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Abstract: Deep learning-based object detection in remote sensing images is an important yet chal-
lenging task due to a series of difficulties, such as complex geometry scene, dense target quantity,
and large variant in object distributions and scales. Moreover, algorithm designers also have to
make a trade-off between model’s complexity and accuracy to meet the real-world deployment
requirements. To deal with these challenges, we proposed a lightweight YOLO-like object detector
with the ability to detect objects in remote sensing images with high speed and high accuracy. The
detector is constructed with efficient channel attention layers to improve the channel information
sensitivity. Differential evolution was also developed to automatically find the optimal anchor
configurations to address issue of large variant in object scales. Comprehensive experiment results
show that the proposed network outperforms state-of-the-art lightweight models by 5.13% and 3.58%
in accuracy on the RSOD and DIOR dataset, respectively. The deployed model on an NVIDIA Jetson
Xavier NX embedded board can achieve a detection speed of 58 FPS with less than 10W power
consumption, which makes the proposed detector very suitable for low-cost low-power remote
sensing application scenarios.

Keywords: remote sensing image; object detection; anchor configurations; differential evolution;
YOLO; attention module

1. Introduction

With the rapid development of satellite and imaging technology, optical remote
sensing images with high spatial resolution are obtained more conveniently than ever
before [1]. Studies on analyzing and understanding remote sensing images have drawn
wide attention. Image classification, segmentation, object detection, and tracking have
become the hot topics in the field of remote sensing [2–4]. Among them, object detection
has presented a broader application prospect in real-world applications and is sought after
by researchers in recent years [5].

For object detection tasks, deep neural network-based schemes have shown superior
performance over traditional approaches [6,7]. In general, these schemes can be divided
into two major categories: (1) one-stage neural network which adopts a fully convolutional
architecture that outputs a fixed number of predictions on the grid, such as SSD [8],
YOLO [9], and M2Det [10], and (2) two-stage network that leverages a proposal network
to find regions of interest that have a high probability to contain an object and a second
network to get the classification score and spatial offsets, such as FPN [11] and Faster
R-CNN [12]. These detectors have been successfully utilized in many applications, such as
robotics, autonomous vehicles, and surveillance systems.

However, a direct utilization of generic detectors in remote sensing images usually does
not deliver satisfactory results. The major reason is that there are many distinct features
different from natural images in remote sensing images, such as very complex geometric
background, dense object distributions, and variety of objects with large variant in shapes
and scales [13,14]. To address these new design challenges faced in object detection in remote
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sensing images, many studies have been proposed in the literature [15–20]. For instance,
Wang et al. [15] designed a new pyramid structure to optimize the Faster-RCNN detector
by adding a feature-reflowing pathway from the lower level for each scale to enrich the
feature expression. Huang et al. [16] proposed a cross-scale fusion module based on the
M2Det detector to extract sufficient comprehensive semantic information from features
for performing multi-scale fusion. Zhao et al. [17] improved the SSD detector by adding
a channel attention module to strengthen the long-term semantic dependence between
objects to improve the discriminative ability of the deep features.

In this paper, we focus on the issue of the large variant in object distributions and
scales in remote sensing images. Traditional anchor-based detectors [21,22] match regions
of possible objects by a set of pre-allocated anchors with pre-defined aspect ratios; there-
fore, the final accuracy of the trained neural network model highly relies on the anchor
configuration. However, in remote sensing images, the scale and distribution of the target
objects vary in a very wide range. For instance, Figure 1 compares the sizes of the four
classes of objects in the RSOD [23] dataset. Due to the fact that remote sensing images are
often acquired by sensors with the same hardware settings, and because the shooting angle
is also fixed [24], the sizes of the target object in remote sensing images are directly related
to the real-world object scale. As a result, there is a large gap in the size of the ground truth
bounding boxes among all objects within one training dataset. In Figure 1, the aircraft
and oiltanks have much smaller scales but larger quantities in the image when compared
to the overpass and playground. The current anchor selection scheme, such as K-means
clustering [25–27], tends to allocate more anchors for objects with larger quantities. This
makes generic detector perform very badly on objects that does not have sufficient cor-
responding samples during anchor configuration. To demonstrate this phenomenon, we
compare some representative detection results of using the YOLOv4-Tiny network on the
RSOD dataset in Figure 1. For the object classes of overpass and playground, the detection
results are very inaccurate.

Figure 1. Demonstration of complicated remote sensing scenes in RSOD dataset. The detected
bounding box are draw by using YOLOv4-Tiny.

Beside the above problems, this study also deals with the efficiency of the deep
neural network which consists most parts of the detector. In real-world applications,
remote sensing object detection tasks are commonly used in rescue, military, and other
scenarios [28,29]. This requires the detectors to be as lightweight as possible and be able
to efficiently deploy on low-cost low-power embedded devices. Regardless of the type of
detection framework used, optimizations of the detailed algorithm, such as the backbone
neural network, multi-scale feature fusion, and adaptive anchor setting, are also important
in trading off between the detection accuracy and speed to meet the requirements of the
target application.

