
sensors

Article

Fault Diagnosis Method for Rolling Mill Multi Row Bearings
Based on AMVMD-MC1DCNN under Unbalanced Dataset

Chen Zhao, Jianliang Sun *, Shuilin Lin and Yan Peng

����������
�������

Citation: Zhao, C.; Sun, J.; Lin, S.;

Peng, Y. Fault Diagnosis Method for

Rolling Mill Multi Row Bearings

Based on AMVMD-MC1DCNN

under Unbalanced Dataset. Sensors

2021, 21, 5494. https://doi.org/

10.3390/s21165494

Academic Editor: Ruqiang Yan

Received: 4 July 2021

Accepted: 11 August 2021

Published: 15 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

National Cold Rolling Strip Equipment and Process Engineering Technology Research Center,
Yanshan University, Qinhuangdao 066000, China; zhaochen136@stumail.ysu.edu.cn (C.Z.);
lslin@stumail.ysu.edu.cn (S.L.); pengyan@ysu.edu.cn (Y.P.)
* Correspondence: sunjianliang@ysu.edu.cn; Tel.: +86-137-2255-0756

Abstract: Rolling mill multi-row bearings are subjected to axial loads, which cause damage of rolling
elements and cages, so the axial vibration signal contains rich fault character information. The vertical
shock caused by the failure is weakened because multiple rows of bearings are subjected to radial
forces together. Considering the special characters of rolling mill bearing vibration signals, a fault
diagnosis method combining Adaptive Multivariate Variational Mode Decomposition (AMVMD) and
Multi-channel One-dimensional Convolution Neural Network (MC1DCNN) is proposed to improve
the diagnosis accuracy. Additionally, Deep Convolutional Generative Adversarial Network (DCGAN)
is embedded in models to solve the problem of fault data scarcity. DCGAN is used to generate
AMVMD reconstruction data to supplement the unbalanced dataset, and the MC1DCNN model is
trained by the dataset to diagnose the real data. The proposed method is compared with a variety of
diagnostic models, and the experimental results show that the method can effectively improve the
diagnosis accuracy of rolling mill multi-row bearing under unbalanced dataset conditions. It is an
important guide to the current problem of insufficient data and low diagnosis accuracy faced in the
fault diagnosis of multi-row bearings such as rolling mills.

Keywords: Adaptive Multivariate Variational Mode Decomposition; Multi-channel One-Dimensional
Convolutional Neural Network; deep convolutional generation adversarial network; unbalanced
dataset fault diagnosis; rolling mill multi-row bearings

1. Introduction

Rolling mill multi-row bearings are the core of the main drive system of the rolling
mill, which support the rolling mill roll system and withstand huge radial forces. Under
the working conditions, the rolls have axial displacement and roll bending phenomenon,
the bearing can absorb the harmful bending moment and axial force. Therefore, the cage
and rolling body are the main failure parts of the rolling mill multi-row bearing. Accord-
ing to statistics, 30% of rotating machinery failures are caused by bearings, and their
operating conditions directly affect system performance [1,2]. If the multi-row bearings
of large machinery such as the rolling mill are damaged, it can lead to long downtime,
and extremely high repair costs and serious economic losses. Therefore, it is necessary to
carry out the diagnosis of bearing faults in large machinery and equipment such as rolling
mills. Due to the harsh factory conditions and noise interference, the vibration signal has
nonlinear and non-stationary characters [3]. Therefore, conventional time domain wave-
form and frequency domain feature fault analysis methods have limitations in bearing
fault diagnosis [4].

The time-frequency analysis method has better results in dealing with nonlinear and
non-stationary signals, which has been widely used in fault diagnosis. The following
methods are commonly used: Empirical Mode Decomposition (EMD) [5], Local Mean
Decomposition (LMD) [6], Empirical Wavelet Transform (EWT) [7], Variational Mode De-
composition (VMD) [8], etc. Among them, VMD changes the previous signal processing
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and decomposes the signal according to the center frequency, which makes the charac-
ters of Intrinsic Mode Function (IMF) much more controllable. In [9], Li compared the
effectiveness of VMD and EMD in processing vibration signals, which proved that VMD
outperforms EMD and can effectively overcome the problem of modal mixing. In [10],
Aneesh considered the classification of power quality disturbances based on VMD and EWT,
and classification results indicated that VMD outperformed EWT for feature extraction.
However, the above algorithms have limitations in processing multidimensional signals,
so in [11], Rehman proposed Multivariate Empirical Mode Decomposition (MEMD). Based
on the idea of MEMD, in [12], Aftab and Rehman extended VMD to multidimensional and
proposed Multivariate Variational Mode Decomposition (MVMD), which effectively solves
the problem of synchronous processing of multivariate data. The literature [13] showed
that the effect of VMD decomposition was greatly influenced by the parameters K and
α, and it cannot achieve adaptive decomposition of the signal in a real sense. Therefore,
MVMD as an extension of VMD also has a parameter optimization problem. Although
the multiple signal input activates the noise reduction capability of the Wiener filter and
reduces the effect of the number of IMF K on the decomposition effect [14], the iterative
optimization-seeking process of MVMD converges too slowly, and the decomposition effect
is still affected by the penalty factor α.

In view of the superior performance of mode decomposition, scholars have combined
it with pattern recognition methods to become the mainstream fault diagnosis method.
In [15], Isham used VMD to reconstruct wind turbine gearbox vibration signals and ex-
tracted multi-domain features that were passed to an Extreme Value Learning Machine
(ELM) for fault classification. The ELM requires fewer samples for training and has a
fast speed on diagnosis, but the relative stability of the model is weaker [16]. In [17], Gu
used MVMD to decompose diesel multi-sensor signals for processing, but still needed
to use band entropy for feature extraction in the process of combining Support Vector
Machines (SVM). However, the kernel function selection of SVM has a large impact on
the classification, and the classification effect is significantly affected by the fault samples.
Therefore, SVM often needs to be combined with optimization algorithms, which increases
the tediousness of the model [18]. Because conventional classifiers such as ELM and SVM
need to be combined with feature extraction methods, the fault diagnosis method deviates
from the general trend of end-to-end (signal-to-fault) diagnosis.

