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Abstract: Over the past years, numerous Internet of Things (IoT)-based healthcare systems have
been developed to monitor patient health conditions, but these traditional systems do not adapt to
constraints imposed by revolutionized IoT technology. IoT-based healthcare systems are considered
mission-critical applications whose missing deadlines cause critical situations. For example, in
patients with chronic diseases or other fatal diseases, a missed task could lead to fatalities. This study
presents a smart patient health monitoring system (PHMS) based on an optimized scheduling
mechanism using IoT-tasks orchestration architecture to monitor vital signs data of remote patients.
The proposed smart PHMS consists of two core modules: a healthcare task scheduling based on
optimization and optimization of healthcare services using a real-time IoT-based task orchestration
architecture. First, an optimized time-constraint-aware scheduling mechanism using a real-time
IoT-based task orchestration architecture is developed to generate autonomous healthcare tasks
and effectively handle the deployment of emergent healthcare tasks. Second, an optimization
module is developed to optimize the services of the e-Health industry based on objective functions.
Furthermore, our study uses Libelium e-Health toolkit to monitors the physiological data of remote
patients continuously. The experimental results reveal that an optimized scheduling mechanism
reduces the tasks starvation by 14% and tasks failure by 17% compared to a conventional fair
emergency first (FEF) scheduling mechanism. The performance analysis results demonstrate the
effectiveness of the proposed system, and it suggests that the proposed solution can be an effective and
sustainable solution towards monitoring patient’s vital signs data in the IoT-based e-Health domain.

Keywords: Internet of Things; smart healthcare; remote health monitoring; vital signs monitoring;

optimization

1. Introduction

Recently, Internet of things (IoT) has been defined as a revolutionary technology to
develop tremendous IoT-based applications in various domains, such as smart health-
care, smart home, and smart city [1-3]. IoT is a huge network of connected devices,
things, and objects, all of which collect and share data about how they are used and the
environment around them. The main objective of the IoT platform is to allow humans
and computers to interact and communicate with billions of things and objects [4].
IoT platforms for the healthcare domain are more comprehensive than traditional
platforms, which use to provide better quality services to the healthcare industry [5].
IoT devices for the smart healthcare domain such as body and environmental sensors,
actuators, and motion sensors work at the lowest layer. These connected devices are
linked with devices of the communication layer, which use to collect sensing data from
IoT devices and transfer it over the internet for further processing to address specific
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needs. Doctors and healthcare researchers carefully analyze the acquired sensing data
using statistical analysis applications. Over the past years, various IoT-based health-
care applications have been developed to collect, process, and analyze vital signs data
acquired from sensors equipped with patient’s body [6-11].

Today, electronic health (e-Health) is an emerging health service paradigm that uses
information communication technologies (ICTs) to enhance traditional healthcare systems
to provide better health services to remote patients. These systems are used to monitor
the vital signs data of remote patients, which is transferred to the doctor through com-
munication devices and processed for diagnosis. For instance, chronic disease patients
are monitored regularly, such as patients with cardiac disease are monitored by sensing
data of electrocardiogram (ECG), and patients with diabetes are monitored by sugar level.
According to a study [12], half of the American adult population are diagnosed with at
least one chronic condition, and one of three adults are suffering from two or more chronic
diseases. Chronic diseases are causes of mortality. Out of 10 mortalities, 10 percent are
caused due chronic diseases. Heart and cancer diseases are considered leading causes of
death, which is reported 48% of total deaths. In traditional healthcare systems, a large
number of healthcare resources, such as doctors, nurses, and therapists, continuously
monitor the vital signs of patients. In recent years, different health monitoring systems
have been developed and employed to collect and process vital signs data of patients using
IoT devices [13-15]. IoT-based healthcare applications are more comprehensive to develop
quality of service (QoS) requirements that differentiate them from other applications based
on IoT technology.

However, there are different features such as delay sensitivity, time criticality, network
cost efficiency, fault tolerance, collection, and processing of sensing data that are considered
critical for real-time smart health applications based on different reasons [16]. For instance,
vital signs data of patients are collected using body sensors that operate on different
priorities level to monitor patient’s health conditions. In the medical domain, some of
the patient’s vital signs data are considered critical [17]. Traditional healthcare systems
are not well-structured to automatically generate healthcare tasks and handle the task
allocation process efficiently and dynamically for high-priority healthcare tasks. Therefore,
it is required to order healthcare tasks (including priority and event tasks) based on a
time-constraint scheduling mechanism to minimize task allocation delays and increase
throughput in terms of response time. It is also required to generate a new task in the case
of emergent conditions to send notification alerts to concerned authorities in order to take
appropriate actions.