The contributions of this paper are the following. (1) We propose a lightweight
backbone deep neural network design, which can achieve the optimal balance between
model size and detection accuracy for fast processing on low-cost low-power embedded
hardware platforms. (2) We propose an automatic anchor configuration scheme based on
differential evolution (DE), which can minimize the average distance between ground truth
bounding boxes and selected anchors, and improve the accuracy of object matching. (3)
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Comprehensive experiments on multiple datasets are conducted, and the results show that
the proposed lightweight detector outperforms state-of-the-art detection approaches by
5.13% and 3.58% on the RSOD and DIOR datasets, respectively. We have also deployed
the proposed detector on a embedded hardware platform, i.e., an NVIDIA Jetson Xavier
NX board [30], achieving a real-time detection speed of 58 FPS with less than 10 W power
consumption.

The reminder of this paper is organized as follows. The related work on existing stud-
ies of deep neural network design for remote sensing object detection tasks is summarized
in Section 2. The proposed neural network design and automatic anchor configuration
scheme is introduced in Section 3. The experimental setup is shown in Section 4. Section 5
describes the experimental results in detail, whereas Section 6 shows the performance of
the deployment on embedded platform. Finally, Section 7 concludes this paper.

2. Related Work

The identification of objects in remote sensing images is a subset of a wider research
field in object detection. Taking into account the needs of neural network deployment, the
existing studies can be categorized into three main groups: lightweight object detection
network, visual attention mechanism, and optimized anchor configuration.

2.1. Lightweight Object Detection Network

State-of-the-art approaches can be divided into region-based and single-shot detectors.
The former ones, such as R-CNN [31], Fast R-CNN [32], and Faster R-CNN, use a set of
Regions-of-Interest (ROIs) to extract sub-promotions that may contain objects, then fine-
grained detection and classification modules analyze each ROI. Although region-based
schemes have high detection accuracy, the complex network structures often result in high
computation workload and low processing speed. Single-shot detectors, such as SSD,
YOLO, and FCOS [33], tackle the input image in a single pipeline. As a benefit of the
end-to-end structure, these detectors can achieve real-time detection speed, which is very
suitable as a lightweight object detection network structure. Designers can further balance
the accuracy and model size according to the requirements of their own target application.

As the most typical end-to-end network structure, YOLO [9,27,34,35] is favored by
many application scenarios [36–38]. YOLO-Tiny is the lightweight version of the YOLO
detector. YOLO detector is generally composed of three basic parts: backbone, neck, and
head [35]. The backbone neural network, as an important part of the network to extract
deep image information, generally performs as the image classification network, such as
Darknet53, ResNet [39], Vgg [40], and Mobilenet [41]. The key information of object is
extracted in the neck, and used to predict the position and category in the head. Although
YOLO-Tiny meets the actual deployment requirements, it could not meet the accuracy
requirements on remote sensing images due to the following drawbacks:

• The shallow backbone and prediction network structures are not sufficient to extract
deep semantic information, which limits the performance of the network in complex
scenarios, for instance, very small objects or complicated backgrounds [42]. In ad-
dition, the simple organization of prediction layers cannot effectively cover objects
of various proportions, especially when remote sensing images with dense object
distributions were considered.

• The performance of the detector is especially sensitive to anchor configurations, which
not only affects the speed of training, but also the robustness of the network. As been
explained in previous section, the small amount of anchors with fixed scales in YOLO-
Tiny will deliver poor detection results due to the large variation in object scales.

2.2. Visual Attention Mechanism

Aiming at highlighting the salient feature of images, the attention module has been
widely used in various types of detectors. It has became the mainstream approach of
improving network accuracy. For instance, Wang et al. [43] proposed the residual attention



Sensors 2021, 21, 5460 4 of 19

network, which improved the expressive ability of the network. A channel-level atten-
tion mechanism through feature recalibrating was proposed by SENet [44], which could
improve neural network’s performance in classification, detection, and other tasks to a
new extent. CBAM [45], which combined channel attention and spatial attention, was also
proposed to further improve the model’s accuracy. The CA module [46] that integrated the
channel and the spatial direction not only reduced the amount of parameters, but also had
stronger capabilities. In general, a typical attention module can be divided into two parts:
channel attention module and spatial attention module, which have their own advantages
and disadvantages for different applications, and the specific effects were often evaluated
based on experiments on the target dataset.

Although the attention module can deliver increased detection accuracy, the im-
provements often come from objects of large scales, which means that, due to the special
calculation utilized, some unobvious features are ignored, and the attention model usually
focuses on feature-rich large objects, while small objects [46] are often ignored. For remote
sensing images with a large number of small objects, the effectiveness of attention modules
still needs to be further investigated.

2.3. Optimized Anchors

Anchor is used by the YOLO framework in the detection pipeline, which is extremely
important in remote sensing image-based object detection tasks. In previous studies, there
are two commonly used methods to allocate the anchors for the detection network:

1. Manual configuration. The anchors selected by the manual correction method are
more straightforward and robust. However, it requires the designer to have rich
experience in the application field and perform comprehensive manual experiments
before determining the best setting.

2. Automatic configuration based on optimizations. According to distribution of the
data set, this type of scheme can automatically find the best anchor position, which
greatly relieves the effort of searching for the optimal configurations and also delivers
higher accuracy and faster training speed.

