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Abstract: In this work, an analytical procedure for the preliminary design of shape memory alloy
spring-based actuators is investigated. Two static analytical models are considered and interconnected
in the frame of the proposed procedure. The first model, based on the works from An, is able to
determine the material properties of the SMA components by means of experimental test data and is
able to size the SMA component based on the requirements of the system. The second model, based
on a work from Spaggiari, helps to design and size an antagonist spring system that allows one to
obtain the geometric characteristics of springs (SMA and bias) and the mechanical characteristics
of the entire actuator. The combined use of these models allows one to define and size a complex
SMA actuator based on the actuation load requirements. To validate the design procedure, static
experimental tests have been performed with the entire SMA actuator.

Keywords: shape memory alloy; analytical models; SMA actuators; experimental analysis

1. Introduction

The use of shape memory alloys (SMAs) as smart materials is continuously increasing
due to their great application potential, in particular, in engineering fields related to civil
structures, mechanical assemblies, and aerospace components [1–3]. Moreover, additional
applications can be found in robotics as SMAs easily fulfill the requirement of smaller and
lighter components [4,5].

The most valuable capability of a shape memory alloy is to recover an initial configu-
ration after a deformation has occurred by applying a temperature variation. This effect
can be exploited to generate a useful stroke for a mechanical actuator. Indeed, SMAs have
been widely investigated and have been used in many applications, such as the actuation
of rigid joints, the fabrication of micropumps, moving robotic arms, moving wing trailing
edges, the actuation of separation devices for satellites, and the actuation of odontology
devices [6–9].

In general, to efficiently use SMA components, it is mandatory to understand the issues
related to the manufacturing and properties variation of shape memory alloys [10]. The
intrinsic capability of shape memory alloys them recover an initial geometric configuration
when induced by a characteristic phase transformation related to two crystal structures,
namely, martensite and austenite. The martensite phase is characterized by a monoclinic
structure with twin planes. The crystal lattice allows great displacement thanks to a
detwinning process originating from an applied load at the martensite finish transformation
temperature (Mf), which does not induce bond breakage. The deformation takes place
until it reaches a residual strain once the load has been removed. By heating the surface of
the SMA component up to the austenite finish transformation temperature (Af), the phase
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transition from martensite to austenite is obtained, and the crystal lattice is arranged in an
ordered orthorhombic structure. In this way, the SMA spring returns to its initial shape.
The effect which is able to trigger the actuation is called the shape memory effect (SME).
The transformation from austenite to martensite can be obtained by an applied load with a
temperature higher than Af. This effect is known as stress induced martensite (SIM) effect
and it induces stiffness variation from high values (characteristic of the austenite) to low
values (characteristic of the martensite) [11–13]. Several numerical and analytical models
able to describe SMA behavior can be found in the literature [14–16]. The Preisach hysteresis
model has been chosen by many researchers and engineers as an excellent modeling
approach to describe the behaviors of different shape memory alloys compositions [17–19].
In [20], a one-dimensional constitutive model of a SMA system was developed while taking
into account the material characteristics involved with the internal phase transformation.
The resistance characteristics of the SMA actuator during actuation were investigated in [21]
as a function of the resistivity, length, and cross-sectional area. Experimental data were used
to elucidate the mechanical and the electrical parameters of the specified SMA element.

In recent years, actuators based on shape memory alloy components have become
lighter and smaller, and their use in all industrial fields has increased [22–26]. Nevertheless,
especially in the aerospace field, experimental tests aimed at validating and certifying the
mechanical behaviors of SMAs are mandatory. Rey et al. [27] studied the response of a
SMA-based actuator for a variable area nozzle. The investigated device has been found
to be two times lighter than a conventional mechanical system, significantly reducing the
direct aircraft operating cost (~2–3%). Other applications and experimental results can be
found elsewhere [28–30].

Lu et al. [31] developed a novel design for a parallel gripper actuated by a large-stroke
shape memory alloy element. The use of multiple SMA wires characterized by connection
in series has resulted in a larger actuated strokes in lightweight and smaller volumes
for devices.

Indeed, all the previous cited works make us confident about the suitability of SMAs
as actuators in engineering applications. Hence, it is mandatory to develop more and
more sophisticated preliminary design tools able to effectively define the characteristics of
SMA-based actuators according to design requirements.

