notch, no sinusoidal pattern existed, and it
therefore remained almost undetected. From the results, by increasing the liftoff value, it
becomes difficult to identify a defect based on the sinusoidal pattern. Clearly, for a liftoff
value above 15 mm, it became almost impossible to distinguish the defect patterns of the
notches. For instance, with the 20 mm liftoff, except for the notch with a 4 mm depth, all
defects had only a linear signal pattern without possessing a sinusoidal pattern.

Furthermore, by increasing the liftoff to 25 mm, all notches remained undetected
owing to the absence of a distinguishable defect pattern in the corresponding signals. Thus,
the conventional method in this study could only identify all defects, while the liftoff was
less than or equal to 10 mm. However, as explained in the next section, the Hall sensor
is experimentally proven as capable of detecting defects with a liftoff value greater than
10 mm.
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Figure 9. Effects of varying liftoff values on obtained MFL signal using the conventional method.

The results of the circumferential current induction in the conductive plate based
on the proposed approximate numerical method are presented in Figure 10. Unlike the
conventional numerical method, the proposed method was capable of detecting all notches,
even when considering large liftoff values that are well beyond the threshold of the con-
ventional numerical method. As shown in Figure 10, in the case of a 10 mm liftoff, all
defects were identified with sharp and distinguishable signal patterns. Although the signal
amplitude decreased in the case of a 25 mm liftoff, even the shallowest defect presented a
distinctive defect pattern.
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4. Experimental Validation
4.1. Methods Description of the Test Setup

In this study, a customized electromagnetic system was used to perform experimental
validation. The inspection system consists of sensing and magnetizing units as well as a
data acquisition system, as shown in Figure 11. Twelve neodymium magnets were symmet-
rically embedded on two ferromagnetic handles, six each on the top and bottom handles in
the magnetic apparatus (i.e., in each yoke, six magnets were placed symmetrically). On the
circuit board placed in the middle of the magnetic apparatus, seven HW-300A Hall-effect
sensors were circumferentially placed, as illustrated in Figure 12. The entire setup was held
together using an aluminum frame. To acquire the output signal of the Hall-effect sensor,
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this study used an NI cDAQ-9181 Ethernet compact data acquisition chassis with an NI
9205 analog input terminal module that has a sampling rate of 500 Hz.
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Figure 12. Array of the Hall-effect sensors.

For testing, a hollow steel pipe was prepared with outer and inner diameters of 60
and 50 mm, respectively. Five artificial notches of different depths were fabricated on the
pipe. As shown in Figure 13 and Table 2, these five notches were labeled as three sets of
defects: D1, D2, and D3. Here, D1 has two notches with a depth of 4.5 mm, D2 has two
notches with a depth of 4 mm, and D3 has one notch with a depth of 3.5 mm located on
the top of the specimen. Here, the width of each notch was 4 mm, and they were equally
spaced 500 mm apart.

Table 2. Details of the defect cases.

Defect Case Width
Depth Location

Maximum Notch Depth Increment At Specimen Nearest Sensor

D1 4.0 mm 4.5 mm
−0.5 mm (↓)

Top and bottom Ch. 1, 2, 3
D2 4.0 mm 4.0 mm Top and bottom Ch. 1, 2, 3
D3 4.0 mm 3.5 mm Top Ch. 1, 2
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Figure 13. Defected specimen.

To address the liftoff variation issue and its effects on the output signal, experimental
tests were designed by considering various liftoff configurations. As shown in Table 3, four
different liftoff configurations were designed. Hence, for the top sensors located in the
vicinity of the top handle (i.e., channels 1 and 2), the offsets were equal to 30, 25, 20, and
15 mm in test cases C1, C2, C3, and C4, respectively, and the exact liftoffs were equal to
39, 35, 32, and 29 mm in the C1, C2, C3, and C4 test configurations, respectively. In the
case of the bottom sensor located near the bottom handle (i.e., channel 3), the offsets were
equal to 20, 25, 30, and 35 mm in test cases C1, C2, C3, and C4, respectively, and the exact
liftoffs were equal to 32, 35, 39, and 43 mm in the C1, C2, C3, and C4 test configurations,
respectively. To observe the change in potential differences for each test case, the pipe
specimen placed inside the magnetic apparatus was manually extracted while maintaining
the pulling speed constant.

Table 3. Liftoff configurations in the vertical axis direction (z-axis).