K-means clustering is widely used as the optimization scheme for automatic anchor
selection in YOLO. Given a specific number of anchors, the best anchor positions are
selected by clustering the bounding boxes in the datasets. The IOU score is further used
as the relative distance for anchor configurations in YOLOv4 [35]. Junos et al. [47] used
a similar scheme to optimize the anchor in YOLOv3 and applied the network to the
crop harvesting system. Zlocha et al. [48] optimized the anchor configuration based on
a differential evolution search algorithm in RetinaNet. However, in previous studies,
all objects were unified into one big category, which was not reasonable for datasets
with unevenly distributed object scales. As we have pointed out in the introduction
section, traditional scheme tends to shift the anchor selection toward the category with the
maximum number of ground truth samples, resulting in poor detection performance for
other objects.

3. Methodology

In this paper, we aim to design a lightweight deep neural network to accurately detect
objects of large variant in scale and quantity in remote sensing images. The proposed
detector framework is illustrated in Figure 2. In the proposed detector, we have designed a
YOLOv4-like backbone network followed by three prediction layers to capture and combine
rich contextual features, while, at the same time, minimizing the network’s computational
cost. Moreover, efficient channel attention is also developed to form a downsampling
module, namely, the Cross Stage Partial connections with Attention (CSPA), to efficiently
extract high-level feature information for object classification and localization. Finally,
an automatic optimal anchor selection approach based on differential evolution (DE) is
proposed to address the problem of biased anchor allocation due to large variant of object
scale and quantity in remote sensing images.
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3.1. Lightweight Neural Network

In this section, the details of the proposed neural network architecture are presented.
Our network design emphasizes the lightweight feature and computational efficiency at the
minimum cost of detection accuracy. The overall neural network architecture is illustrated
in Figure 2.

Figure 2. The proposed lightweight neural network for remote sensing object detection.

The proposed network is organized in two major components: a downsampling
backbone and a prediction pipeline. The input images are first resized to an appropriate
size (for instance, 416 × 416 pixels), and then the downsampling backbone network,
which has a YOLOv4-like architecture consisting of two convolutional layers and three
CSPA modules, extract the salient features form the input image at different layers. To
enhance the network’s ability of capturing important features within one channel and
fusing information among different input channels, we propose to add an efficient channel
attention layer after the third convolution layer in each of the CSPA module.

In the proposed network, a prediction pipeline consisting of feature pyramids and
three-scale prediction layers is designed to transform features from multiple branches into
prediction results. The feature pyramid can effectively fuse meaningful semantic informa-
tion obtained from salient feature maps of low resolution and finer-grained information
extracted from the earlier branches. The three-scale prediction networks are used to predict
encoding parameters of bounding box and class predictions. The final inference results are
obtained after filtering the prediction box via non-maximal suppression (NMS).

In the original YOLOv4-Tiny structure, only two layers of networks were utilized
in the prediction part to alleviate the computational complexity of the excessively large
network in YOLOv4. However, this shallow network structure is extremely unfriendly to
remote sensing object detection task. For instance, given an input image of the resolution
of 416 × 416 pixels, the dimensions of the output feature maps of the second prediction
layer in the original YOLOv4-Tiny structure are 26 × 26. According to the principle of
the YOLO algorithm, the input image is divided into many grid cells of equal dimension,
each of which will detect objects that appear within it. In the case of using two prediction
layers, the image will be divided into 26 × 26 grid cells, which means that each cell is of
the size 16 × 16. Generally, when the scales of the target object are too small relative to
the size of the grid cells, the object could not be precisely located by the YOLO algorithm.
In remote sensing images, there exists a large amount of small objects which cannot be
precisely located by grid cells larger than 16× 16. Therefore, in this work, we propose to
add one extra prediction layer with an output feature map dimensions of 56 × 56, which
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corresponds to grid cells of 8 × 8 dimension on the input image. From Figure 3, it can
be seen that, in the proposed network, the corresponding grid cells mapped on the input
images well fit the scales of the small objects. Moreover, based on quantitative analysis
(please refer to the detailed result on RSOD in Section 5.1), we have found that the proposed
three-layer prediction network was optimal and there was no need to introduce extra layers
at the expense of larger model size for very little improvement in detection accuracy.

Figure 3. Different grid cells on input.

3.2. Efficient Channel Attention

Instead of utilizing both channel and spatial level attentions, we propose to use a
single channel attention module to enhance the visual attention of the backbone network.
It is based on two design considerations: First, channel attention modules normally have a
relatively small amount of parameters compared to spatial ones, which can facilitate rapid
training convergence and deliver a faster prediction speed during deployment. Second, we
have conducted experiments showing that using channel attention modules was sufficient
to improve the detection accuracy to the desired level for remote sensing images. In this
work, an efficient channel attention module was designed and utilized in the backbone
network by following the basic network structure presented in [49] as shown by Figure 4.

The detailed architecture of the Efficient Channel Attention (ECA) module is sum-
marized as follows: Given the input feature map I, I ∈ RC×W×H . In the first step, an
average pooling operation is designed to compress I along the spatial dimension W × H
to obtain the channel descriptor (RC×1×1). In the following layer, it is converted into
another channel descriptor (R1×C) through transpose and squeeze operations. Then, the
local cross-channel interaction is completed through fast 1D convolution of the kernel size
ksize, where ksize also represents the coverage ratio of interaction. In the following parts,
transpose and squeeze operation are utilized again to convert channel descriptor back to
the original channel dimensions (RC×1×1). Finally, the channel weight is generated through
the Sigmoid function, and multiplied by I.