Furthermore, safety is considered an essential element in smart e-Health systems.
An e-Health service provider is said to be safe if it can self-diagnose sensors faults to
provide reliable healthcare services to remote patients. On the other hand, the failure
frequencies of sensors are also considered a challenging issue in the smart e-Health domain.
If the failure frequency of sensing devices is high, then it causes to degrade the reliability
of the smart e-Health system. Therefore, it is required to optimize information lost during
context switching from a faulty sensor to a backup sensor and minimize sensors failure
frequency to increase the reliability of the smart e-Health system.

In this study, a smart PHMS is developed to monitor the vital signs data of remote
patients in the home as well as in the hospital and optimize healthcare services for providing
reliable health services to remote patients. Our proposed smart PHMS consists of two main
modules; healthcare tasks data monitoring using a real-time IoT-based tasks orchestration
architecture and optimization of healthcare services. First, a real-time IoT-based task
orchestration architecture is developed based on a self-management paradigm to monitor
patient’s vital signs data effectively. Second, an optimization module is formulated using
an optimization scheme based on objective function to provide reliable services to remote
patients. The self-management task management architecture consists of the following
steps; analysis and decomposition of complex problems into micro-problems, generation of
healthcare tasks, healthcare tasks mapping, healthcare tasks scheduling using an optimized
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time-constraint aware scheduling, and deployment of healthcare tasks on physical devices.
An optimized PSO-enabled time constraints-aware scheduling mechanism is developed to
schedule healthcare tasks to handle emergent tasks effectively. The optimization module
aims to optimize healthcare services based on objective function using a meta-heuristic
technique to provide a reliable treatment to remote patients. The main objective of task
orchestration architecture is to automatically generate healthcare tasks and dynamically
handle the deployment of emergent tasks to tackle patient’s critical conditions effectively.
The proposed smart PHMS is developed based on a self-management paradigm using web
technology, such as front-end technology (CSS3, HTMLS5, and JavaScript) and backend
technology (Python and Flask framework). Furthermore, for experiment purposes, a well-
known Libelium e-health toolkit is used to monitor the following vital signs data of
patients, such as body temperature, ECG, blood pressure, SpO2, and respiration rate.
Moreover, the JMeter tool is used to record simulated data of virtual patients to conduct a
series of experiments. Different performance analyses are used to evaluate the significance
of the proposed smart PHMS, such as round trip time (RTT), latency, starvation, and drop
rates of healthcare tasks.
The notable contributions of the proposed study is followed as:

¢ Development of a scheduling mechanism based on optimization and time-constraint-
aware scheduling techniques using a real-time IoT-based task orchestration architec-
ture to efficiently monitor vital signs data of remote patients;

*  Development of an optimization module based on objective function to minimize in-
formation lost during context switching of sensing devices and minimize the sensor’s
failure rate to improve recovery and reliability of the proposed smart PHMS;

¢ Development of a PSO-enabled Time-constraint aware scheduling mechanism using a
real-time IoT-based task orchestration architecture to schedule healthcare tasks efficiently;

e Development of real-time IoT-based task orchestration architecture to handle the
deployment of critical and emergent healthcare tasks effectively and dynamically;

e  Utilization of different evaluation metrics are to evaluate the effectiveness of the
proposed smart PHMS, such as RTT, latency, throughput, response time, and task
drop and starvation rates.

The rest of the paper is divided into the following sections. Section 2 presents the
related works; Section 3 presents architecture of the proposed smart PHMS, optimization
functionality to overcome recovery and reliability challenges in smart e-Health domain,
and a tasks orchestration mechanism. Section 4 presents experimental and implementa-
tion environment of the proposed smart PHMS. Section 5 discusses experimental results,
performance analysis and comparison of the proposed system with state-of-art-techniques.
Section 6 concludes the paper with possible future direction.

