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Abstract: Electrical and electromechanical properties of hybrid graphene nanoplatelet (GNP)/carbon
nanotube (CNT)-reinforced composites were analyzed under two different sonication conditions.
The electrical conductivity increases with increasing nanofiller content, while the optimum sonication
time decreases in a low viscosity media. Therefore, for samples with a higher concentration of GNPs,
an increase of sonication time of the hybrid GNP/CNT mixture generally leads to an enhancement of
the electrical conductivity, up to values of 3 S/m. This means that the optimum sonication process
to achieve the best performances is reached in the longest times. Strain sensing tests show a higher
prevalence of GNPs at samples with a high GNP/CNT ratio, reaching gauge factors of around 10,
with an exponential behavior of electrical resistance with applied strain, whereas samples with
lower GNP/CNT ratio have a more linear response owing to a higher prevalence of CNT tunneling
transport mechanisms, with gauge factors of around 3–4.

Keywords: carbon nanotubes; graphene nanoplatelets; electrical properties; hybrid nanocomposites;
strain sensing

1. Introduction

In the last years, the increasing complexity of structures in civil engineering, aerospace,
and wind industry has led to the development of new techniques for structural health
monitoring (SHM). Many of them are based on conventional non-destructive testing,
guided lamb waves, or optical fibers, which have demonstrated a good reliability in
detecting damage and failure extent [1–3]. However, measurements using these techniques
are often difficult as the data acquisition is not easy and most of them only give local
information of the structural damage [4–6].

In this regard, carbon nanoparticles are now attracting the interest of many researchers
as they exhibit outstanding electrical and mechanical properties because they have Young’s
moduli of ~270–950 GPa for CNTs [7,8] and ~1 TPa for graphene [9,10] and electrical
conductivities of 103− 106 S/m for CNTs [11,12] and 6000− 107 S/m in the case of graphene
nanomaterials [10,13]. Their addition into an insulator resin, in fact, induces the creation of
electrical pathways by creating a percolating network [14–17]. This made possible their
use in SHM applications by means of measurements of the electrical resistance variation
between two electrodes when the electrical percolation network is modified by strain or
cracking [18–21].

SHM in polymeric composites doped with carbon nanoparticles is based on the fact
that the electrical resistivity of nanocomposites changes with applied strain and damage
extent. This is owing to the dominant role of the electron tunneling transport [22] as well
as the carbon nanoparticle inherent piezoresistive behavior [23,24]. Tunneling resistance
increases with applied strain, as it exponentially depends on the distance between adjacent
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particles [25,26]. Furthermore, the extent of damage induces a disruption of electrical
pathways, also leading to an increase in electrical resistance [27]. Therefore, the whole
material itself acts as a sensor.

To date, SHM with carbon nanoparticles is focused mainly on CNT and graphene
nanoplatelet (GNP)-based nanocomposites. As a general trend, it is observed that GNP-
based composites exhibit higher sensitivities than CNT-based ones, with gauge factors
(GFs), defined by the change on normalized resistance divided by applied strain, that
can range from values of 11 to 40 [28–31] and 1 to 4 [26,32,33] at low strain levels for
GNPs and CNTs, respectively. This can be explained because the 2D distribution of
GNPs allows higher interparticle distance between adjacent nanoparticles. However, the
percolation threshold, defined as the volume fraction in which the insulator material
becomes electrically conductive, is much lower on CNT nanocomposites owing to their
effective aspect ratio and large surface area [15,34–36], so the selection of GNP or CNT will
be determined by the specifications required by the sensor.

Therefore, there is an arising interest in exploring the effect that the combination of
both types of nanofillers can have on the final properties of the material [37,38]. In fact, the
combination of different architectures with hybrid GNP–CNT fillers has been proven to
be an effective way to improve the mechanical properties of the final nanocomposite [39].
Moreover, it can be observed that the addition of CNTs to GNP nanocomposites leads
to an enhancement of electrical properties owing to the higher electrical conductivity of
CNT networks inside the material [38,40,41]. However, the combination of GNP and CNT
nanofillers sometimes does not induce a synergistic effect on electrical properties, as the
electrical conductivity values of hybrid nanocomposites are below those obtained for CNT
nanocomposites [42,43]. This is explained by the role of nanofiller interactions, which
is very dependent on the GNP to CNT proportion and, especially, the dispersion state
that relies on manufacturing process. Here, although the electrical conductivity of these
materials has been widely explored, the main transport mechanisms that dominate their
strain-sensing capabilities remain to be investigated.