To compare the performance of the classic channel attention module (Squeeze-and-
Excitation (SE) [44]) with the proposed ECA module in terms of feature extraction capability
and operation efficiency, we have conducted experiment to quantitatively measure the
increment in model size and improvement in detection accuracy for both schemes when
adopted in the proposed backbone network. The results are reported in Table 1. It can
be observed that the SE module outperforms the baseline model by 3.10%, but with an
increment of 2688 parameters, while ECA module outperforms SE module by 0.22% but
contributes to 74% less parameters. It can be concluded that the ECA module can capture
sufficient cross-channel interaction in an efficient way to improve the detection performance
with minimal cost in model size and computational complexity.
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Figure 4. Structure of ECA module.

Table 1. Comparison of the performances of the SE and ECA modules. Reduction ratios are set to 16
and 3 for SE and ECA, receptively. CSPAn represents the n-th CSPA block.

Method
Params/Bytes

mAP/%
CSPA1 CSPA2 CSPA3 Total

None 0 0 0 0 80.02
SE 128 512 2048 2688 83.12

ECA 96 192 384 672 83.34

3.3. Optimal Anchor Configuration Based on Differential Evolution

The anchor configuration, a hyperparameter for the training of the network model,
affects the performance of the model in a great degree. Optimal anchor configuration can
improve the network accuracy without additional consumption. However, when facing
the large variation of object scales in remote sensing images, the anchor configuration
scheme used in YOLO, i.e., K-means clustering, will lead to biased anchor allocating
setting. The improvement in accuracy tends to be concentrated in the categories with
a larger number of objects. One major reason is that the key evaluation metric widely
used by previous studies is the mAP score, which is embodied as an average AP score
of all categories. Excessively increasing the AP score of a certain category can increase
the overall accuracy of the model to a certain extent. However, further improvement is
not possible due to the limited detection ability for the other categories with very low
AP scores, which means that the trained model is biased. In general, a more reasonable
approach is to consider both the distribution of the quantity and size of the objects for all
categories, and develop a scheme that can improve the overall performance of the neural
network and balance the accuracy of all target categories.

To better capture the relationship between object scale and quantity, we propose an
improved anchor configuration scheme based on differential evolution (DE). This method
takes the height and width of the anchors as variables, and the sum of the nearest distances
from the ground truth bounding boxes to the anchors as a fitness function. In addition, a
weight value is also added to the distance calculation to avoid possible biased training of
the neural network. Finally, the minimum value of the fitness function is solved by using
DE [50], reaching the goal of minimizing the distance.

More specifically, for a given dataset, the distance from one ground truth bounding
box to one anchor can be formulated as follows:

dis(truth, anchor) = 1− IOU(truth, anchor) (1)
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where IOU(truth, anchor) represents the intersection over union of the ground truth and
the anchor box, centered at the origin. The corresponding calculation formula is

IOU =
Soverlap

Sunion
(2)

where Soverlap refers to the overlap area between the ground truth and the anchor box.
Sunion refers to the union area between them.

By denoting xij as the j-th ground truth of the i-th category, and θk as k-th anchor box,
the distance between xij and the anchor boxes can be expressed in the following form:

g(xij, θ) = min(dis(xij, θ1), dis(xij, θ2), . . . , dis(xij, θk)) (3)

which means that we choose the anchor with the smallest distance as its best match.
Therefore, the distance between all samples (X) and anchors (θ) can be calculated by

G =
1
n
×

n

∑
i=1

[
1

mi
×

mi

∑
j=1

g(xij, θ)] (4)

where m1, m2, . . . , mn represent the number of ground truth samples in the n-th category.
In Equation (4), the values of the weights for different categories in the fitness function

are set to be inversely proportional to the number of objects, which helps to eliminate the
attraction effect of large number of objects for more anchors.

Here, we use single-objective DE [51] to solve this optimization problem of Equation (4).
In Equation (4), the real values in xij and θk are all scaled to the range of [0,1]. To prevent
conflicting with the aforementioned variables, the decision variables in DE are replaced
by Pi, i.e., Pi = θ ∈ (k, 2) used as the fitness function of DE. Then, DE searches for the
best anchors of the smallest function G through constant iterations. The pseudocode of
the proposed optimal anchor selection scheme is described by Algorithm 1, where Cr
denotes crossover rate, Fs represents the scaling factor, Np is the population size, and t is
the iteration number.

Algorithm 1 Anchor configurations algorithm based on DE
Input: input parameters Cr, Fs, Np
Output: output argminPt

i
G(Pt

i ) and Pt
i

1: Initialize population P = (Pt
1, Pt

2, . . . , Pt
Np
)

2: Counter t← 0
3: while stop condition not met do
4: for i ∈ (1, 2, . . . , Np) do
5: νi ←differential mutation (Fs; i, P)
6: µi ←crossover (Cr; Pt

i , νi)

7: if G(µi) ≥ G(Pt
i ) then

8: Pt+1
i ← µi

9: else
10: Pt+1

i ← Pt
i

11: end if
12: end fort← t + 1
13: end while
14: return argminPt

i
G(Pt

i ) and Pt
i

In the first step, the proposed algorithm performs an initialization operation on the
population P consisting of decision variables Pt

i , where Pt
i represents the i-th individual

in the t-th iteration. The initialized population is distributed in a certain defined area
according to the population size Np, and each individual represents a candidate solution.
Generally, the initial population should cover the whole search space. As the population
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size Np increases, the probability of obtaining the global optimal solution also increases. In
this work, each individual is defined as a specific anchor configuration.