Convolutional Neural Networks (CNNs) have had significant achievements in the
field of image recognition and have become a research hotspot in deep learning [19]. CNN
has the function of automatic feature extraction and pattern recognition, which can realize
the fault identification of equipment by inputting vibration signal. Therefore, CNN is
widely used in end-to-end fault diagnosis. There are two main modes of application of
CNN in fault diagnosis. On the one hand, the vibration data is transformed into a two-
dimensional data matrix for identification. In [20], Chen transformed a certain length
of one-dimensional vibration signal into a two-dimensional matrix and used CNN for
fault identification. In [21], Xu used the IMF component signal of VMD as the input
of CNN and achieved good results in the fault diagnosis of wind turbine bearings. On
the other hand, vibration data can be transformed into image formats such as grayscale
images, frequency domain maps and speech spectrum maps for recognition. In [22], Zhu
transformed the signal by short-time Fourier transform into a frequency domain map
for fault diagnosis by CNN. In [23], Zhao transformed the one-dimensional vibration
signal into a two-dimensional grayscale image and achieved diagnostic classification of
faults by CNN. However, the vibration signal is a one-dimensional time series signal,
and the data at each moment have a certain correlation. Converting one-dimensional
data into two-dimensional arrays and performing feature extraction by convolutional
kernels can break the spatial correlation of signals, resulting in the loss of fault character
information. Therefore, scholars have proposed One-Dimensional Convolutional Neural
Network (1DCNN) for the special characteristics of one-dimensional time series. In [24],
Levent directly input the raw vibration signal of the bearing into 1DCNN to achieve
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rapid diagnosis of bearing faults. In [25], Wu used 1DCNN for the fault diagnosis study
of gearboxes, which reflected the strong feature extraction and recognition classification
ability of 1DCNN. One-dimensional convolution solves the problem of time series feature
loss, but also makes CNN lose the ability to handle high-dimensional data; the analysis
of a single-channel signal cannot fully explore the fault character information of the large
equipment. Moreover, the actual signal of the engineering contains a large number of
invalid character components and noise, which greatly reduces the feature extraction ability
of 1DCNN.

The powerful classification ability of CNN also requires a large amount of data for
training. However, in order to ensure production safety, fault equipment needs to be shut
down in time, which makes it difficult to obtain a large amount of fault data, and the model
is poorly trained. In [26,27], GAN and its variants had been shown to generate audio data
and EEG signal which showed their potential to generate time-series data. In [28], Liu
applied Generating Adversarial Network (GAN) to deep feature enhancement of bearing
data and demonstrated that GAN can overcome the problems of insufficient fault data
and unbalanced dataset, and GAN can improve the model training effect to improve the
diagnosis accuracy. However, the basic GAN model suffers from gradient disappearance,
pattern collapse, poorer results generated by the generator, and growth in the training
time of the model [29]. In [30], Radford built the GAN layer structure by convolution and
deconvolution to form the DCGAN algorithm, which greatly improves the performance
of GAN. In [31,32], Guo and Gao both used 1DCNN to construct the layer structure of
GAN and achieved better results in bearing fault diagnosis under the condition of an
unbalanced dataset. Although DCGAN largely solves the problems of poor generation
results and the long training time of GAN, the presence of large noise interference in the
original signal and invalid feature information still leads to the limitations of DCGAN in
dataset enhancement.

Based on the existing work, we considered the unique fault characteristic distribution
of axial and vertical vibration signals of multi-row rolling bearings in rolling mill and
the problem of an unbalanced dataset in practical applications, so we introduced a multi-
channel signal fault diagnosis method of unbalanced datasets to the field of similar bearing
fault diagnosis. In this paper, MVMD is used to process multi-channel signals, but the effect
of both VMD and MVMD is greatly influenced by the parameters K and α [17,33]. Therefore,
we proposed an Adaptive Multivariate Variational Mode Decomposition (AMVMD) signal
processing method. Using the mean of Weighted Permutation Entropy (WPE) as the
fitness factor, we used the Genetic Algorithm (GA) to implement the optimal selection
of parameters K and α and introduced an iterative operator to accelerate the iterative
merit seeking of MVMD. Because of the limitations of 1CDNN in processing multi-channel
signals, we proposed Multi-channel One-Dimensional Convolutional Neural Network
(MC1DCNN) by introducing the multichannel convolutional fusion layer at 1DCNN,
which makes up for the shortcomings of 1DCNN in multi-channel signal processing. In
order to reduce the effect of noise on the feature extraction ability of MC1DCNN, AMVMD
was combined with MC1DCNN and applied to multi-channel signal fault diagnosis of
rolling mill multi-row bearings. Considering the problem that fault data is difficult to
obtain and the networks could not achieve good diagnostic accuracy under the condition of
unbalanced dataset [34], a Deep Convolutional Generative Adversarial Network (DCGAN)
was embedded in the model training process. Additionally, thanks to the excellent signal
processing effect of AMVMD, it can effectively reduce the invalid feature information
and noise interference in the signal and improve the dataset enhancement capability
of DCGAN. Finally, we realized the construction of a fault diagnosis model under an
unbalanced dataset.

The rest of the paper is organized as follows: Section 2 describes the optimization
algorithm (GA and Iterative acceleration operator) and optimization process of AMVMD
proposed in this paper and describes the theory and network structure of DCGAN. In
Section 3, the simulated signal is used for analysis in order to better represent the data
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enhancement effect of the method in Section 2. Section 4 describes the theory of MC1DCNN,
combines it with AMVMD and embeds the DCGAN module in the model to form a fault
diagnosis model under an unbalanced dataset. Section 5 applies the model of this paper
to the fault diagnosis of the rolling mill fault simulation test bench and gets good results.
Additionally, we compare this model with the approximate model and existing models to
prove the advantage of this model. Finally, the conclusion is drawn in Section 6.