For this reason, this study aims to explore the influence of nanofiller interactions and
dispersion procedure on the electrical conductivity and strain monitoring capabilities in
GNP–CNT hybrid nanocomposites. To achieve this, several proportions of GNP to CNT in
an epoxy resin were explored in composites manufactured by different sonication condi-
tions in order to explore the role of possible nanoparticle interactions on electromechanical
properties. These samples were subjected to electrical conductivity and strain monitoring
tests, allowing to obtain a deeper knowledge of the possible synergistic effects between
GNPs and CNTs in these types of materials.

2. Materials and Methods
2.1. Manufacturing of Nanocomposites

The GNPs used in this study were the M25, supplied by XG Sciences, with an average
lateral size of 25 µm and a thickness up to 6 nm. Multi-wall CNTs (MWCNTs) were
NC3150, supplied by Nanocyl, with an average length of 1 µm and a diameter of 9.5 nm.
Epoxy resin was a DGEBA-based one, with a commercial name LY 556 (bisphenol A-
(epichlorhydrin); epoxy resin (number average molecular weight <700); CAS no. 25068-38-
6) cured with a hardener XB 3473 (60–100% diethyltoluenediamine CAS no. 68479-98-1;
7–13% 1,2-diaminocyclohexane CAS no. 694-83-7) in a stoichiometric proportion of 100 to
23, respectively.

Several nanocomposites with different proportions of GNPs and CNTs were manu-
factured under the sonication process. First, GNPs were added to the epoxy matrix in the
desired proportion. Then, the mixture was subjected to ultrasonication for 20 or 30 min,
depending on the conditions, using a horn sonicator UP400S supplied by Hielscher at a
frequency of 24 kHz, 400 W, and amplitude of 50%. After this step, CNTs were added to
the GNP mixture; then, it was subsequently sonicated for another 20 or 30 min depending
on the conditions (here, S1 condition refers to sonication for 20 min of GNP mixture and
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an additional 30 min sonication of GNP+CNT mixture whereas S2 condition refers to
sonication for 30 min of GNP mixture and an additional 20 min sonication of GNP+CNT).
After sonication stage, the mixture was degassed for 15 min to remove the entrapped air
and finally the hardener was added in stoichiometric proportions prior to curing. The cure
cycle was set at 140 ◦C for 8 h.

Table 1 summarizes the different dispersion conditions and the nomenclature used for
the study. GNP and CNT contents were selected as they are slightly above the percolation
threshold for this type of nanocomposites and, therefore, the maximum sensitivities during
strain sensing could be achieved [44].

Table 1. Nomenclature used for materials manufactured and tested.

GNP Content (wt. %) CNT Content (wt. %) Sonication Time
(GNP—GNP + CNT) Designation

5

0.1 20–30 min 5GNP-01CNT-S1
0.2 20–30 min 5GNP-02CNT-S1
0.1 30–20 min 5GNP-01CNT-S2
0.2 30–20 min 5GNP-02CNT-S2

8

0.1 20–30 min 8GNP-01CNT-S1
0.2 20–30 min 8GNP-02CNT-S1
0.1 30–20 min 8GNP-01CNT-S2
0.2 30–20 min 8GNP-02CNT-S2

2.2. Characterization of Nanocomposites

DC in-plane electrical conductivity measurements were carried out in specimens with
dimensions of 10 × 10 × 1 mm3, using four samples for each condition. The electrical
resistance, R, was determined as the slope of the linear region of the I–V curve and the
electrical resistivity was determined considering the sample geometry by applying the
following formula:

ρ = R· L
A

(1)

where ρ is the electrical resistivity, L is the distance between the electrodes, and A is their
contact area.

The voltage range was set at 0–20 V in the case of the samples with high electrical
conductivity (above 0.1 S/m) and at 0–250 V in the case of the samples with low electrical
conductivity. The measurements were performed using a SMU, Keithley Instrument Inc.
mod. 2410.

Microstructural characterization of fractured surfaces was carried out by means of
scanning electron microscopy (SEM), using a Hitachi 3400 model. The samples were coated
by sputtering with a thin layer of gold for an adequate observation.

2.3. Strain Sensing Test by Electrical Measurements

Strain monitoring tests were carried out using three specimens of each conditions to
evaluate the SHM capabilities of the proposed materials. Simultaneously, the electrical
monitoring was carried out by means of electrical resistance measurements between two
electrodes placed in the central region of the bone-shaped samples, as shown in the
schematics of Figure 1. These electrodes were made of copper wires sealed with silver ink
for a proper attachment to the sample’s surface. The electrical resistance was recorded
using an Agilent 34410 A module with an acquisition frequency of 10 Hz.