2. Related Work

This section presents existing studies related to remote patient health monitoring
systems. Advancement in IoT technologies paved a revolution in e-Health systems to
provide healthcare services to remote patients. Remote healthcare monitoring is today’s
most vital protection system for patients who choose to stay at home for various reasons.
Previously the doctor needs to check the patient in the form of physical examinations,
and continuous monitoring was impossible. Hence in case of critical emergencies,
continuous monitoring was impossible, which could be stressful for both patient and the
doctor. In recent years, there are various IoT-based healthcare applications developed to
facilitate remote patients in the healthcare domain [18-22]. All these IoT-based healthcare
applications are used to monitor, process, and analyze the vital signs data of patients.
However, there are different issues faced by traditional e-Health systems, for instance,
high delay sensitivity, fault tolerance, network cost efficiency, to name a few. These
systems are not consistent to handle tasks allocation process automatically to deploy
healthcare tasks efficiently.
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In [18], the authors presented an architecture for detection of symptoms associated
with heart failure patients comprising of sensors, web servers and databases. This wire-
less sensor-based system detected symptoms related to heart disease to a greater extent.
Jara et al. [19] utilized the sensing abilities of IoT devices and presented a mobile health
framework to handle the emergency condition of patients. Another study presented in [23]
to utilized smartphones for monitoring patient health status. In [20], the authors presented
a detailed review on methods and techniques applied to the domain of health care ser-
vices for data analysis from various wearable sensors. In [21,24], the authors developed
a system for the detection of critical heart-related symptoms based on advanced remote
monitoring. T. Klingeber et al. [22] presented an algorithm to improve the data fusion
process to record large patient vital signs data precisely, such as ECG, blood pressure,
skin temperature, to name of a few. In [25], the authors used a wireless sensor network
(WSN) to monitor patient vital signs data. Another study presented in [26] integrated IoT
technology in the health monitoring system to monitor and observe the health condition
of remote elderly patients. In [27], the authors proposed a multi-parameters based fall
detection model for elderly patients. An integrated model was proposed to combine smart-
watch and accelerometer to recognize falls of elderly patients [28]. There are different
existing studies attempted to utilize accelerometer, gyroscopes, and barometers to detect
falls to improve the efficiency of IoT-based health monitoring systems [29,30]. The au-
thors presented a WAN-based energy-efficient system for health care data analysis [31].
Furthermore, both [32,33] proposed two-fold encryption model to secure sensing data of
remote patients to ensure data privacy and security.

Different researchers have proposed and developed cloud-based health monitoring
systems to facilitate remote patients. In [34], the authors suggested an efficient health care
monitoring system for elderly patients based on fog and cloud computing. The novel fog to
cloud-based architecture facilitated the management of health data efficiently. In [35], the au-
thors developed a reliable cloud-based system for ECG monitoring; the data is collected and
transmitted to the IoT cloud through a wearable monitoring node. Another study presented
in [36] suggested a cloud-based architecture to detect and monitor patients having Parkinson’s
disease in developing countries. The developed architecture enabled healthcare practitioners
to analyze voice samples of patients collected through their phones for detecting and diagnos-
ing Parkinson’s disease. Experimental results demonstrated that the proposed architecture
achieved an accuracy of 96.6%. Likewise, to detect heart rate variations, the authors presented
an automated cloud-based system [37]. The system involves two databases: MIT Physionet
database, and the second was composed of gathering data from thirty people through wear-
able sensors. In [38], the authors presented a Body-Cloud-based system involving body sensor
networks for real-time monitoring of cardiac data.

Health monitoring systems are revolutionized by fog computing architecture, bringing
significant improvements in telehealth and medicine. In literature, fog computing-based
health monitoring architectures were proposed to address the problems of elderly patients
suffering from chronic diseases. These architectures provide efficient network resource
utilization, such as network bandwidth, etc. Hence, smart mobile device users are pro-
vided with real-time information close to the network edge. Based on these concepts, we
can categorize the literature into two sections: fog computing-based patient health care
monitoring system and remote health care monitoring system using IoT. In [39], the authors
proposed an improved fog computing system based on the cloud. This system aids the
real-time applications through analysis of biosignals at the fog server end. In [40], the au-
thors implemented a gateway named smart e-health to be utilized in fog computing layers.
A practical implementation of loT-based early warning score related to health monitoring
was also done to prove the efficient working of the system [41].

In IoT-based health applications, task scheduling is an essential process to order
healthcare tasks correctly for efficient deployment. The dynamic task scheduling process
helps to minimize latency and maximize throughput. However, traditional e-Health
systems are developed based on static task generation and scheduling mechanisms to
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handle the health task allocation process [42]. The authors defined a task allocation problem
as an integrated linear model, which aims to minimize latency during resources requested
by a particular task. In [43], the authors proposed an event triggering-based model to
process real-time data of patients. The authors defined various health tasks to acquire
and process real-time patient data. In another study presented in [44], a prototype-based
architecture was presented to consider speech motor disorders patient’s data as a case
study. The authors focused on the static allocation of health tasks to acquire patients data
to analyze and diagnosis for better treatment. In [45], the authors proposed a fall-detection
algorithm to detect the fall of elderly patients based on a static task allocation mechanism.

Different researchers propose different task scheduling mechanisms to tackle the
allocation process of tasks in different domains [46-51]. In [46], the authors developed
an efficient IoT-based service delegation and resource allocator system for managing
and delegating requests of users to their appropriate fog/cloud. The study presented
in [47] utilized predict earliest finish time (PEFT) algorithm that works on the concept
of optimistic cost table to prioritize tasks and selecting processor. In [48], the authors
proposed a novel method of the clustering algorithm to schedule multi workflows in
a cloud computing environment. In [49], the authors proposed a novel solution to the
problem of fault tolerance, optimal resource allocation, and minimizing overflow of a
resource based on an efficient resource allocator (ERA). In [50], a new scheduling strategy
was developed to achieve a trade-off between the performance of the application (in
terms of execution) and the associated cost of cloud resource usage to provide better
quality services. In [51], the authors used data mining (using Apriori) techniques for task
scheduling in Fog computing-based devices. Experimental findings state that the proposed
algorithm has achieved better execution time and average wait time. Furthermore, Table 1
summarizes existing health monitoring systems based on different paradigms to facilitate
remote patients in homes and hospitals.