In this work, a preliminary design procedure is proposed to conceptualize and prop-
erly size SMA actuators that has been developed and applied to a real prototype actuator.
The procedure takes two different analytic models into account, namely, the An model [32]
and the Spaggiari model [33], in order to build an overall engineering frame to recursively
design a SMA actuator from an predefined shape memory spring. Indeed, exploiting the
An model, it is possible to determine the mechanical properties of spring materials via
simple tensile test data (micromechanics) which would be input to the Spaggiari model to
size the entire actuator and determine the optimal functional point once the geometrical
constraint of the physical dimensions of the actuator frame are fixed (macromechanics).

The procedure has been preliminary validated on a structure made of a SMA spring
(CuNiTi) and two antagonist bias standard steel springs. The following constraints, taken
from an adaptive aerodynamic automotive application, were assumed for designing the
final SMA-based actuator prototype: (a) 30 N biased compression force; (b) 6 mm actuation;
(c) a fixed actuator length of 68 mm; and (d) a final extra force of 85 N.

In Section 2, the theoretical background of the introduced analytical models is pre-
sented. Then, in Section 3, the results from the experimental tests used to evaluate the shape
memory alloy properties necessary for the adopted macromechanical model are shown,
while, in Section 4, the steps in designing the actuator, starting from the aforementioned
design requirements, are introduced. Finally, in Section 5, the reliability of the proposed
recursive procedure is assessed by comparing the data from the experimental tests on the
designed actuator.
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2. Theoretical Background

The proposed preliminary design procedure uses analytical models to derive the
mechanical behavior of a given bias and SMA springs for a SMA actuator and to size and
design the actuator. In particular, the An analytical model [32] has been implemented
for the evaluation of the mechanical properties of the spring components. In his work,
An developed a novel design model for a single SMA coil spring actuator, starting from
the formulae of the conventional coil spring design [32]. The mechanical behavior of the
actuator is described in two distinct phases (100% martensite and 100% austenite) when
following static modeling. Hence, deflection δ, force F, shear stress τ, and shear strain γ
can be related to the geometric parameters of the spring according to Equations (1)–(4):

δ =
πnDi
cos αi

(
sin α f − sin αi

)
(1)

F =

πd4G
8D2

i
cos2 αi

(
sin α f − sin αi

)
cos2 α f

(
cos2 α f +

sin2 α f
1+υ

) (2)
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F
(
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2

)(
d
2

)
πd4

32

=
8DF
πd3 =

8CF
πd2 (3)

γ =
1
C

cos2 αi

(
sin α f − sin αi

)
cos2 α f

(
cos2 α f +

sin2 α f
1+υ

) =
τ

G
(4)

where, according to Figure 1 (describing the geometrical characteristics of the tested
springs), n is the number of coils, D is the spring diameter, α is the pitch angle, d is the
wire diameter, G is the shear modulus, υ is the Poisson’s ratio, and C is the spring index
(D/d). Moreover, in Equations (1)–(4), the subscript “i” refers to the initial condition
(deflection = 0), while the subscript “f ” refers to the final condition (deflection = δ).
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Figure 1. Geometric parameters of the tested springs.

By using experimental data (introduced in the next section) with the tested springs
and Equations (1)–(4), the material properties of the tested bias and SMA springs have been
derived. Then, in order to size and design the entire actuator, the Spaggiari model [33] has
been used. Thanks to this model, in this paper, the characteristics of a SMA-based actuator,
composed of SMA and antagonistic bias elements (see Figure 2) have been obtained starting
from available SMA and bias springs. Hence, the device can be designed, according to
geometrical and forces constraints, by choosing the appropriate number of coils for a given
SMA spring. Of course, the Spaggiari model can be used in more general conditions where
more than one geometrical parameter of SMA the spring is unknown.
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Figure 2. SMA-based actuator schemes with different antagonistic elements: (a) constant load; (b) antagonistic traditional
spring; (c) antagonistic SMA spring.

In [33], for each actuator scheme described in Figure 2, a dissipative force and a
conservative force have been considered. The first force can be associated to the friction,
and it always acts in the opposite direction with respect to the velocity vector (the highest
value between static and dynamic friction forces is considered). The second force is
considered always acting on the actuator, such as gravity. As for the An model, the
Spaggiari model considers a static modelling of the actuator as well, taking into account
only the initial (martensite) and final (austenite) states. Hence, the four dimensionless
coefficients introduced in Equations (5)–(8) can be defined, which depend on the material
mechanical properties and on the forces carried out by the actuator:

s1 =
KSH
KSC

=
EA
EM

=
GA
GM

(5)

s2 =
KBias(min)

KSC
(6)

SF =
FF

KSC ∆xMax
(7)

S0 =
F0

KSC ∆xMax
(8)

where KSH and KSC are the stiffness of the SMA component in the hot and cold phases
respectively, E is the elastic modulus, KBias(min) is the minimum value assumed by the
stiffness of the bias spring, FF is the design dissipative force, ∆xMax is the maximum
deflection in the cold state, and F0 is the conservative force. Moreover, the subscripts “A”
and “M” refer, respectively, to the austenite and martensite phases.