2. AMVMD Signal Processing and Unbalanced Data Generation
2.1. Iterative Acceleration of MVMD

The MVMD algorithm has been recently proposed to solve the problem of cooperative
decomposition of multi-channel data and to solve the problem that VMD can only handle
single-channel signal. The multi-channel signal can excite the noise reduction ability of the
Wiener filter and improve the signal processing effect of MVMD. MVMD converts the IMF
component of the multi-channel signal into a set of AM-FM signals as u(t):

u(t) = uc(t) = ac(t) cos(φc(t)) (1)

where ac(t) is the amplitude of the c-th component and ϕc(t) is the phase of the
c-th component.

Taking the square of the L2 parametric of the mixed signal to find the u(t) bandwidth,
and then the constrained variational optimization of the u(t) bandwidth of the multi-
channel signal is performed. It is required to minimize the bandwidth sum of the individual
components separated in the c signals, while ensuring the accuracy of each classification,
modeled as follows. 

min
{uK,c}{ωk}

{
∑
K

∑
c
‖∂t[uK,c

+ (t)e−jωK t]‖2

2

}
,

∑
K

uK,c(t) = xc(t), c = 1, 2, 3, · · · , c
(2)

where K is the number of IMF, c is the number of channels of the input signal, and ωk is the
center frequency of each mode.

The constrained variational model is constructed by using the Lagrange multiplier
method and is transformed into an unconstrained variational problem by introducing the
penalty factor α with the Lagrange multiplier λ(t). Construct the Lagrange function model
as follows:

L({uK,c}, {ωK}, λc) = α∑
K

∑
c
‖∂t[uK,c

+ (t)e−jωK t]‖

+∑
c
‖xc(t)−∑

K
uK,c(t)‖2

2
+ ∑

c

〈
λc(t), xc(t)−∑

K
uK,c(t)

〉 (3)

The alternating direction multiplier method is used to transform the optimization
problem into a suboptimization problem, and the optimal mode and center frequency of
the multivariate signal are obtained by iteratively updating the subproblem.

In this paper, to address the problem of the slow iterative search speed of MVMD, an
iterative operator is introduced to accelerate the solution process, and the specific iterative
process is as follows.

(1) Initialize
{

û1
K,c

}
,
{

ω1
K
}

,λ̂1
c , set n = 0, ε= 10−7.

(2) Set n = n + 1, and execute a loop to update
{

ûn+1
K,c

}
,
{

ωn+1
K

}
and λ̂n+1

c until iterative
precision is reached.

ûn+1
K,c (ω) =

x̂c −∑i 6=K ûi,c(ω) + λ̂c(ω)
2

1 + 2α(ω−ωK)
2 (4)
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ωn+1
K =

∑
c

∫ ∞
0 ω|ûK,c(ω)|2dω

∑
c

∫ ∞
0 |ûK,c(ω)|2dω

(5)

Update λ̂n+1
c for all ω > 0

tn+1 = (1 +
√

1 + 4tn2)/2 (6)

λ̂n+1
c (ω) = λ̂n

c (ω) + τ(x̂c(ω)−∑
K

ûn+1
K,c (ω)) (7)

λ̂n+1(ω) = λ̂n+1(ω) + (
tn − 1
tn+1

)[λ̂n+1(ω)− λ̂n(ω)] (8)

(3) Stop the iteration when the iteration accuracy is satisfied and output the set of modes
uK and the center frequency ωK.

∑
K

∑
c

‖ûn+1
K,c − ûn

K,c‖
2
2

‖ûn
K,c‖

2
2

< ε (9)

2.2. Parameter Optimization Based on GA

GA is able to search for the optimal solution in a complex space. The WPE can reflect
the randomness and complexity of the time series, and the smaller WPE proves that the
signal is more regular and contains more information of fault characteristics. Calculate the
average WPE of multi-channel IMF to evaluate the decomposition effect and use it as the
fitness function of GA. The parameters to be optimally selected are K and α. Therefore,
each chromosome of GA is coded as {Xi: K, α}. So, the fitness of GA is calculated as follows.

F = min(
1
K

K

∑
i

WPE(IMFi, m, τ)) (10)

where m is the embedding dimension, which is set to 4; τ is the delay time, which is set to
1; and K is the number of IMFs.

Individuals with better fitness are selected as parents of the next generation, and
X1 and X2 are randomly selected from these chromosomes for crossover to obtain new
offspring X′1 and X′2.

X′1 = λX1 + (1− λ)X2
X′2 = λX2 + (1− λ)X1

(11)

where λ is the crossover factor, λ∈[0,1].
Select a chromosome X randomly and select a gene i from chromosome X, then mutate

gene i to obtain its mutation value U (imin, imax). The optimal combination of parameters
[Kbest, αbest] is finally obtained after the optimization iteration of GA.

2.3. Unbalanced Data Generation Based on DCGAN

GAN is proposed inspired by game theory and consists of a generator G and a
discriminator D. Through training, the generator keeps learning and the discriminator
keeps becoming optimized [35]. Input random noise z into G for data generation, and the
model expects the generated data G(z) to be discriminated as true by D, i.e., D(G(z)) = 1.
For the discriminator D, it is expected that when the input is G(z), D discriminates it as
false, i.e., as D(G(z)) = 0. That is, for the problem of minimizing G and maximizing D, the
discriminator and generator model loss functions are shown in (12) and (13).

max
D

V(D, G) = Ex−Pdata(x)
[log(D(x))] + Ez−Pg(z)[log(1− D(G(z)))] (12)
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min
G

V(D, G) = Ez−Pg(z)[log(1− D(G(z)))] (13)

Through adversarial learning, the functions of G and D are continuously improved,
and the final mathematical model is as follows.

min
G

max
D

V(D, G) = Ex−Pdata(x)[log D(x)] + Ez−Pg(z)[log(1− D(G(z)))] (14)

where x is the real sample; Pdata is the distribution of real data; and Pg is the distribution
of noise.