Table 1. Summary of the existing healthcare systems.

Application Platform Objective Pros Cons
Remote health ToT The proposed system was developed to monitor ~ Provides real-time alerts, low computation ~No-fault tolerance, static deployment
monitoring [22] critical events related to cardiac diseases. cost to process remote patients data. process of healthcare tasks, high cost.
Vital signs IoT This study aimed to record vital signs data of Correct or reject distorted signals of vital High energy consumption and static
monitoring [23] ° patients, such as ECG, blood pressure, etc. signs based on the data fusion approach. platform for handling emergent conditions
Health monitoring Advancgd Paradlgms of loT-based system Emergencies alerts, GUI, reduce energy Delay in emergencies alerts, and low

IoT for monitoring critical symptoms related to

system [24]

consumption due to Bluetooth. reliability.

cardiac disease.

F2C model [34]

Cloud-Computing

The main objective is to monitor the health
conditions of remote patients based on the
fog-to-cloud paradigm.

It uses the F2C model to provide storage
and security of healthcare data. It sends
emergencies alert using a smartphone.

No-fault tolerance, static scheduling of
tasks related to heart rate monitoring.

ECG monitoring
system [35]

Cloud-Computing

The authors developed a Cloud-based reliable
architecture for ECG monitoring of remote
patients in smart health.

High bandwidth rates for healthcare data
transmission, and web-based GUI for
versatile services.

No scheduling mechanism for handling
emergent condition of remote patients.

Heart rate monitoring

system [37]

Cloud-Computing

Attempted to monitor heart rate on a Ease of use, GUI, and healthcare data

Scalability issues.

continuous basis to facilitate cardiac patients.

security.

BodyCloud [38]

Cloud-Computing

The proposed BodyCloud is a SaaS approach
for real-time monitoring cardiac patient’s data.

Scalable approach for healthcare
data storage and analysis.

Lack of emergency alerts and
global security.

Case study [39]

Fog-Computing

The authors presented a case study to analyze
ECG signals to play a vital role in the diagnosis
of cardiac diseases.

Real-time monitoring of ECG signals,
and bandwidth efficiency.

Lack of emergency alarms and
scalability issues.

Smart e-Health [40]

Fog-Computing

Introduction of Fog-layer in IoT-based healthcare
platforms for health monitoring in the home and
in the hospital.

Inefficient consumption of energy,
lack of scheduling for handling
emergent conditions.

Reducing latency
and improve consistency.

Smart e-Health
gateway [41]

Fog-Computing

This study aimed to integrate fog-computing into
existing IoT-based healthcare systems for efficient
data processing and mining.

Real-time vital signs data processing,
and provide mobility support for
home and hospital patients.

Interoperability issue for a variety
of nodes, lack of dealing with
emergent healthcare tasks.

Patient health
monitoring [43]

Fog-Computing

The authors proposed patient’s health monitoring
system based on fog computing to process and
store data at the smart edge gateway.

Real-time health monitoring,
data mining, and notification
services.

High computational cost at edge node,
scalability issue, and static allocation
of healthcare tasks.

To the best of the author’s knowledge, all of the aforementioned IoT-based e-Health
systems are developed based on static task scheduling and allocation. Moreover, all these
existing are not well-structured to generate autonomous health tasks and handle the task
allocation process for high priority health tasks dynamically. Furthermore, all these existing
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IoT-based e-Health systems faced different issues, such as delay sensitivity, time criticality,
high fault tolerance, high network cost, to name a few. Therefore, a new solution is required
to monitor patient health conditions based on efficient task orchestration architecture,
which aims to minimize latency, maximize throughput, and handle emergent health tasks
effectively. It is also required to optimize wireless network cost to drive optimal healthcare
tasks scheduling decisions to provide cost-effective health services to remote patients.
Furthermore, an ideal IoT-based smart PHMS should provide safety in terms of recovery
and reliability.

3. Materials and Methods

This section presents materials and methods used for development of the proposed
smart PHMS.