In the following iteration, the procedures of differential mutation, crossover, and
selection are repeated performed. The goal of differential mutation is to create groups of
new individuals which have a certain level of probability of being the optimal solution.
The difference introduced by mutant between the parent and children is quantitatively
controlled by a scaling factor Fs. Later, elements θj, (j = 1, 2, · · · , k) in individuals are
randomly swapped by the crossover operation for the current iteration and its differen-
tial mutated group. This procedure promotes population diversity, and the crossover
probability is controlled by Cr. Then, newly generated and contemporary individuals
are compared and better individuals are selected for transmission to the next iteration.
The iteration continues until the best individual and objective function value are found.
Through the above algorithm, the minimum value of fitness function can be obtained,
which corresponds to the best anchor value.

4. Experimental Settings
4.1. Hardware Platforms

The proposed lightweight model was expected to run on low-power embedded
devices. However, to demonstrate the advantage of the proposed optimization schemes
and the performance of the proposed detector more comprehensively, experiments were
conducted on two different hardware platforms, including an NVIDIA GeForce RTX2080Ti
desktop GPU and an NVIDIA Jeteson Xavier embedded board. The hardware specifications
of the two platforms are summarized in Table 2. To deploy on the embedded board, all
tested neural network model were quantized into FP16 data format to relieve the pressure
on external memory bandwidth.

Table 2. Characteristics of two different hardware platforms.

Device NVIDIA GeForce RTX2080Ti Desktop GPU NVIDIA Jeteson Xavier

GPU 4352 NVIDIA CUDA cores 384-core NVIDIA Volta GPU and 48 Tensorc cores

CPU Intel Core i9-7960x 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU
6 MB L2 + 4 MB L3

Memory 11GB 352-bit GDDR6 616 GB/s 8 GB 128-bit LPDDR4 51.2 GB/s

Storage 4T Hard Disk Drive microSD

Power 285 W 10 W (low-power mode)/15 W

4.2. Datasets and Training Parameters

In this work, experiments on two public remote sensing datasets were conducted to
verify the effectiveness of the proposed detector and further evaluate its accuracy and speed.
The RSOD remote sensing dataset was selected to measure the key performance metrics of
the detector. RSOD includes 4993 aircraft in 446 images, 1586 oiltanks in 165 images, 191
playgrounds in 189 images, and 180 overpasses in 176 images. The dataset was randomly
divided into the training and test set according to a 7.5:2.5 ratio.

Considering the relatively limited number of samples in the RSOD, in order to further
verify the performance of our method, we have also chosen DIOR to evaluate and test
the performance of the proposed model. DIOR [52] contains a wider range of 20 object
categories, a total number of 23,463 images, in which 192,472 examples were labeled, and
11,725 images were used for training and 11,738 images were used for testing.

The training parameters of the final network model was setting as follows: The initial
weight was pre-trained on the COCO dataset; Adam was utilized as the optimizer, while
the initial learning rate was 1× 10−4 and the maximum training epoch was set to 100.
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4.3. Evaluation Metrics

We used a total number of four metrics to evaluate the performance of the proposed
method: (1) mAP; (2) FLOPs (floating-point operations); (3) number of parameters; (4)
FPS (frames per second). The mean average precision (mAP), which is widely used by
previous studies, is still used as the key accuracy score in this paper to compare with the
state-of-the-art. FLOPs and parameters are used to evaluate the computational complexity
and memory footprint of the neural network model, respectively. FPS is used to evaluate
the processing speed of the model on target hardware devices.

5. Results
5.1. Improvements by Network Structure

In this paper, we have proposed two optimizations on the lightweight neural network:
multi-scale prediction layers and attention modules. The performance gains of these two
schemes were evaluated independently and the results are shown in the following sections.

As discussed in Section 3.1, a deeper prediction network corresponds to a finer grid on
the input images, which can locate small objects more accurately. However, detection speed
will often be sacrificed due to increased model size and computational complexity. To
balance between processing speed and accuracy, we have conducted a series of experiments
to explore the optimal structure of the prediction network. The obtained results are
compared in Table 3. Compared to only using two prediction layers, adopting a three
layer prediction network can improve the detection accuracy in terms of mAP score by 2%,
while the increment in FLOPs is ~48%. In particular, the detection accuracy of overpass
and aircraft, which often have smaller scales in the images, are improved by 2.27% and
7.74%, respectively. Although adding a fourth layer to the prediction network can further
raise the average accuracy by around 1% (the improvement is mainly on the small object
of aircraft), the computational complexity doubled compared to using three layers and is
3× than that of using only two layers. In addition, the extra prediction layer also creates a
large amount of unnecessary bounding boxes, which will also reduce the executing speed
of the post-processing procedures, such as NMS. Therefore, it is concluded, based on the
comparative experiment results, that the three layer prediction network architecture was
the most cost-effective design.

Table 3. Comparison of model size and accuracy under different number of prediction layers (Num.)