Radford proposed a DCGAN algorithm, which greatly improves the performance
of GAN [30]. Additionally, in [36], Mirza restricted the generation process by inputting
conditional variables to solve the problem that the training process is unstable with the
generation results and the generated samples differ from the generation target, which
in turn guides the generation of the desired samples. In this paper, DCGAN is used to
generate the AMVMD reconstructed signal, and the generator mainly consists of four
deconvolutional layers and the discriminator mainly consists of four convolutional layers,
as shown in Figure 1. The reconstructed signal removes the invalid features and retains
the faulty features, which can reduce the generation of invalid features by DCGAN and
improve the ability of DCGAN to generate virtual samples.
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3. Analysis of Simulated Signals
3.1. Construction of Simulation Signal

The rolling mill multi-row rolling bearing vibration signal is a non-linear, non-stationary
modulated signal; according to the actual working conditions, we set the amplitude modu-
lation signal (x1), frequency modulation signal (x2), and harmonic signal (x3) to simulate
vibration signal. Each frequency of the simulated signals are as follows: f 1 = 80 Hz,
f 2 = 30 Hz, f 3 = 200 Hz, f 4 = 50 Hz, f 5 = 300 Hz, and the main characteristic frequencies are
f 1, f 3 and f 5. 

x1 = cos(2π f1t)[1 + sin(2π f2t)]
x2 = sin[2π f3t + cos(2π f4t)]
x3 = sin(2π f5t)

(15)
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In the actual signal acquisition, due to the complex transmission path and noise
interference, the sensor acquisition vibration signal is different, so we simulate each channel
signal with different weighting ratios for the three simulated signals as follows.

s1 = 0.45x1 + 0.85x2 + 0.62x3 + n1
s2 = 0.85x1 + 0.7x2 + 0.35x3 + n2
s3 = 0.6x1 + 0.4x2 + 0.9x3 + n3

(16)

where n1, n2, n3 and are 25 db, 18 db and 13 db noise signals, respectively.
The time domain waveforms and frequency domain character of the three-channel

simulated signal are shown in Figure 2.
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3.2. Algorithm Performance Comparison

We use MEMD, MVMD and AMVMD to decompose the simulated signal, set the
number of modes K of MVMD to 4 and the penalty factor α to 2000, and set the K and α

of AMVMD to 4 and 2434 after optimization by GA, respectively. The time required for
MVMD and AMVMD to process signals of different lengths was calculated 10 times and
averaged, and the results are shown in Table 1. The operating environment is Windows 10,
the CPU is Intel i7-9750H (2.60 GHz), and the RAM is 16 GB. The AMVMD computation
time is significantly reduced after the introduction of the iterative operator.

Table 1. Comparison of operation time.

Length of Signal Computation Time of MVMD(s) Calculation Time of AMVMD (s)

2000 0.737 0.506
4000 3.345 2.001
6000 8.185 5.020
8000 11.887 7.241

10,000 15.817 9.642
12,000 22.567 14.037
14,000 30.682 19.367
16,000 41.052 26.477

Fourteen groups of IMFs are obtained by MEMD, and we only take the first five
groups of IMFs for frequency domain analysis, as shown in Figure 3a, the MVMD decom-
position results as shown in Figure 3b, and the AMVMD decomposition results as shown
in Figure 3c. It can be seen from Figure 3 that all three algorithms adaptively decompose
the multivariate simulation signal to obtain the IMF component of the response principal
frequency. However, some of the same frequency components are reflected in different
IMFs, i.e., the phenomenon of mode mixing appears. The most serious modal mixing is
found in the IMFs of MEMD, where IMF3 has a primary frequency of 150 Hz (f 3 − f 4)
and IMF5 has a primary frequency of 50 Hz (f 2 − f 1); both frequencies are the sideband
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frequencies of the primary frequency peak of the original signal. Additionally, there are
more cluttered noise frequencies in the IMFs of MEMD, while the IMFs of MVMD and
AMVMD are basically free of noise frequencies.

In Figure 3b,c, the IMFs are well decomposed according to the major center frequencies,
and the corresponding side bands appear on both sides of the major center frequencies,
and the side band frequencies in IMF1 are 50 Hz and 110 Hz (f 1 ± f 2), and the side
band frequencies in IMF2 are 150 Hz and 250 Hz (f 3 ± f 4), and there is basically no main
frequency peak in IMF4, and the signal is well decomposed. However, a left side band
frequency of 250 Hz (f 3 + f 4) appears in IMF3, and the overall peak of the side band
frequency of the modal mixing in IMF3 of AMVMD is reduced compared to that of MVMD.
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3.3. Generation of Simulation Data

We use DCGAN to generate the IMFs of the simulated signal; the training set is the
IMF1–IMF3 of the three-channel simulated signal, and the sample length is set to 1024.
The time-domain waveform comparison and frequency-domain character comparison
of the generated signal and the real signal for each channel are shown in Figure 4. The
generated signal well simulates the time-domain waveform characters and frequency-
domain characters of the real signal, which can realize the supplement of scarce data.
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4. Fault Diagnosis Model Based on AMVMD-MC1DCNN
4.1. One-Dimension Convolutional Neural Network

CNN was originally applied to image recognition techniques [37]. The local connec-
tivity, weight sharing, and down-sampling character of CNN make the network structure
massively reduced, and CNN can make full use of the local features of the data itself and
thus improve the computational efficiency. The structure of CNN includes convolutional
layers, a pooling layer, a fully connected layer and an output layer [38]. The main difference
between 1DCNN and CNN is that the input dimension of the character is one-dimensional,
so 1DCNN consists of one-dimensional convolutional layers, one-dimensional pooling
layers, a fully connected layer and a Softmax classifier, and the structure of 1DCNN is
shown in Figure 5.
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Assuming that a one-dimensional signal xi is the output of layer i, its convolution is
computed in the following way.

xl
j = f ( ∑

i∈Nj

xl−1
i ∗ wl

ij + bl
j) (17)

where Nj is the j-th convolutional region of the l-1st layer; xl
j is the j-th input to the

convolution of l layer; w is the weight matrix (convolution kernel); b is the bias of the
convolution layer; f is the nonlinear activation function.