Through the coefficients introduced in Equations (5)–(8), the force balance can be
imposed on both the cold (martensite) and hot (austenite) phases, aimed to derive the
stiffness, the pre-compression (or pre-stretch), the maximum deflection, and the geometric
characteristics of the actuator.

In this specific work, the actuator is described by scheme (b) in Figure 2. Due to the
design constraints, it is possible to simplify the previous analytical procedure.

A force balance has been performed on the hot phase of the SMA actuator in order to
correlate the stiffness of the SMA spring in the austenite phase (KA) to the exerted force
and stretching:

KBias (∆0 + ∆x) = KA p − FReq (9)

where, according to the free body diagram shown in Figure 3, KBias is the stiffness of the
bias spring (obtained through the previously performed experimental tests), ∆0 is the
compression of the bias spring with respect to its original shape considering the SMA
spring in its cold (martensite) phase, ∆x is the stroke of the actuator, p is the compression
of the SMA spring from its original shape to its hot (austenite) phase, and Freq is the force
required to be exerted by the actuator assuming the SMA component in hot phase (in this
work the required force is a prerequisite of the actuator design and it is equal to 85 N).
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The number of active coils of the SMA spring can be obtained from the SMA Spring
parameters by means of the following relationship:

n =
GAd

8KAC3 (10)

Indeed, Equation (10) describes the relationship between the force and the displace-
ment when assuming small deformation. Then, the preliminary length of the SMA spring
LSMA(1) can be evaluated as:

LSMA(1) = n (π D tan α + d) (11)

In Equation (11), the pitch angle of SMA spring α is assumed to be 4◦.
A second preliminary length, LSMA(2), has been computed by using a congruence equation:

LSMA(2) = p + LActuator − ∆t (12)

where Lactuator is the length of the actuator and ∆t is a thickness value, assumed equal to
2 mm. Finally, a parameter “S” is introduced, which defines the difference between LSMA(1)
and LSMA(2):

S = LSMA(1) − LSMA(2) (13)

An Excel optimization code has been used, changing the parameter “p” until “S”
reaches zero (Figure 4). Through these considerations, the preliminary design procedure of
the actuator can be considered completed since all geometric and mechanical characteristics
of the actuator have been obtained.
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3. Experimental Setup

The experimental phase has been conducted on two available components (steel
bias spring and SMA spring). Several compression tests have been performed to obtain
measurements of the stiffness, using an electro-mechanic UTM system (Lanos Test TT 2.5)
with a load cell of 250 N. The steel spring was tested with a rate of 12 mm/min (Figure 5).
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Once the force and displacement data had been obtained (Figure 6), the corresponding
stiffness value of the spring was derived. Then, the An model (Equations (1)–(4)) was used
to determine the shear stress–shear strain curve and, consequently, shear modulus GBias
(Figure 7). The results for the bias spring are summarized in Table 1.
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Figure 7. Shear stress–shear strain curve and corresponding shear modulus G.

Table 1. Mechanical and material properties of the bias spring.

Property Value Unit

KBias 0.4 N/mm
GBias 32.14 GPa
EBias 85.5 GPa

Subsequently, tests on the SMA spring have been performed considering different
temperatures in order to fully describe the behavior of the shape memory alloy (NiTiCu).

Since shape memory alloy mechanical behavior strongly depends on the temperature,
a differential scanning calorimetry (DSC) test has been preliminary performed. A SMA
specimen with the weight of 6 mg was tested through a ramp of temperature with a rate of
10 ◦C/min.

The heat flow monitored through temperature (Figure 8) allowed the definition of the
characteristic temperature values reported in Table 2.
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Table 2. Transformation temperature of the SMA specimen.

Phase Transformation Transformation Temperature Peak Temperature

From martensite to austenite
(heating)

As = 54.8 ◦C
Af = 108.0 ◦C 70.5 ◦C

From austenite to martensite
(cooling)

Ms = 65.3 ◦C
Mf = 29.8 ◦C 48.5 ◦C

According to the transformation temperatures reported in Table 2, two different test
temperatures have been defined. In particular, the spring in its martensite phase has been
tested at temperature TROOM equal to 25 ◦C, while the spring in its martensite phase has
been tested at temperature TA equal to 100 ◦C.