Here, gauge factor was determined as the change of the normalized resistance ∆R
R0

divided by the applied strain, ε.
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associated with a high viscosity of the mixture that prevents adequate removal of the en-
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Figure 1. Schematics of electrode’s disposition in strain monitoring tests.

3. Results and Discussion

This section describes the electromechanical behavior of the hybrid GNP–CNT nanocom-
posites. Firstly, a brief microstructural characterization is carried out. Then, electrical
conductivity is deeply explored and, finally, their strain monitoring response is analyzed.

3.1. Microstructural Characterization

Figure 2 shows some SEM images of the fracture of the manufactured hybrid nanocom-
posites. It can be observed that, in general, the fracture surface is very rough (Figure 2a),
which is an indicative of both the crack deviation because its interaction with nanoparticles
and of the prevalent pull-out of both the GNPs and CNTs. In fact, this GNP pull-out
can be observed at higher magnifications (yellow arrows of Figure 2b). Furthermore, it
can be also stated that the GNPs present a much lower lateral size than indicated in the
as-received conditions (estimated as 7.3 ± 2.9 µm from the SEM images in comparison
with 25 µm of as-received). This is an indicative of prevalent breakage mechanisms during
sonication owing to the higher cavitation forces induced [45]. Moreover, it can be also
observed that there is a good dispersion of nanofiller inside the epoxy matrix, obtaining a
homogeneous distribution, as stated by the yellow arrows of the micrograph of Figure 2c.
Furthermore, 8GNP-02CNT samples show an abundant porosity (Figure 2d) that can be
associated with a high viscosity of the mixture that prevents adequate removal of the
entrapped air during degasification.
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3.2. Electrical Conductivity Measurements

Figure 3 shows the electrical conductivity values measured in the GNP-CNT nanocom-
posites under different sonication conditions.
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Nanofiller disaggregation by the ultrasonication process is achieved by means of
cavitation forces, as commented before. These cavitation forces can lead to two different
effects: on the one hand, the nanofiller disaggregation as well as a significant exfoliating
effect on the GNPs [46] and, on the other hand, a breakage of the nanoparticles as a result of
these aggressive cavitation forces. The latter is very dominant in the case of CNTs owing to
their high aspect ratio, and thus low bending strength [47,48]. These two mechanisms act
in an opposing manners. On the one hand, the exfoliation and disaggregation of nanofillers
promote a better dispersed mixture, with lower agglomerates, as well as an increase of
the effective aspect ratio of the nanofiller. This leads to a reduction of the percolation
threshold [32,35], defined as the critical volume fraction at which the original insulating
material becomes electrically conductive. This decrease in percolation threshold induces
an increase in the electrical conductivity. On the other hand, however, the breakage of
nanofillers due to excessive cavitation forces favors the reduction of the effective aspect
ratio of the nanoparticle, causing an increase in the percolation threshold, and thus a
decrease in the electrical conductivity.

Therefore, the crucial factor to be determined is the prevalence of each mechanism for
the different condition in order to explain the electrical conductivity measurements.

In this regard, it is known that the cavitation forces show a higher influence when the
media has a low viscosity [49], meaning that the sonication process is much more effective
in this case. Therefore, the optimum sonication time to achieve a well disaggregated
network without inducing any prevalent nanofiller breakage must be reduced.

At first sight, it can be noticed that the highest values of electrical conductivity are
achieved when increasing the GNP content (Figure 3a). This can be easily explained by the
higher amount of conductive nanofiller, which induces the creation of more conductive
pathways in the electrical percolating networks inside the nanocomposite. However, the
change of the electrical conductivity when analyzing the effect of CNT content is rather
more complex, as observed in Figure 3b. Here, two different trends can be observed
depending upon sonication conditions; on the one hand, there is an increase of electrical
conductivity for both GNP contents at S1 conditions. However, for the S2 conditions, the
electrical conductivity increases at 5 wt. % GNP content, but decreases when a 8 wt. %
GNP is added. Therefore, it can be concluded that the main electrical transport mechanisms
are dominated by the GNP network rather than the CNT one.