The one-dimensional pooling layer, also known as the down-sampling layer, reduces
the dimensionality of the convolutional features and reduces the computational effort of
the classifier. The maximum pooling process is usually chosen to ensure the invariance of
feature scales and reduce the size of the input data.

xl
j = f (down(xl−1

j + bl
j)) (18)

where down() is sampling function.
The fully connected layer can rearrange the characters extracted from the previous

convolutional layers and pooling layers into a column, and the Dropout function is usually
added to suppress overfitting and improve generalization ability of CNN.

δi = f (wi pi + bi) (19)

where i = 1, 2, · · · , k, δi is the i-th output, and k in total.
The most commonly used classifier for CNN is the supervised learning Softmax

classifier. Additionally, the network is optimally trained using the Adam optimization
algorithm, which in turn accomplishes the multi-classification task. The output of Softmax
can be viewed as a probability problem.

p(i) =
eδi

K
∑

k=1
eδk

(20)

where p(i) is the probability of each output, the sum of p(i) is 1, and K is the number
of categories.

4.2. Multi-Channel One-Dimension Convolutional Neural Network

In this paper, a multi-channel one-dimensional convolutional fusion layer is added to
1DCNN, as shown in Figure 6. M1DCNN can be used for multi-channel signal processing,
which can synthetically consider multiple directional vibration signals for fault diagnosis
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analysis, and AMVMD reconstructed signal can further reduce noise interference and
highlight fault characters by multi-channel one-dimensional convolution processing.
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When the input to the convolution layer is a multi-channel signal, a multi-channel
convolution kernel is used for the operation, and a one-dimensional convolution operation
is performed in each channel individually. In order to add the correlation of the respective
channels, we need to compute the weighted summation of each channel at the same
position to obtain the 1D convolutional output at that position.

xl =
m

∑
j=1

f j(
k

∑
i=1

(xl−1
ij × wl−1

ij ) + bl−1
ij ) (21)

where xl is the output of the l-th convolutional layer; xl−1
ij is the i-th character input of the

l-1st convolutional layer of channel j, with k character inputs; wl−1
ij is the i-th convolutional

kernel of the l-1st layer of channel j; bl−1
ij is the ith bias value of the l-1st layer of channel j; f

is the nonlinear activation function; m is the number of channels.
The multi-channel one-dimensional convolutional fusion layer can effectively realize

the fusion and character extraction of multi-channel signals. The pooling layer of M1DCNN
also uses maximum pooling, followed by a fully connected layer and a Softmax classifier.

4.3. Fault Diagnosis Model

The fault diagnosis model based on AMVMD-M1DCNN proposed in this paper
is shown in Figure 7, which consists of a multichannel input layer, multivariate mode
variational reconstruction, conditional deep convolutional generation adversarial network,
1D convolutional, 1D pooling, and fully connected and Softmax classifiers.

Considering the rich fault information in the axial vibration signal of the rolling mill
multi-row bearings, and the low signal-to-noise ratio of the vertical vibration signals, the
axial and vertical vibration signals are input into the fault diagnosis model simultaneously.
The input signal is a two-channel one-dimensional signal of 1 × 2048 × 2. The model
consists of two parts: offline training and online detection. The existing label data is used
to train the fault diagnosis model, and the model is used to classify the collected data.
Embedding DCGAN can improve the diagnosis accuracy of fault diagnosis model under
the condition of unbalanced training datasets. After each channel signal is reconstructed
by AMVMD, it is input into M1DCNN for individual convolution calculation, and the
multi-channel can more comprehensively explore the information of fault vibration signal
characters than the single channel.
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5. Experiments and Results Analysis

To verify the effectiveness of the diagnostic model, an experimental rolling mill fault
simulation test bench was used for bearing vibration signal acquisition, and the test bench
is shown in Figure 8. The parameters of the rolling mill are as follows: the diameter of the
roll is 120 mm, the length of the roll is 90 mm, the speed of the main motor is 180 r/min,
the maximum rolling force is 12 tons; the vibration sensor is YS8202, the acceleration
sensor, and pressure sensor model is HZC-01, and the sampling frequency is 2000 Hz. The
experimental bearings are double-row cylindrical roller bearings, and the bearing type
is NU1012.
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Figure 8. Experimental rolling mill bearing fault diagnosis test bench.

We collected vibration data from the operating side of the rolling mill and selected
bearings with rolling element scratches, bearings with broken cages, bearings with rolling
element flaking, bearings with mixed faults (rolling element flaking and broken cage) and
normal bearings for fault data collection; the labels of the five types of bearings were set to
1–5 in order. The bearing failure is shown in Figure 9. In each experiment, we performed
two passes of the rolling process, and we collected 120,000 data points each time, for a total
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of 480,000 data points in two experiments. The data are divided according to a sample
length of 2048, with 240 samples available for each bearing.
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5.1. Signal Processing by AMVMD

We used the AMVMD to decompose vertical vibration signals and axial vibration
signals and then chose the better IMFs to reconstruct the signal. AMVMD had reduced
the effect of the number of IMFs K on the decomposition effect; if K is set too large, the
effective fault characteristics will be stripped to the worse IMFs, so we set K ∈ [3,6] and
α ∈ [500,4000] and used the GA to find the optimal decomposition parameters in this
range. The parameters of GA were set as follows: the population size is 10, the number
of population evolution is 25, the probability of crossover is 0.8 and the probability of
variation is 0.1. We recorded the best fitness and the fitness average of all individuals for
each evolution. The iterative search curves for the four fault signals are shown in Figure 10,
and the decomposition parameters are shown in Table 2.