Test Case
Location of Specimen from the Center

of Experimental Apparatus
Liftoff Configuration

Reference Point Offset Liftoff

C1 −5 mm
Increment:
+5 mm (↓)

Ch. 1 (Ch. 3) 30 mm (20 mm) 39 mm (32 mm)
C2 0 mm Ch. 1 (Ch. 3) 25 mm (25 mm) 35 mm (35 mm)
C3 +5 mm Ch. 1 (Ch. 3) 20 mm (30 mm) 32 mm (39 mm)
C4 +10 mm Ch. 1 (Ch. 3) 15 mm (35 mm) 29 mm (43 mm)
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4.2. Experimental Results

Figure 14 and Table 4 show the representative experimental results of the potential
differences obtained from the defective pipe specimen. In the figure, each row represents
the results for a different liftoff configuration (i.e., C1, C2, C3, and C4). The schematics
given on the left side of the figure represent the specimen’s locations and corresponding
liftoffs, and the graphs on the right represent the potential differences. The red, blue,
and green solid lines indicate the potential differences obtained by channels 1, 2, and 3,
respectively. Here, the x-axis represents the number of samples collected at a sampling rate
of 500 Hz.

As discussed previously, defects on metal specimens were detected with a sinu-
soidal pattern in the proposed numerical approach. Similarly, in the experiments with
the magnetic apparatus, the defects were also detected with a sinusoidal pattern with
potential differences.
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Figure 14. Effects of the liftoff variation on the Hall voltage obtained from the experimental apparatus: (a) C1 configuration
with 30 and 20 mm offsets from top and bottom sensors, respectively; (b) C2 configuration with 25 mm offset from top
and bottom sensors; (c) C3 configuration with 20 and 30 mm offsets from top and bottom sensors, respectively, and (d) C4
configuration with 15 and 35 mm offsets from top and bottom sensors, respectively.
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Table 4. Experimental results.

Sensor
Number Test Case

Liftoff Configuration Defect Detection Result
(Maximum Potential Difference)

Offset Distance Liftoff Distance D1 D2 D3

Ch. 1 & Ch. 2

C1 30 mm 39 mm Detected
(0.10 V)

Detected
(0.10 V) Missed

C2 25 mm 35 mm Detected
(0.12 V)

Detected
(0.11 V)

Detected
(0.06 V)

C3 20 mm 32 mm Detected
(0.16 V)

Detected
(0.15 V)

Detected
(0.08 V)

C4 15 mm 29 mm Detected
(0.25 V)

Detected
(0.23 V)

Detected
(0.14 V)

Ch. 3

C1 20 mm 32 mm Detected
(0.20 V)

Detected
(0.20 V) Missed

C2 25 mm 35 mm Detected
(0.11 V)

Detected
(0.13 V) Missed

C3 30 mm 39 mm Detected
(0.10 V)

Detected
(0.11 V) Missed

C4 35 mm 43 mm Detected
(0.09 V)

Detected
(0.08 V) Missed

When the specimen was located at the center of the magnetic apparatus (C2) shown
in Figure 14b, the distance between the specimen and each Hall sensor channel (i.e., 1, 2,
and 3) was 35 mm. Hence, the liftoff value was 35 mm for all channels. In this case, D1 and
D2 were detected with a distinctive sinusoidal pattern by channels 1, 2, and 3, as shown
in Figure 14b. The maximum potential differences were in the range of approximately
0.12 V for D1 and D2, but the amplitudes were slightly different compared to each other.
Unlike the defects located in both the upper and lower parts of the sample (D1 and D2),
the D3 defect consisted of only one notch located in the upper part, which was detected
by channels 1 and 2, and its amplitude (0.06 V) was distinctively smaller than D1 and D2.
Meanwhile, no significant differences were observed between channels 1 and 2.

The changes in the potential difference were observed when the specimen was not in
the center of the magnetic apparatus. First, the specimen was moved downward by 5 mm
from the center (C1) to change the liftoffs, as shown in Figure 14a. In this configuration, the
liftoffs of channels 1, 2, and 3 were 39, 39, and 32 mm, respectively. In this case, D1 and
D2 were detected in both the top- (Ch. 1 and 2) and bottom (Ch. 3)-located Hall sensors;
however, the D3 defect was not detected by either the top or bottom Hall sensors. Here,
owing to the smaller gap between the specimen and the bottom-located sensor (Ch.3) than
the top-located sensors (Ch. 1 and 2), the signal obtained from channel 3 had a larger
amplitude (0.2 V), compared to that of the top-located sensors (0.1 V).