3.1. Design of Proposed Smart PHMS

This subsection presents proposed architecture of smart PHMS. Figure 1 presents a
proposed architecture diagram of the proposed smart PHMS. The proposed smart PHMS
architecture consists of the following layers: generation of healthcare tasks, optimization of
healthcare services (solution layer), mapping healthcare tasks on virtual objects, optimized
scheduling mechanism, deployment of healthcare tasks on physical IoT devices.

loT-based Task Orchestration Architecture
Healthcare Tasks Generation

Get Body Get Blood

Get Heart Rate Get Pulse Rate Get Glucose rate
Temperature Pressure

Optimization of Healthcare Services (Solution Layer)

Maximize information retrieval rate and Minimize sensors failure rate to increase
minimize information lost the reliability

Healthcare Tasks Mapping

Get Body Get Blood
Get Heart Rate Get Pulse Rate Get Glucose rate
Temperature Pressure
v v 12 v v
Blood Pressure
Temperature VO Heart Rate VO VO Pulse VO Glucometer VO

Optimized Scheduling of Healthcare Tasks

} Time-Constraint Aware Tasks
Minimize Task Idle | loptimized Task Scheduling
) | idle Time
Time — ¥
(Cost Function Goal) | (

Performance Analysis
(Starvation Rate, Tasks Dropout, Latency, Throughput, etc.)

\[ Deployment of Scheduled Healthcare Tasks J/

Physical 10T Resources

00 O O -+ OO

L__Devicel ____ Device2_______ Device3 _____Deviced_ __________________ RDevicek-1____Nevicek ___

Figure 1. Proposed architecture of Smart patient health monitoring systems (PHMS).
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Task generation layer incorporates into following sub-layer to generate healthcare
tasks. It includes the decomposition of the problem layer into multiple sub-problems.
Each sub-problem is decomposed into healthcare tasks using natural language processing
(NLP). In the solution layer, each sub-problem consists of one or many goals, such as
proposed smart PHMS is said to be safe if it minimizes information lost during context
switching process and sensors failure rate to increase the reliability of the developed
system. The solution layer consists of the following mathematical formulations, which aim
to minimize information lost during context switching of sensors and minimize sensors
failure rate to provide a safe and reliable environment to remote patients. In the healthcare
tasks mapping, generated healthcare tasks are mapped on virtual objects (VOs) to formulate
tasks and VOs pairs. Next, an optimized task constraint-aware scheduling mechanism is
developed based on objective function to optimize task idle time to enhance the scheduling
process. In the virtualization layer, virtual objects are generated for physical devices to
perform tasks related to the IoT environment. Finally, the physical resource layer consists of
the physical IoT devices, such as sensors and actuators nodes. The sensing nodes are used
to sense data from installed or equipped sensors with the patient body, while actuators
are responsible for executing generated control commands through installed actuators.
The ultimate goal of this work is to facilitate remote patients by providing a safe and
reliable environment.

3.2. Mathematical Formulations for Smart PHMS

This subsection presents mathematical problem formulation to optimize health moni-
toring services to remote patients. The optimization module aims to minimize information
lost during context switching of sensors and tasks failure frequency. The safety problem for
remote patient’s health monitoring in both home and hospital is to self-diagnosis sensor
fault to increase the reliability of health services for remote patients. This paper uses an
optimization approach to formulate information loss recovery (ILR) to minimize informa-
tion lost during context switching from a faulty sensor and backup sensor. Table 2 presents
notations and symbols used in this problem formulation.

Table 2. Description of notations and symbols used in the formulation.

Notation Description
{s1,82,.-.,5n} There are N number of sensors (measurements).
{x1,x2,...,%n} It indicates collected sensing data for it" sensor at time ¢.
SN It indicates total number of available sensors.
Sk It indicates total number of additional sensors.
Ir It is total amount of information retrieve from sensing devices.
Ir, It is total amount of lost information from sensing devices at time .
R(SN, Sk) It represents ratio of available sensing devices and additional (backup) sensing devices.
R(Ig,IL) It represents ratio of retrieve information and lost information.
ILR It is defined as information loss recovery index.
T It represents the lower threshold function.
T It represents the upper threshold function.
a(max) It is an average value of the maximum value of a sensor measurement signal.
a(min) It is an average value of the minimum value of a sensor measurement signal.
Rq It denotes a quasi-natural ratio.
S It represents safety factor to minimize sensors failure frequency to increase the reliability
f of the proposed smart PHMS.
Sindex It represents safety index based on ILR and 5.

There are several assumptions to formulate objective function, for example, N number
of available sensors to collect data from patients Sy, K number of additional sensors to
tackle sensors replacement issues Sk. Thus, R(Sy, Sk) ratio can be calculated as follows in
Equation (1).

SN

R(Sn,Sk) = Sk 1)
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ILR index is defined as the ratio of total retrieve information from each sensing device
fault Ig and the lost information for sensing device fault I;. Thus, the R(Ig, I1) ratio is
calculated as follows in Equation (2).