Table 2. Optimized parameters for four types of fault signals.

Types of Faults Number of IMF Penalty Factor α

Rolling element scratch 5 2658
Broken cage 6 2941

Rolling element flaking 5 2931
Mixed faults 6 2137

The decomposition results of bearings with rolling body flaking are shown in Figure 11;
the periodic waveform can be initially seen from the time domain of IMF1, IMF2 and IMF3,
while the time domain waveforms of IMF4 and IMF5 are more chaotic. The frequency
domain feature maps of the five IMFs appear with slight modal mixing, but the central
frequencies of the individual IMFs are well separated.
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We used the WPE as the evaluation index; the WPE of each IMF for eight kinds of
signals are shown in Figure 12. It can be found that the WPE of the first two IMFs are
significantly smaller than the other IMFs, which coincides with the regularity of the time
domain waveform, and the signal period regularity is the strongest. It can be considered
that IMF1 and IMF2 contain rich fault character information, so IMF1 and IMF2 are selected
to reconstruct the axial vibration signal and vertical vibration signal.
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5.2. Generate Reconstructed Data by DCGAN

The sample data length of the faulty signal and normal signal was set to 2048, and the
training set of DCGAN was composed according to the unbalanced ratio of 1/10 (200 sets of
normal bearing data samples and 20 sets of each fault samples), and we input the condition
variables at the same time to generate the faulty bearing reconstruction signal under the
unbalanced condition. The time domain waveforms and frequency domain characters of
the real and generated signals are shown in Figure 13. It can be seen that the time domain
waveforms of the real signal and the generated signal are similar, and the main frequency
characteristics of the frequency domain maps are basically the same, and we can consider
that the reconstructed signal generated by DCGAN has better fault characteristics. We
combined the generated data as supplementary samples with real samples into a balanced
dataset to train the fault diagnosis model and improve the accuracy of the diagnosis model
under unbalanced sample conditions.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 23 
 

 

5.2. Generate Reconstructed Data by DCGAN 
The sample data length of the faulty signal and normal signal was set to 2048, and 

the training set of DCGAN was composed according to the unbalanced ratio of 1/10 (200 
sets of normal bearing data samples and 20 sets of each fault samples), and we input the 
condition variables at the same time to generate the faulty bearing reconstruction signal 
under the unbalanced condition. The time domain waveforms and frequency domain 
characters of the real and generated signals are shown in Figure 13. It can be seen that the 
time domain waveforms of the real signal and the generated signal are similar, and the 
main frequency characteristics of the frequency domain maps are basically the same, and 
we can consider that the reconstructed signal generated by DCGAN has better fault char-
acteristics. We combined the generated data as supplementary samples with real samples 
into a balanced dataset to train the fault diagnosis model and improve the accuracy of the 
diagnosis model under unbalanced sample conditions. 

 
(a) Rolling element scratch 

 
(b) Broken cage 

 
(c) Rolling element flaking 

Figure 13. Cont.



Sensors 2021, 21, 5494 16 of 22

Sensors 2021, 21, x FOR PEER REVIEW 16 of 23 
 

 

5.2. Generate Reconstructed Data by DCGAN 
The sample data length of the faulty signal and normal signal was set to 2048, and 

the training set of DCGAN was composed according to the unbalanced ratio of 1/10 (200 
sets of normal bearing data samples and 20 sets of each fault samples), and we input the 
condition variables at the same time to generate the faulty bearing reconstruction signal 
under the unbalanced condition. The time domain waveforms and frequency domain 
characters of the real and generated signals are shown in Figure 13. It can be seen that the 
time domain waveforms of the real signal and the generated signal are similar, and the 
main frequency characteristics of the frequency domain maps are basically the same, and 
we can consider that the reconstructed signal generated by DCGAN has better fault char-
acteristics. We combined the generated data as supplementary samples with real samples 
into a balanced dataset to train the fault diagnosis model and improve the accuracy of the 
diagnosis model under unbalanced sample conditions. 

 
(a) Rolling element scratch 

 
(b) Broken cage 

 
(c) Rolling element flaking 

Sensors 2021, 21, x FOR PEER REVIEW 17 of 23 
 

 

 
(d) Mixed faults 

Figure 13. Comparison of time domain waveforms and frequency domain features of real and generated signals. 

5.3. Fault Diagnosis by MC1DCNN 
The network structure of MC1DCNN is shown in Table 3. In the first layer, we used 

a wide convolutional kernel to further filter out the interference of noise and save the cal-
culation time, and the subsequent convolutional kernels use smaller convolutional kernels 
to fully explore the fault characters of the vibration signal. 

Table 3. Network structure of MC1DCNN. 

Network 
Structure 

Convolution 
Kernel 

Input  
Channel 

Output  
Channel 

Step Activation 
Function 

Convolutional 
layer 1 

32 × 1 2 32 2 Tanh 

Convolutional 
layer 2 4 × 1 32 64 2 ReLU 

Convolutional 
layer 3 4 × 1 64 128 2 ReLU 

Convolutional 
layer 4 

4 × 1 128 128 2 ReLU 

All convolutional layers are edge-processed with the SAME function. Each convolu-
tion layer is followed by a pooling layer, and we used maximum pooling with a pooling 
strip width of 2. The last pooling layer is connected to the fully connected layer, which 
has 1024 neurons. In order to suppress the overfitting phenomenon and improve the gen-
eralization ability of the model, we added the dropout function; finally, the Softmax clas-
sifier is used for classification.  