In the same manner mentioned previously, the specimen was moved upward by
5 mm from the center (C3), as shown in Figure 14c. In this configuration, the liftoff
value for channels 1, 2, and 3 were 32, 32, and 39 mm, respectively. D1 and D2 were
detected in all sensors, but their corresponding signal amplitudes were different. Hence,
the top-located sensors had a higher signal amplitude (0.16 V) owing to their smaller
liftoff values compared to the bottom-located sensor (0.10 V). In the case of D3, owing to
the large distance between channel 3 and the defect, the defect was detected only in the
top-located sensors.

In test case 4 (C4), the specimen was moved upward 10 mm from the center, as shown
in Figure 14d. Thus, the liftoff values of channels 1, 2, and 3 were 29, 29, and 43 mm,
respectively. Similar to C3, D1 and D2 were detected in all sensors, but their corresponding
signal amplitudes were different. Hence, owing to the noticeable difference in liftoff
between the top and bottom sensors, the difference in amplitude between the top (0.25 V)
and bottom (0.09 V) sensors became significantly larger than that of the C3 test setup.
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Based on the results acquired by the test setups for C1, C2, C3, and C4, it was found
that D3 could be identified with liftoff values less than or equal to 35 mm. Moreover, D1
and D2 were detected for all varieties of liftoffs; however, by increasing the liftoffs, the
signal amplitudes started to decrease noticeably. Unlike the results obtained using the
conventional numerical method, which was limited to a 10 mm liftoff, in the experimental
test, even with large liftoff values (e.g., 32 and 35 mm), all defects were successfully
identified by Hall-effect sensors.

Although the potential differences obtained by channels 1 and 2 should be theoretically
equal, it was observed that the experimental results were not the same. This is because
the potential differences were obtained while pulling the specimen out from the magnetic
apparatus manually (i.e., using bare hands) in this study; that is, the slight potential
difference between channels 1 and 2 resulted from the inaccurate position of the specimen
in the magnetic apparatus. In addition, owing to the slightly unequal velocity of the
specimen during inspection, defect patterns were observed within different time periods
for each test configuration (C1, C2, C3, and C4). Despite that defect patterns were observed
within different time periods, owing to the Hall-effect phenomenon, the inconsistent
velocity of the specimen had no significant influence on the signal amplitudes.

5. Conclusions

This study aimed to address the liftoff variation issue and its effects on the output
signal of the Hall-effect sensor through both numerical simulation and experimental tests.
To this end, variations in the liftoff and the corresponding effects on notch defects having
different depths were assessed. The simulation results indicate that the conventional nu-
merical simulation method was incapable of detecting defects in two cases: shallow notches
with small liftoffs and both shallow and deep notches with liftoffs greater than 10 mm.
Conversely, the proposed approximate numerical method can identify all defects with
distinctive sinusoidal patterns well beyond the 10 mm threshold liftoff of the conventional
method. Moreover, unlike the conventional method, no misdetection occurred even in the
case of a 25 mm liftoff and when the shallowest notch existed.

This indicates that the conventional numerical simulation method can only detect
defects within a limited range of liftoff values. Conversely, the proposed semi-precise
analytical method can identify defects with no difficulties beyond this threshold. Finally, the
effects of liftoff variation were investigated experimentally. The experimental test results
indicate that a distinctive defect pattern existed in the signals with liftoff values higher
than the threshold of the conventional numerical method. In addition, the detectability
of the proposed approximate method beyond the threshold of the conventional method
was confirmed.

According to four different test configurations, all defects were identified when the
liftoff value was less than or equal to 35 mm. In addition, deep defects were detectible even
with liftoff values greater than 35 mm. Based on the results obtained by both numerical
and experimental tests, it can be concluded that the conventional numerical method cannot
provide a reasonable estimation of the liftoff requirement. Conversely, the proposed
approximate method provides a better estimation. However, it should be noted that only
one type of defect (i.e., notch) was considered in this study. Therefore, the findings here
cannot be generalized for other applications. Furthermore, to improve the reliability and
precision of the proposed numerical method, there is the need for further studies to propose
a precise numerical approach based on Hall voltage induction.
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