YIR  Iga+Ira+Igs+...+Irm
R(Ig I1) = =R =

— = 2
YI La+Iip+Iis+...+1m @)

By integrating Equation (1) and Equation (2), we form an objective function, which
aims to maximize information retrieval rate and minimize information lost during context
switching from a faulty sensor to a backup sensor. The following Equation (3) is used to
calculate the information loss recovery ILR index:

R(Sn,Sk) _ SnEIL
R(Ig,IL)  SkXIr

Thus, an objective function is defined as an Equation (4) to minimize ILR index during
context switching of sensing devices.

ILR =

®)

SNZIL)
Sk L Ir

The second problem is related to reliability is the failure frequencies of sensors. If the
failure frequency is high, then the overall reliability of the system will be low. Therefore, we
propose an optimized approach based on the objective function, which aims to minimize
sensor’s failure frequency to increase the reliability of the sensing data of the proposed
smart PHMS. It enables smart PHMS to verify that acquired sensing data are correct. It
validates sensing data of each sensor by using upper and lower threshold values. If sensing
values lie between upper and lower threshold values bounds, it ensures that acquired
data is corrected; otherwise, it will be considered a sensor fault, and sensing data will
not be considered for patient health analysis. There are following assumptions, such that
the i*" sensor of the patient health monitoring system collects n data samples in the time
interval ¢, sequence of the data can be represented as x = x1, x2, x3, ..., X, then the real
data condition is defined as follows in Equation (5):

ILR = Minimize(

4)

Ty (t) < xp < Ta(t) 5)

where T (t) and T;(t) are threshold functions, such as lower and upper threshold functions
of i" sensor at time interval . Both threshold functions validate sensing data whether it
lies in a valid range or not. In this way, It will enhance the reliability of the proposed smart
PHMS if sensing values fall between lower and upper threshold functions. The performance
of distortion fault of sensor discrete point data is defined based on the upper and lower
threshold formula shown in Equation (6):

Xy > Ti(t), or x, < To(t) (6)

The mathematical formulation for sensor distortion fault is followed in Equation (7), where
a indicates the average value of the ratio of maximum and minimum values of measurement
signal data of i"* sensor of proposed smart PHMS. The following Equation (7) is used to obtain
sensor failure faults for sensing data x for i sensor at time interval .

a(max, min) = (max(x) ‘mei”(x)) _ max(x1,X2,...,Xy) -zl-min(x1,x2,...,xn) @)

The linear minimum mean variance of the corresponding fault signal y is estimated
to determine the threshold value of generalized quasi natural ratio [52] is shown in

Equation (8).
_ ( plelo:Hi)
= (P(#Iv;Hj)> ®)
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Our objective function aims to minimize sensors failure rate is shown in Equation (9):

L. ;Hi
S = Minimize (}%) 9)

The final objective function is defined in Equation (10), which aims to minimize infor-
mation lost during context switching process of faulty and backup sensors and minimize
sensors failure to increase the reliability of the proposed smart PHMS. The « and f are the
weighting parameters of the functions ILR and Sy.

Sindex = Minimize(aILR + BSy) (10)

3.3. Task Orchestration Architecture for Smart PHMS

This section presents a detailed architecture of the task orchestration in a health
monitoring system, which aims to get sensing data from remote patients in an effective way.

The proposed task orchestration module consists of the five-layered architecture, such
as service analysis and decomposition of services into microservices, task generation using
NLP techniques, task/virtual object pair generation and mapping, optimal task scheduling,
task allocation and deployment, as shown in Figure 2.

Each layer performs a unique functionality towards the main functional goal.
The main objective of the proposed architecture is to utilize task composition through
NLP techniques and VOs mechanism to allocate the given health-related tasks on VOs
in a smart health monitoring system efficiently. The physical IoT resource layer consists
of installed physical devices, such as sensors and actuators. The installed sensors are
used to sense and transfer remote patient’s health data to IoT servers. There are different
sensors equipped with the patient body, for instance, temperature sensor, heart rate
sensor, blood pressure sensor, pulse rate sensor, to name a few. In addition, the following
actuators, such as alarm and notification actuators, are used to send alert messages to
healthcare practitioners in an emergency.

3.3.1. Service Analysis and Decomposition of Health Tasks

This subsection presents the service analysis and decomposition layer of the proposed
task orchestration architecture. In this layer, users use a self-management approach to
enters service titles and concise descriptions. This layer is responsible for analyzing and
decomposing services into micro-services based on NLP techniques using a service analyzer.
The NLP techniques are the most commonly used techniques in text mining to discover
hidden insights and useful information from text, such as tokenization, part of speech
(POS) tagging, stemming, a bag of words, to name a few. These techniques also help
the machine to understand and process the meaning of human languages. The service
analyzer uses service title and description as an input and then decomposes the given
service into multiple micro-services using NLP techniques. Furthermore, service analyzer
uses parts of speech (POS) tagging mechanism to investigate service description to discover
a verb, which is essential to identify the type of the micro-service. Finally, the micro-service
analyzer is used to examine micro-service to generate input tasks based on a concise
description of the micro-service using NLP techniques. The basic flow of the task generator
manager (TGC) is illustrated in Figure 3.