In order to define the complete behavior of the spring in its martensite phase, including
also the detwinning process, several traction tests have been performed (Figure 9) on a
martensite SMA spring whose geometrical characteristics have been taken into account in
the analytical model.
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No traction hook was placed on SMA springs. Hence, to perform the tensile tests,
it was necessary to design a locking system for the spring. A conical nylon cylinder was
developed to be placed inside the spring. With the use of a screw, the diameter of the
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cone has been increased in order to produce friction on the internal surface of the spring.
To avoid an increase in the spring diameter (D), a steel cylinder has been placed on the
external surface of the spring in order to complete the fastening. Finally, the system has
been connected to the load cell and the UTM (Figure 10). The results of the tensile tests
are reported in Figure 11. Although the initial elastic region is likely repeatable, the curves
reveal differences within at intermediate displacement due to unrecovered stretching.
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Similar to what has been done for the bias spring, the An model (Equations (1)–(4))
has been used to derive the shear modulus GM from the normal force as a function of
the axial displacement (Figure 12). The mechanical properties of the SMA spring in its
martensite phase are summarized in Table 3.
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Table 3. Specific material values for martensite.

Property Value Unit

KM 1.3 N/mm
GM 19.5 GPa
EM 51.6 GPa
τcr

Ms 35 MPa
τcr

M f 79 MPa
γL 0.0128 -
ν 0.33 -

In order to test the SMA spring in its austenite phase, a heating system consisting of
an electric resistance band has been used (Figure 13) to keep the surface temperature of
the spring at a constant temperature of about 100 ◦C. The results of the tests are shown in
Figures 14 and 15 and summarized in Table 4.
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Figure 15. Material properties of austenite.

Table 4. Specific material values for austenite.

Property Value Unit

KA 2.8 N/mm
GA 43.6 GPa
EA 115.9 GPa
τcr

A 330 MPa
ν 0.33 -

The surface temperature has been monitored with three type “K” thermocouples. A
number of compression tests have been executed with an austenite SMA spring whose
geometrical characteristics have been taken into account in the analytical model.

4. Application of the Procedure to the Design of the Test Case Actuator

The analytical procedure implemented in this work has been used, together with the
experimental data introduced in the previous section, to design a SMA actuator based on
available bias and SMA springs and is based on specific design requirements derived for
an application to adaptive aerodynamics in automotive. The actuator has been considered
to be composed of a single SMA spring (whose number of coils has to be determined) and
two bias springs, as shown in Figure 16. The length of the actuator is a prerequisite and
was considered fixed here. The springs have been placed in the actuator in a compressed
position with respect to their original shape.
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Figure 16. Geometrical arrangement and description of the investigated actuator (dimensions in mm).

The two bias springs have been considered as a single equivalent steel spring, which
must exert a pre-compression force on the SMA component equal to 30 N (according to
design requirements).

The actuator has been drafted (including the fixed design requirements) in its two
distinct martensite 100% and austenite 100% phases, as reported in Figure 17.
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The design procedure has been carried out within the analytical framework de-
scribed in the previous sections. The mechanical characteristics of the bias spring
(KBiasequivalent = 2 KBias = 0.8), obtained from experimental tests, have been used as an input
in Equation (9) while assuming the requirement force of 85 N. The compression produced
by pre-compression force of 30 N led to:

• ∆0 = 30
0.8 = 37.5 mm

• ∆x = 6 mm (actuator stroke)

A trivial initial value has been assigned to the “p” parameter, so that the analytic
procedure can be initialized and the austenite stiffness KA has been obtained. Considering
the material properties (GA), Equation (10) was used to determine the number of active
coils (n) of the SMA spring by assuming the following values for the SMA spring and for
the wire:

• d = 2.5 mm
• D = 16.25 mm
• C = D

d = 6.5

Moreover, with the assumption of αSMA = 4◦, the length of the spring was determined
by using Equation (11). The parameter LSMA(2) is calculated by means of the congruence
Equation (12) and, the parameter “S” was initialized.
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The results of the analytical process, iterated until the parameter “S” is equal to zero as
described in Section 2, are summarized in Tables 5 and 6. The “Cold” and “Hot” subscripts
describe the two different configurations of the SMA spring shown in Figure 17.