We performed fault diagnosis analysis on the training set under three unbalanced 
ratios (1/20, 1/10, 1/5). We randomly selected 40 sets of various bearing data as the test set, 
and the remaining 200 sets of normal bearing data and the corresponding proportional 
quantities (10, 20, and 40) of four types of faulty bearing data as the training set. Addition-
ally, the confusion matrix of the diagnostic results of the model under the three ratios is 
shown in Figure 14a. Under the condition of a lack of fault training data, the diagnosis 
accuracy of the model is low, and with the increased ratio of fault data to normal data, the 
diagnosis accuracy of the model improves. 

We trained DCGAN using three unbalanced datasets and supplemented the unbal-
anced dataset with the data generated by DCGAN. Finally, MC1DCNN was trained with 
the supplemented dataset, and we obtained three balanced ratio data diagnosis models, 
and used the three models to identify and classify the test sets. The confusion matrix of 
the classification results of the three models is shown in Figure 14b. After embedding the 
DCGAN data supplementation module in the fault diagnosis model, the network diagno-
sis accuracy under the three unbalanced data conditions was significantly improved, and 
the diagnosis accuracy reaches more than 90% in all cases. DCGAN can effectively 

Figure 13. Comparison of time domain waveforms and frequency domain features of real and
generated signals.

5.3. Fault Diagnosis by MC1DCNN

The network structure of MC1DCNN is shown in Table 3. In the first layer, we used
a wide convolutional kernel to further filter out the interference of noise and save the
calculation time, and the subsequent convolutional kernels use smaller convolutional
kernels to fully explore the fault characters of the vibration signal.

Table 3. Network structure of MC1DCNN.

Network Structure Convolution Kernel Input Channel Output Channel Step Activation Function

Convolutional layer 1 32 × 1 2 32 2 Tanh
Convolutional layer 2 4 × 1 32 64 2 ReLU
Convolutional layer 3 4 × 1 64 128 2 ReLU
Convolutional layer 4 4 × 1 128 128 2 ReLU

All convolutional layers are edge-processed with the SAME function. Each convolu-
tion layer is followed by a pooling layer, and we used maximum pooling with a pooling
strip width of 2. The last pooling layer is connected to the fully connected layer, which
has 1024 neurons. In order to suppress the overfitting phenomenon and improve the
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generalization ability of the model, we added the dropout function; finally, the Softmax
classifier is used for classification.

We performed fault diagnosis analysis on the training set under three unbalanced
ratios (1/20, 1/10, 1/5). We randomly selected 40 sets of various bearing data as the test
set, and the remaining 200 sets of normal bearing data and the corresponding proportional
quantities (10, 20, and 40) of four types of faulty bearing data as the training set. Addition-
ally, the confusion matrix of the diagnostic results of the model under the three ratios is
shown in Figure 14a. Under the condition of a lack of fault training data, the diagnosis
accuracy of the model is low, and with the increased ratio of fault data to normal data, the
diagnosis accuracy of the model improves.

We trained DCGAN using three unbalanced datasets and supplemented the unbal-
anced dataset with the data generated by DCGAN. Finally, MC1DCNN was trained with
the supplemented dataset, and we obtained three balanced ratio data diagnosis models,
and used the three models to identify and classify the test sets. The confusion matrix of
the classification results of the three models is shown in Figure 14b. After embedding the
DCGAN data supplementation module in the fault diagnosis model, the network diagnosis
accuracy under the three unbalanced data conditions was significantly improved, and the
diagnosis accuracy reaches more than 90% in all cases. DCGAN can effectively improve
the fault diagnosis capability of the model in this paper under unbalanced data conditions.
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under all types of ratio training sets, and when the unbalance ratio is 1/5, the model
diagnosis accuracy is almost the same as the balanced data after combining AMVMD with
DCGAN, which further verifies the superiority of the fault diagnosis model proposed in
this paper.
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5.4. Comparison Experiments

To further verify the superiority of the diagnosis models in this paper, we combined
three processed signals (original signal, MEMD reconstructed signal and AMVMD re-
constructed signal) with three classification algorithms (DBN, 1DCNN, MC1DCNN). We
randomly selected 200 sets of data from each type of bearing as the training sets and
the remaining 40 sets of data as the test sets and calculated the average accuracy of the
model for 10 diagnoses as shown in Table 4. DBN, 1DCNN selected three modes of input
(single channel vertical signal input, single channel axial signal input and dual channel
signal mixing input). The implied layer number of DBN was set to 3. 1DCNN layer struc-
ture is the same as MC1DCNN as far as possible. From Table 4, it can be seen that the
AMVMD-MC1DCNN model proposed in this paper has the highest diagnosis accuracy.

In order to verify the advantages of the AMVMD-MC1DCNN fault diagnosis model
in this paper compared with the existing models, the existing approximate models were
selected to reproduce the results for comparison. A more comprehensive comparison
between 1DCNN and MC1DCNN has been made in the results of this paper, so the
1DCNN model of the literature [25,26] is not compared subsequently. The models selected
for comparison are the VMD-ELM model of the literature [15], the MVMD-SVM model
of the literature [17], and the VMD-CNN model of the literature [22]. Since both the
VMD-ELM model and the MVMD-SVM model require feature extraction of the vibration
signal, in the process of performing MWPE feature extraction, we found that the larger
embedding dimension and scale factor of the Multiscale Weighted Permutation Entropy
(MWPE) algorithm increase the computing time significantly, so the CNN model has an
absolute advantage in diagnostic time after training is completed. Therefore, we ignore
the time required for feature extraction and compare only the diagnostic accuracy of the
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models. Additionally, all of the above models are applied to the vibration data analysis of
the experimental rolling mill bearing fault diagnosis test bench.

Table 4. Diagnosis accuracy of various fault diagnosis models.