Once input tasks are generated, TGC receives generated tasks from the micro-service
analyzer and saves them into task data storage. The generated tasks are categorized as
periodic or event based on the adverb, followed by the sentence’s main verb. For example,
there are the following tasks extracted automatically from the service title and descrip-
tion, such as getting body temperature, getting heart rate, getting patient blood pressure,
and getting pulse oximeter. In addition, there are the following tasks to transfer sensing
data from sensing devices to doctor using IoT Server, such as report body temperature,
report heart rate, report patient blood pressure, report pulse oximeter, etc.
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Figure 2. Task Orchestration Architecture for Efficient Tasks Allocation in Smart PHMS.

3.3.2. Virtualization of IoT Resources

This layer is responsible for the virtualization of IoT resources, such as the virtu-
alization of physical devices. The virtual resource manager (VRM) creates VOs and
provides an interface for performing CURD operations on VOs. These VOs are used to
act as physical objects (POs) and hold all the essential properties of the POs along with
additional properties of the IoT virtualization environment. The behavior of the VOs is
defined based on functions associated with POs and other information, such as URI and
location. The VRM is also responsible for identifying communication protocol and other
data properties, including data validation. VRM also provides graphical representation
to visualize VOs, such as ECG icon graphical represents a heart rate sensor. Finally, we
store created VOs through a virtualization mechanism in a virtual object repository.
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Figure 3. Basic flow of automatic generation of health tasks.

3.3.3. Task/Virtual Object Pair Generation and Mapping

This layer is used to associate generated tasks with created VOs in order to gen-
erate best-matched pairs of input tasks and VOs. The generated tasks are retrieved
from the tasks repository, and VOs are fetched from the VOs repository to generate
best-matched pairs for the given tasks and VOs for the execution process. Each gener-
ated healthcare task is associated with one or more VOs. The combination of VOs and
generated tasks are used to form URI. The URI contains information, which is used to
measure the output of a certain process. The URI is also used to access physical devices
in the proposed task orchestration architecture. The task mapping controller (TMC) is
used as a design component to map the input tasks on VOs. It is also responsible for
monitoring and managing the overall process of the mapping mechanism. It allows
users to use a self-management approach to select a task from the given tasks list
and map it on the related virtual object using the drag and drop feature to form a
best-matched pair. The drag and drop feature provides a user interface to establish a
connection between task and virtual object by dropping a solid line from a task in tasks
list to a virtual object in the VOs list. TMC use to visualize the established connection
between the tasks list and VOs list. Furthermore, it is used to store a mapping configu-
ration in the task mapping repository for further processing. The typical task mapping
entity consists of the following attributes: task id, virtual object id, and created times-
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tamp at which the task mapping occurs. The output of the task mapping process is
defined as a message, which contains the following parameters listed in Table 3.

Table 3. Message profile parameters.

Parameter Description
Message ID It is a unique identifier of a message.
Micro-Service ID It indicates micro-service to which the given task belongs.
Input Task ID It represents an identifier of the given input task.
Virtual Object ID It represents an identifier of the given virtual object.
Timestamp It represents timestamp at which the task mapping process occurred.

3.3.4. Healthcare Task Scheduling for Efficient Resource Utilization

The main objective of task scheduling is to schedule tasks on IoT devices effi-
ciently and effectively. The task scheduler manager (TSM) is responsible for arrang-
ing the correct order of input tasks for efficient execution and resource utilization.
TSM uses following task attributes, such as execution time, deadline, priority, ur-
gency, sensing, and control tasks, to plan execution order for the given input tasks.
TSM uses three-dimensional space to order tasks execution. The three-dimensional
space consists of the following dimensions, such as input task T, virtual object (VO)
on which the given task T is scheduled, and timestamp f at which the task T is sched-
uled on VO. TSM receives task list from task repository, VOs list from VOs repository,
and output of TMC to initialize the scheduling process using scheduling algorithm.
In this research study, an optimized time-constraint aware scheduling approach is
used to plan the execution order of the mapping pairs. It is adequate and robust
compared to other scheduling approaches because it executes tasks based on system
and user constraints (i.e., idle task time, priorities) and different influential factors,
such as current task starvation, missing rate, and delays rate, etc. The proposed op-
timized time-constraint-aware scheduling mechanism is proposed to minimize task
idle time to enhance the performance of the scheduling process. To optimize task idle
time, an objective function is developed to enhance the performance of the scheduling
mechanism. Furthermore, we used an evolutionary technique, such as particle swarm
optimization (PSO), to minimize task idle time based on objective function to provide
reliable healthcare services to remote patients. PSO is a widely used population-based
optimization technique inspired by the flying behavior of birds swarms in nature, such
as swarm (group) of birds searching for food [53]. It is an SP technique based on swarm
intelligence and can be adapted in many areas to search for the best possible solution
in the given multidimensional space [54]. In PSO, each particle has been evaluated
using an objective function (cost function) to determine local best py.s; and global best
Qrest POsitions of particles. Then, it uses both pp.s; and gp.s; positions of particles to
update the velocities and moved towards an optimal solution. Next, it uses a velocity
vector to calculate particle speed and direction. Finally, each particle position has been
updated to determine the global optima.