In this regard, it can be noticed that, by adding a content of 5 wt. % GNP, sonication
time does not seem to have a very prevalent effect, as the electrical conductivity under S1
and S2 conditions is very similar. However, very important differences can be observed in
the case of 8 wt. % GNP samples. Here, it can be noticed that, in the samples containing only
0.1 wt. % CNTs, the electrical conductivity decreases from the S1 to S2 condition, whereas
in the case of the samples with 0.2 wt. % CNTs, the opposite trend can be distinguished,
appreciating a very significant increase in the electrical conductivity from the S1 to S2
sonication condition. This can be explained by the effectiveness of the sonication process.
The total sonication time at which GNPs were subjected was the same under both conditions
(50 min), so the differences in the electrical conductivity are attributed to the different
sonication times at which the CNT network is exposed. Here, it can be observed that
increasing the sonication time of CNT fraction (Figure 4) leads to a decrease in conductivity
of 8 GNP-0.1 CNT samples and an increase in the case of 8 GNP-0.2 CNT ones. When
increasing the CNT content, the viscosity of the media also increases, owing to the 1D
nature of the nanofillers that leads to a significant increase even at such low contents [50,51].
Therefore, the effectiveness of the sonication process is lower and, because of that, the
optimum sonication time increases. At lower CNT contents, the viscosity of the media is
lower, so the sonication effectiveness is higher and the optimum conductivity values are
achieved at lower sonication times. Under this condition, when a longer sonication time is
applied (30 min), the CNT breakage effect is more prevalent, leading to a reduction of the
electrical conductivity, as observed in the S1 condition.
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Furthermore, when comparing the electrical conductivity measured in the 8GNP-
02CNT nanocomposite at S1 conditions with other studies dealing with only GNPs or
CNTs, a significant increase of this property is observed: from 10−3 S/m for 8 wt. % GNP
nanocomposites [52] and 0.1 S/m for 0.3 wt. % CNT nanocomposites [32] to 3 S/m reached
in this work. Therefore, a synergistic effect is observed under these conditions, indicating
that the distribution of both GNPs and CNTs makes possible the creation of a more efficient
electrical network.

3.3. Strain Monitoring Tests

Figure 5 summarizes the values of the gauge factor, calculated as the variation of the
normalized resistance divided by the applied strain at low strain levels (ε = 0.005), as a
function of the GNP content. Here, it can be noticed that the sensitivity is mainly dominated
by the content and the type of the nanofiller rather than the dispersion procedure.
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In this regard, it can be observed that, for the samples with 0.1 wt. % of CNTs, the
electrical sensitivity drastically decreases with the increasing GNP concentration from 5 to
8 wt. %. Therefore, it can be stated that, at these proportions of GNP to CNT, the GNPs
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seem to dominate the formation and stability of the electromechanical network. However,
when increasing the amount of CNTs to 0.2 wt. %, no significant differences are observed
in GNP content. Here, the proportion of CNTs to GNPs is higher, thus contributing in a
more prevalent way to the changes in the electrical behavior with applied strain.

Concerning the dispersion procedure, as commented before, no prevalent changes
were observed for the different sonication times applied. At lower GNP contents, it is
seen that increasing the sonication time of CNTs from 20 to 30 min (S2 to S1 condition)
induces a slight increase of the gauge factor. This can be explained by the previously
explained breakage effect of the CNT by the cavitation forces, which leads to a reduction
in the effective aspect ratio of the nanotubes, and thus to an increase in the percolation
threshold [35,53]. A higher percolation threshold promotes an increase in the interparticle
distance, leading to a more prevalent tunneling effect [22,25], and thus to a higher sensitivity,
according to J. G. Simmons’ formula to estimate the electrical transport due to tunneling
effect [54]:

Rtunnel =
h2t

Ae2
√

2mϕ
exp
(

4πt
h

√
2mΦ

)
(2)

where Rtunnel is the tunneling resistance; t is the interparticle distance or tunneling distance
between adjacent nanoparticles; h is Planck’s constant; m and e are the electron mass and
charge, respectively; A is the area in which electrical transport takes places or tunneling
area; and ϕ is the height barrier of the matrix.

At higher GNP contents, the opposite effect with sonication time is observed, with a
decrease in the gauge factor when increasing the sonication time from S2 to S1 conditions.
Here, as explained before, the cavitation forces are not so effective owing to the higher
viscosity of the mixture, so there is no prevalent breakage of the nanoparticle, and thus the
reduction of the effective aspect ratio is not remarkable.