Table 5. Simulated results for the SMA spring.

Property Value Unit

p 40.36 mm
GA 2.83 N/mm
n 18 -

LSMA 106.2 mm
LSMA,Hot 64 mm

LSMA,Cold = LSMA,Hot − ∆x 58 mm

Table 6. Mechanical and geometrical values assumed for the design of the bias spring.

Property Value Unit

KBias,equivalent 0.8 N/mm
LBias 85 mm

LBias,Hot 41.5 mm
LBias,Cold 47.5 mm

5. Results and Experimental Validation on the SMA Actuator

On the basis of the results obtained from the analytical procedure, a SMA actuator
consisting of one SMA spring, whose geometrical and mechanical properties are reported
in Table 5, and two bias springs (Table 6) has been designed. In this section, the testing of
designed actuator is introduced. In Table 7, the geometric characteristics of the bias and
the SMA spring derived from the analytical procedure and the one actually manufactured
(due to specific manufacturing constraints) and tested are compared.

Table 7. Comparison between the geometric characteristics of bias and SMA spring obtained from
the analytical procedure and experimentally tested.

Property Analytical Procedure Experimental Test Unit

nSMA 18 18 -
LSMA 106.2 104 ± 1 mm

LSMA,Hot 64 65 ± 1 mm
LSMA,Cold 58 59 ± 1 mm
LBias,Hot 41.5 41 ± 1 mm
LBias,Cold 47.5 47 ± 1 mm

Static tests have been carried out by using the UTM (Lenos Test) with a 250 N load cell
to detect the maximum force exerted by the SMA spring. A locking system has been used
to keep in position the actuator, in order to perform the tests in the hot and cold conditions.
To achieve the austenite 100% state, a trivial heating system able to keep the temperature in
the range 90 ◦C–110 ◦C has been used. Actually, two tests (TEST 1 and TEST 2) have been
carried out, respectively at 90 ◦C and 110 ◦C. Moreover, forced cooling and heating cycles
(Figure 18) have been carried out in order to detect the force peaks of the SMA spring when
temperature reaches the minimum value of about 40 ◦C.
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The results of test 1, shown in Figure 19, highlight that the maximum temperature
peak achieved of 90 ± 5 ◦C corresponds to a force exerted by the SMA spring of about
80 ± 5 N. This is representative that for this temperature, the martensite to austenite
transformation has been not extended to the entire SMA spring volume.
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Test 2 (Figure 20) was carried out with a temperature peak of 110 ± 5 ◦C. The increase
in temperature led to a higher austenite volumetric coefficient. Hence, experimental tests
returned, as a result, a maximum load of 90 ± 5 N, which is very close to the designed
loading conditions. These experimental results highlight an issue in the design proce-
dure. As known, martensite to austenite transformation is a gradual process taking place
within a significant temperature range. This consideration suggests taking into account
the volumetric fraction of the transformed austenite in the design process in order to
provide a more realistic mechanical prediction representative of the real loads exerted at
operative temperatures.
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6. Conclusions

In this work, a preliminary design procedure for the definition and sizing of SMA
actuators has been introduced. Two analytical static models have been identified and inte-
grated in the preliminary design procedure. Indeed, by using the An model, the material
properties of SMA and bias springs can be derived. Then, the Spaggiari model has been
used to design the actuator, composed of an antagonist SMA and bias springs while taking
into account design constraints and providing the definition of one or more geometri-
cal parameters of the SMA spring. These analytical models, combined in the proposed
procedure, have been used to design a SMA actuator with specific design requirements
that is capable of exerting a maximum force of 85 N. In order to design and validate the
developed procedure, a number of experimental tests have been performed. In particular,
tests on the spring elements (bias and SMA) have been performed to obtain the material
properties needed for the application of the proposed design procedure. Finally, additional
tests have been carried out on the entire actuator system in order to confirm the actuation
specifications and preliminary validate the proposed procedure.

This experimental study has demonstrated that the investigated SMA actuator, de-
signed on the basis of the geometric characteristics resulting from the proposed procedure,
is able to exerts the desired force by heating the surface of the spring up to a tempera-
ture equal to 90 ◦C. Upon cooling, 6 mm of actuation can take place due to a preload on
the bias springs as required. The application of the proposed design procedure can be
of relevance to increase the use of shape memory alloys for actuator applications allow-
ing to design lighter actuator systems if compared to the traditional hydraulic and/or
electromechanical actuators.
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