Num. Params FLOPs mAP/% FPS Aircraft Oiltank Overpass Playground

2 5.881 M 3.42 G 80.02 285.3 72.46 97.85 51.56 98.22
3 6.527 M 5.06 G 82.00 230.4 74.73 95.99 59.30 97.98
4 6.732 M 9.83 G 83.09 182.5 78.88 96.84 59.67 96.96

For visual attention enhancement, the proposed ECA design was compared with
several state-of-the-art attention modules, including SE, CBAM, and CA, as listed in
Table 4. The parameter count only includes the parameters introduced by the attention
module, while the other metrics correspond to the whole neural network. The proposed
ECA module delivers a 3.32% boost in mAP with almost no loss in processing speed.
Although the CBAM and CA modules have both channel and spatial attention, they failed
to improve the detection results. The main reason behind this was that these two attention
modules that were added at a position close to the input have introduced a larger amount of
parameters (4×than that o f the proposed scheme) to the original model, causing the training
process very sensitive to the initialization state of the backbone model and the original
loss function failed to generate sufficient backpropagation information to update the new
parameters. The SE module has a very close inference performance with the proposed ECA
module, but the processing speed is 2% slower on desktop GPU. This cost in speed will be
further enlarged when deployed on embedded platforms.



Sensors 2021, 21, 5460 11 of 19

Table 4. Comparison of different attention methods.

Methods Params FLOPs mAP/% FPS

None 0 bytes 0 k 80.02 285.3
CBAM 2988 bytes 422 k 79.94 268.9

CA 5424 bytes 351 k 79.95 273.5
SE 2688 bytes 2.94 k 83.12 277.1

ECA 672 bytes 0.89 k 83.34 280.8

The proposed ECA module also has a hyperparameter ksize, i.e., the filter size of the 1D
convolution. Table 5 shows the experimental results with different values of ksize, including
setting fixed value and adaptive ones in all convolution layers. The ECA module achieves
the best performance when ksize = 3 and ksize = 7. Furthermore, note that the adaptive
approach does not outperform fixed ones. We conjecture the main reason is that one layer of
convolution with small filter size is sufficient to capture enough spatial feature information
within one channel, and larger perception filter and more layers are redundant [49].

Table 5. Results of adding the ECA module to the backbone with various numbers of ksize.

ksize 3 5 7 9 Adaptive

mAP/% 83.34 81.70 82.97 80.75 81.56

5.2. Improvements by Anchor Configuration

Population size (Np) and maximum iteration number are two key initialization pa-
rameters for the DE solver utilized in the proposed anchor configuration algorithm. To
determine the most reasonable initialization parameters, the following experiments were
carried out.

Firstly, we set Pi = θ ∈ (6, 2) for the DE optimizer, in which only six anchors were
configured. Therefore, other parameters were set as follows: Cr = 0.7, Fs = 0.5, maxi-
mum iteration = 500. The measured average value of the fitness function under different
population sizes are listed in Figure 5 and the detailed convergence time are reported in
Table 6.

Figure 5. Average value of the fitness function under different population sizes.
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Table 6. The average convergence time under different population sizes.

Population Size Average Value of
the Fitness Function

Average of Convergence Time
(s/iteration)

100 0.2718 7.99
200 0.2713 15.29
300 0.2697 25.73
400 0.2710 36.37
500 0.2700 46.04
600 0.2729 53.67
700 0.2714 58.69
800 0.2727 59.98

When Np = 300, the objective function reaches the lowest value among all different
configurations, so Np = 300 was selected as the optimal parameter setting. In addition,
it was also found that 500 iterations did not make the DE solver fully converge, so the
maximum iteration number was increased to 1000. The final performance of DE is shown
in Figure 6. As the iteration number increases, the minimum and average values of the
fitness function gradually coincide. The best anchor settings obtained for the RSOD dataset
are summarized in Table 7. The obtained anchors, except for the fourth one, tends to have
a larger scale in the height dimension. This phenomenon reveals that our scheme has
optimized the anchor settings to best match the objects at varies scales. To more clearly
observe the advantage of our proposed algorithm, we have also visualized the distribution
of the ground truth bounding boxes and the obtained anchor boxes by using a scatter
plot illustrated in Figure 7, in which the results obtained by using K-means clustering are
compared. The figures show that the anchors obtained by the proposed algorithm are more
evenly distributed among the entire data set, i.e., anchor allocation fully takes into account
the distribution of samples in each category. For instance, in the dimension scale of 0.2 to
0.5, the K-means clustering scheme only allocated a single anchor to capture all the objects
with large variant in scales, which will inevitably cause degradation in detection accuracy.
In contrast, the proposed scheme has allocated four anchors in this range, each of which
also corresponds to the clustering centers of a specific category of object. Therefore, it can
be concluded that the proposed algorithm can locate the target objects more accurately
than the original YOLOv4-Tiny network as the example shows in Figure 8. Note that, in
this experiment, both networks have the same number of prediction layers.

Figure 6. The relationship between average and minimum value of the fitness function.
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Table 7. Best anchors (two prediction-layer setting) obtained by the proposed scheme.

Anchor (θ) Best Decision Variables Anchor Settings

(θ
(1)
1 , θ

(2)
1 ) (0.0327, 0.0370) (14, 15)

(θ
(1)
2 , θ

(2)
2 ) (0.0573, 0.0667) (24, 28)

(θ
(1)
3 , θ

(2)
3 ) (0.1065, 0.1235) (44, 51)

(θ
(1)
4 , θ

(2)
4 ) (0.2296, 0.4331) (96, 180)

(θ
(1)
5 , θ

(2)
5 ) (0.3669, 0.3501) (153, 146)

(θ
(1)
6 , θ

(2)
6 ) (0.4491, 0.5125) (187, 213)

(a) K-means (# anchors is 6). (b) K-means (# anchors is 9).