The values of the GF for the best conditions (5GNP-01CNT) are considerably higher
than the sensitivities reported in other studies [32], where GF values were reported to be in
the range of 2–4. Moreover, these values are also significantly higher than conventional
metallic gauges, with GFs typically around 2 [55].

Furthermore, Figure 6 shows three examples of the electrical resistance variation with
applied strain. Here, it can be observed that there is a marked exponential correlation
between the changes in the electrical resistance and the applied strain. This behavior
has been explained in previous studies and it is more typical of GNP-based nanocompos-
ites [30,56]. It can be associated with the ways of interacting neighboring particles inside
the nanocomposite. They can be mainly in the form of both in-plane and out-of-plane
contacts [57], as observed in the schematics of Figure 7. When observing these interactions
among GNPs, it can be stated that the tunneling area between adjacent nanoplatelets is
significantly different from out-of-plane to in-plane contacts (Figure 7a). Therefore, the
tunneling resistance associated with out-of-plane and in-plane contacts changes in a very
different way.

In this context, at low strain levels, the tunneling resistance variation is mainly domi-
nated by out-of-plane contacts [30], which explains the lower gauge factor, as the out-of-
plane tunneling resistance is dominated by the Poisson effect. On the other hand, at high
strain levels, there is a predominance of in-plane contacts as the tunneling area due to
out-of-plane contacts is reduced, as shown in the schematics of Figure 7b, which explains
the higher variation of electrical resistance with applied strain.

However, in the case of CNTs, there is no significant different between the tunneling
areas of out-of-plane and in-plane contacts (Figure 7c), so the variations of the electrical
resistance with applied strain follow a much more linear behavior, as observed in previous
studies [26,32].
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In this regard, when comparing samples with a higher proportion of CNTs, such as
5GNP-0.2CNT, a more linear trend between the variation of electrical resistance and applied
strain is observed (Figure 6c). In these specimens, CNTs play a highly dominant role in
the formation of the electrical percolation network of the nanocomposite in comparison
with the samples with a higher GNP/CNT ratio, which show similar gauge factors to GNP
nanocomposites [30], as the prevalent electrical pathways are dominated by the role of
GNPs, as shown in the schematics of Figure 8. Therefore, the electromechanical curves
provide important information about the main mechanisms and interactions that take
place in these hybrid nanocomposites as well as the possible synergetic effects that can
be achieved.

4. Conclusions

Electromechanical properties of GNP/MWCNT-reinforced epoxy matrix nanocompos-
ites were evaluated using different sonication conditions for the nanoparticle dispersion in
the polymer.

It was observed that the electrical conductivity increases significantly with GNP con-
tent owing to their prevalence in the creation of conducting networks inside the nanocom-
posite. The sonication time has different effects depending on the content of each nanofiller.
At low GNP contents, there are no significant variations when increasing the sonication
time of CNTs. This is explained by the low viscosity of the media that makes the sonication
process more effective at low sonication times. However, at higher GNP contents, the
differences among the different sonication conditions are more prevalent. Here, the highest
electrical conductivities are achieved at higher CNT contents (0.2 wt. %) with larger sonica-
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tion times, owing to the higher viscosity of the media that makes the sonication process
more effective when the sonication stage is extended.

Strain monitoring capabilities were evaluated by means of electrical resistance mea-
surements during tensile tests. The highest sensitivities were achieved at low GNP/CNT
contents owing to the higher prevalence of tunneling mechanisms at contents around
percolation threshold. When analyzing in detail the electromechanical curves, it has been
observed that, at lower strain levels, there is a prevalence of out-of-plane contacts, whereas
at higher strain levels, in-plane mechanisms are the ones that dominate the electrical con-
ductivity variation. For nanocomposites with a high GNP/CNT ratio, there is a more
pronounced exponential behavior owing to the higher variation of electrical resistance
inside the GNP network with applied strain, as out-of-plane and in-plane contact areas are
quite different. However, for the samples with a higher proportion of CNTs, the electrical
response with applied strain is much more linear owing to the higher prevalence of CNTs
in their electromechanical response.

Furthermore, the high electrical conductivities achieved along with the good sensitiv-
ity make these materials very suitable for SHM and electrical applications.

However, it would be necessary to further explore other sonication parameters (i.e.,
amplitude or energy) to gain a deeper knowledge of the effect of the dispersion procedure
in the electrical network of the final nanocomposites. Alternatively, future work should
be addressed to develop an analytical model that could properly explain the interactions
between GNPs and CNTs based on the hypothesis presented in this study.
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