Input Signal Classification Model Accuracy

Original signal (Vertical) DBN 81.4%
Original signal (Axial) DBN 84.2%
Original signal (Mixed) DBN 89.8%
Original signal (Vertical) 1DCNN 84.3%
Original signal (Axial) 1DCNN 87.4%
Original signal (Mixed) 1DCNN 91.7%

MEMD reconstructed signal (Vertical) DBN 87.3%
MEMD reconstructed signal (Axial) DBN 89.5%
MEMD reconstructed signal (Mixed) DBN 91.6%
MEMD reconstructed signal (Vertical) 1DCNN 87.5%
MEMD reconstructed signal (Axial) 1DCNN 90.1%
MEMD reconstructed signal (Mixed) 1DCNN 94.3%

AMVMD reconstructed signal (Vertical) DBN 89.8%
AMVMD reconstructed signal (Axial) DBN 91.3%
AMVMD reconstructed signal (Mixed) DBN 95.4%
AMVMD reconstructed signal (Vertical) 1DCNN 93.2%
AMVMD reconstructed signal (Axial) 1DCNN 94.7%
AMVMD reconstructed signal (Mixed) 1DCNN 96.1%

AMVMD reconstructed signal MC1DCNN 98.2%

The parameters of MVMD are the same as those obtained in this paper, and the
parameters of VMD are also optimally selected using GA. Since the decomposition effect
of SVM is affected by the kernel function parameters and penalty parameters, we used the
most widely used PSO to optimize its parameters, and the kernel function of SVM was
chosen as Gaussian kernel function. The PSO parameters were set as follows: the number
of particles is 25, the number of iterations is 50, the local learning factor is 1.6, the global
learning factor is 1.6, and the inertia factor is 0.8. The CNN network structure is designed as
follows: the number of input samples is modified to 44 × 44, the number of convolutional
layers is set to 4, the convolutional layer is followed by the pooling layer, the convolutional
kernel size is 3 × 3, and the step size of the convolutional kernel is 1. The input of the
VMD-ELM model is the multidomain features of the VMD reconstructed signal. Since the
entropy algorithms can all respond to the complexity of the signal sequence, band entropy
in the literature [17] was replaced with MWPE, and the entropy values of the first 20 scales
were taken to construct the feature vector as the input of the SVM.

The accuracy (average of 10 diagnoses) of various existing models for the analysis of
the experimental rolling mill bearing fault diagnosis test bench data is shown in Table 5.
The accuracy of each model is lower than that of the AMVMD-MC1DCNN diagnostic
model in this paper, which verifies the advantage of the model in this paper compared
with existing models.

Table 5. Diagnosis accuracy of existing fault diagnosis models.

Vibration Signal Classification Model Model Input Accuracy

Vertical signal VMD-ELM Multidomain features 90.4%
Axial signal VMD-ELM Multidomain features 92.6%
Mixed signal VMD-ELM Multidomain features 94.5%
Vertical signal MVMD-SVM MWPE 90.2%
Axial signal MVMD-SVM MWPE 91.4%
Mixed signal MVMD-SVM MWPE 94.7%
Vertical signal VMD-CNN The reconstructed signal 92.3%
Axial signal VMD-CNN The reconstructed signal 93.4%
Mixed signal VMD-CNN The reconstructed signal 95.1%
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6. Conclusions

In this paper, we optimized the MVMD and 1DCNN algorithm models and proposed
the AMVMD and MC1DCNN algorithm models to establish a fault diagnosis model for
rolling mill multi-row roller bearings. Then, the DCGAN module is embedded in the
model to improve the diagnostic accuracy of the model under unbalanced training set
conditions. Additionally, the comparison with approximate and existing models verifies
the advantages of the AMVMD-MC1DCNN model.

(1) We introduced GA to optimize the selection of important parameters K and α of
MVMD, which improves the signal processing effects of MVMD. In addition, we introduced
an iterative operator to accelerate the solution process of MVMD. The result comparison
of AMVMD with MEMD and MVMD in processing the simulation signal showed that
AMVMD could improve the signal processing speed, could effectively solve the parameter
selection problem, and had a significantly better suppression effect on the modal mixing
phenomenon than MVMD and MEMD.

(2) We introduced the same multichannel convolutional fusion layer in 1DCNN as
MC1DCNN, which could make 1DCNN suitable for multi-channel signal processing. We
combined both MC1DCNN and the 1DCNN with AMVMD and applied them to the rolling
mill multi-row bearing fault diagnosis, and the correct rate of MC1DCNN was improved
by 5.7% compared to 1DCNN input vertical vibration signals and by 4.2% compared
to 1DCNN input axial vibration signals and by 2.6% compared to 1DCNN input mixed
vibration signals.

(3) Under the conditions of three unbalanced ratio (1/5, 1/10 and 1/20) training
sets, the accuracy of the fault diagnosis model after embedding the DCGAN module is
improved by 12.5%, 17.0%, and 22.5%, respectively, compared with the original model.

The fault diagnosis model in this paper effectively achieves the identification of four
faults of rolling mill multi-row bearings under unbalanced dataset conditions. The model
has an important significance in the performance degradation assessment and multi-fault
diagnosis of rolling mill multi-row bearings under unbalanced data conditions.

Although the test stand largely simulates the actual working conditions of the rolling
mill, the actual engineering signals are still very different from the experimental signals,
and research work is still needed on how to further improve the effectiveness of signal
processing in the current situation of deep learning for end-to-end fault diagnosis. Due
to the instability of GAN in dataset enhancement, the model training is more difficult.
However, existing research work on Wassertein GAN (WGAN) shows that the introduction
of Wassertein distance in GAN solves both the problem of training instability and provides
a reliable indicator of the training process. In this paper, we just used AMVMD to optimize
the input of DCGAN and reduce the interference of invalid feature information to achieve
the purpose of improving the performance of DCGAN. In the future, it is necessary
for us to carry out work on improving the DCGAN network structure and improving
its performance.
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