(c) Proposed (# anchors is 6). (d) Proposed (# anchors is 9).

Figure 7. Distributions of the ground truth bounding boxes and the anchors obtained by using
K-means clustering and the proposed scheme on the RSOD dataset.

Besides the accuracy improvements, the proposed anchor configuration scheme also
delivers a faster training speed over traditional approaches. The loss functions obtained
by adopting the aforementioned two anchor selection algorithms in training of the neural
network models are compared in Figure 9. From the curves, we can see that the training
process which adopted the proposed anchor selection scheme converges more quickly,
and the final loss drops by about 50% relative to the K-means clustering scheme in the
case of using six anchors. Because anchors selected by the K-means clustering scheme are
narrowed in a small region, it is difficult for the detector to capture information from those
samples outside this region to achieve better matching results. The anchors obtained by
the proposed algorithm distribute more evenly in the dataset, which greatly improves the
overall learning efficiency of the neural network.
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(a) (b)

Figure 8. Comparison of detection results of YOLOv4-Tiny with the proposed detector. The ground
truth is in blue box, and the predicted target is in green color. (a) Original YOLOv4-Tiny network
detection results. (b) The proposed algorithm detection results.

Figure 9. The loss function curve using anchors obtained by different algorithms.

After obtained the optimal anchor setting, the detection accuracy achieved by adding
three prediction layers are shown in Table 8. Compared with K-means clustering, the
proposed algorithm can improve the detection accuracy by 1.13% in terms of mAP when
using 9 anchors.

Table 8. The performance of different anchor settings.

Methods K mAP(%) Anchors

6 81.55 (9,10), (15,15), (22,23), (31,34), (47,53), (145,178)K-means 9 82.00 (8,9), (12,12), (16,15), (19,20), (24,25), (30,32), (40,44), (51,58), (145,178)

6 81.69 (14,15), (24,27), (44,51), (96,180), (153,146), (187,213)Proposed 9 83.13 (13,13), (19,19), (30,31), (41,50), (50,60), (134,171), (99,197), (157,113), (176,214)
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Finally, to verify the generality of the proposed scheme, we have also tested the
proposed detection framework on the DIOR dataset. As illustrated in Figure 10, the
distribution of the obtained anchors by using the proposed scheme is also more evenly
allocated than K-means clustering. More detailed results of the measured AP scores of
different categories are compared in Table 9. It can be observed that the proposed scheme
outperforms K-means clustering by 4.41% in terms of mAP score.

(a) K-means clustering (b) The proposed algorithm.

Figure 10. Comparison of the anchor configuration results in the DIOR dataset.

Table 9. Mode detailed mAP (%) results of ablation experiments on the DIOR dataset.

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP/%

K-means 42.06 54.45 71.06 68.67 20.22 71.78 43.83 54.48 47.50 58.18 55.90 47.84 44.90 38.59 50.08 33.87 64.52 34.99 23.67 48.74 48.74
DE 57.98 57.80 71.43 74.94 22.83 72.43 43.73 56.71 49.14 59.38 64.80 51.72 47.06 42.68 54.70 38.08 79.72 37.53 26.69 53.64 53.15

5.3. Comparison with the State-of-the-Art

We first compare the performance of the proposed detector with three generic de-
tectors, including SSD, YOLOv4, and the YOLOv4-Tiny lightweight network on both the
RSOD and DIOR datasets, respectively. Table 10 shows the performance of different net-
works on RSOD. Detection speed was measured on the same desktop GPU. Compared
to YOLOv4-Tiny, the proposed scheme can achieve a considerable 5.13% improvement
in mAP, while the cost in speed is an ~50 FPS decline on desktop GPUs. However, the
differences in speed will become negligible when deployed in embedded platforms. It can
also be observed that the proposed network can even achieve a slightly higher accuracy
over the SSD model, while the processing speed is 4× faster.

Table 10. Measured detection results on the RSOD dataset.

Methods Size Params FLOPs mAP/% FPS Aircraft Oiltank Overpass Playground

SSD300 [8] 300 24.15 M 30.64 G 84.71 54.2 70.12 90.34 78.43 100.00
YOLOv4 [35] 416 63.95 M 29.89 G 92.50 44.8 96.13 98.38 75.78 99.71

YOLOv4-Tiny [35] 416 5.881 M 3.42 G 80.02 285.3 72.46 97.85 51.56 98.22
Proposed 416 6.527 M 5.06 G 85.13 227.9 87.10 98.97 56.58 97.86

In addition, the proposed model was also trained and evaluated on the DIOR dataset,
and the experimental results were reported in Tables 11 and 12. Compared with YOLOv4-
Tiny, our method improved the detection accuracy by 3.58%.
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Table 11. The explanation of each category in DIOR.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Airplane Airport Baseball
field

Basketball
court Bridge Chimney Dam Expressway

service area
Expressway
toll station

Golf
course

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Ground track
field Harbor Overpass Ship Stadium Storage

tank
Tennis
court

Train
station Vehicle Wind mill

Table 12. Measured detection results on the DIOR dataset.

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP

YOLOv4-Tiny [35] 58.61 55.99 71.57 74.52 22.19 72.11 47.26 54.83 48.50 60.11 64.46 51.09 46.92 41.93 55.42 37.18 79.78 36.27 26.49 52.23 52.87
Proposed 58.16 55.62 72.39 76.01 25.86 73.03 43.31 55.43 51.39 58.94 66.03 51.30 48.69 70.41 51.82 53.34 82.46 38.78 32.60 63.33 56.45

Table 13 compares the proposed scheme with state-of-the-art detectors that have been
optimized for remote sensing images. Among all the detectors, CSFF [53] and CF2PN [16]
have the highest accuracy but the most complex network structure. For instance, CSFF
adopted ResNet-101 as the backbone and an FPN as the prediction network, which greatly
improved the accuracy of remote sensing object detection. However, the network model is
8× larger than that of the proposed scheme, resulting in a 15× slower processing speed
on desktop GPUs. The extremely large neural network model and high computational
workload have prohibited similar schemes like CSFF and CF2PN to be deployed on
embedded hardware platforms. In contrast, Simple-CNN [54] and ASSD-lite [55] have
used simpler backbone structures and more compact network design. These two methods
can then achieve real-time processing speed (around 60 FPS) on desktop GPUs. However,
the computational workload of these two detectors is still too large to meet the capacity
of our target embedded device (i.e., to achieve a real-time speed of 60 FPS, the network
model of the detector should have less than 8 GFLOPs workload). The only lightweight
detector that can compete with the proposed scheme in terms of the number of parameters
is LO-Det [56]. However, in LO-Det, the authors have designed a very complex FPN
network, in which channel shuffle and split operations were repeatedly used in each layer.
There operations can improve the network’s accuracy but are very unfriendly to parallel
processing on GPUs. Therefore, LO-Det only achieved a 4× slower processing speed
than our scheme. The proposed detector achieves a considerably higher processing speed
of 227.9 FPS than all the reference schemes on the desktop GPU, which reveals that our
scheme is not only lightweight in model structure but also very efficient to be executed on
GPU devices for parallel processing.

Table 13. Comparison with state-of-the-art detectors for remote sensing images. The performance data were measured on
the DIOR dataset.

Approach CSFF [53] CF2PN [16] Simple-CNN [54] ASSD-Lite [55] LO-Det [56] Proposed

Year 2021 2021 2021 2021 2021 2021
Backbone ResNet-101 VGG16 VGG16 MobileNetv2 MobileNetv2 17-layer-CNN

Parameters >46 M 91.6 M 23.53 M >24 M 6.93 M 6.5 M
FPS 15.21 19.7 13 35 64.52 227.9

mAP 68 67.25 66.5 63.3 58.73 56.45
Device RTX3090 RTX2080Ti GT710 GTX 1080Ti RTX3090 RTX2080Ti

6. Deployment on Embedded Platform

We have deployed the proposed object detection framework on the NVIDIA Jetson
Xavier NX board installed on an UAV machine. The proposed lightweight neural network
model was quantized into 16-bit floating-point numbers (FP16) by using the TensorRT
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toolkit. The final prediction accuracy and speed results are reported in Table 14, in which
FP32 refers to the standard 32-bit floating-point precision. By quantizing the network
model to a reduced precision, the Jetson NX platform can deliver twice the computational
capacity than using the standard FP32 data format (i.e., 500 GFLOPs vs. 250 GFLOPs
peak performance). In addition, the detection accuracy of the quantized model was
well preserved. Thanks to the lightweight, yet efficient network structure proposed,
the system can perform high accuracy real-time object detection tasks at the speed of
58.17 FPS on captured remote sensing images with the power consumption of 8.5 W.
Therefore, the achieved computational performance is 294 GFLOPs. When compared to the
original YOLOv4-Tiny model, our scheme has a significant advantage of 5.1% improvement
in detection accuracy, while the sacrifice in speed is not noticeable for practical usage.
Moreover, the proposed detector also presented a 15.6% higher computational efficiency
over YOLOv4-Tiny. The main reason is that parallelism of the convolutional units is
optimized in the device, especially for 3 × 3 conv. Large amount of computation in our
proposed is stemming from the increase in 3 × 3 conv, which improves the utilization of
device resources.

Table 14. Measured accuracy, speed, and efficiency on the NVIDIA Jetson Xavier NX board.

Methods mAP (FP32) mAP (FP16) FPS (FP16) Efficiency (100%)

YOLOv4-Tiny 80.02% 80.22% 63.28 43.2%
Proposed 85.13% 85.33% 58.17 58.8%

7. Conclusions

In this paper, we have proposed an efficient lightweight object detector for remote
sensing images based on deep convolutional neural networks. To achieve the best bal-
ance between detection speed and accuracy, we first designed an improved YOLOv4-like
backbone network with three prediction layers to alleviate the problem of multi-scale
object detection. Further combined with efficient channel attention to obtain important
features, the detector can detect small objects with improved accuracy and no significant
overhead in computational workload. Then, an optimal anchor configuration scheme was
proposed to solve the problem of obtaining biased anchors due to the large variation in
object scales in remote sensing images. Finally, evaluation was conducted on both the
RSOD and DIOR datasets, respectively, and comparisons with state-of-the-arts show that
the proposed lightweight detector has a significant advantage in processing speed while
the detection accuracy is maintained at a close level. Furthermore, real-world deployment
on the NVIDIA Jetson Xavier NX verified that our scheme was very suitable for low-cost
low-power real-time remote sensing object detection tasks.
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