In a smart PHMS, there are two types of healthcare tasks: periodic and event-
based healthcare tasks. Periodic healthcare tasks are categorized into two sub-types:
priority tasks (PT) and normal tasks (NT). Similarly, event-based healthcare tasks are
categorized into two sub-types: urgent event tasks (UET) and normal event tasks
(NET). Therefore it is essential to propose an optimized scheduling mechanism to
handle emergent healthcare tasks effectively. Hence, our work proposes a PSO-based
optimized time-constraint aware scheduling mechanism to dynamically and effectively
schedule emergent healthcare tasks. Furthermore, a PSO-assisted optimization model
is developed based on objective function to minimize task idle time for enhancing time-
constraint aware scheduling algorithm. Table 4 presents summary of the notations
used in the optimization problem formulation.
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Table 4. Notations used in optimization problem formulation.
Notation Description
{51,52,53,.-.,5n} There are N number of sensing devices.
{1y, Ty, Ts,..., Tx} There are K number of healthcare tasks for each sensing device.
Taskid It is identifier that represents healthcare task.
Startijye It represents start time of the arrived healthcare task.
Finishyjpe It indicates finish time of healthcare task.
Executionyy, It represents execution time of healthcare task.
Task;gje,,, It is an idle amount of task completion time.

It can be observed that there are several observations, for example, there are N
number of healthcare sensing devices and K number of healthcare tasks for each
sensing device. Furthermore, different notations are used in the given formula-
tion, for instance, start time, finish time, execution time, and task idle time, etc.
The objective function is defined based on the listed notations to minimize task idle
time. Task idle time is defined as the difference between Finishy;,,, and Start;,, as
shown in Equation (11).

Finishy;y,, = Executionyj,,, + Startiy,e 11

Thus, task idle time is defined as follows in Equation (12):

(12)

k
Taskigre,,, = |Y_(Startyme — Finishyjye)
i

Our defined objective function aims to minimize Task;g,,,  than predetermined
value. The final objective function is presented in equation to minimize completion
time of healthcare task to provide efficient healthcare services to remote patients.

) (13)

There are following constraints with objective function to minimize Task;g,,,  for
effective scheduling of healthcare tasks.

k
Y (Startyiye — Finishyin,)

1

Taskige,;,, = Minimize(

e  Starty,. must be greater than 0 and less than Finishy;,,,, For instance, 0 < Start;jy,
< Finishyjye-
e Executionyy, of healthcare task must be greater than 0 (Executionyj,,, > 0).
e lI<=i<=k
Furthermore, two decision measures, such urgency measure (UM) and failure
measure (FM), are considered to formulate a decision on whether to execute a task
or not. UM defines the priority of tasks at which arrived tasks will be executed.
Furthermore, UM is calculated based on NET and periodic PT. It is defined as follows
in Equation (14):

urgencymeasure = TaSkdmdlim_time - TaSkfinish_time (14)

Similarly, Algorithm 1 presents a step by step flow to calculate FM between PTs.
FM is calculated to decide execution of the given periodic task.

It is defined based on periodic tasks to decide whether to execute a given periodic
task or not. FM ensures that if the scheduler executes a low priority starved task at a
given time slot i, it will not affect high-priority periodic task execution. Furthermore,
it determines task slack for each given periodic task to ensures the safe execution of a
task. Slack time can be calculated as the difference between task deadline time and
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task execution time. Moreover, if the slack time of the given periodic tasks is greater
than 0, then FM will be set to 1; otherwise, it will be set to 0.

Algorithm 1 Calculation of Failure Measure for Scheduling of Periodic Tasks.

function CALCULATEFAILUREMEASURE(PeriodicTasks)
Slackjpe < 0
fori < 0,n—1do
Executionyjme_status = PeriodicTasksgeadtine_timeli] — PeriodicTasksexecution_timeli]
Slackyjy,e = Slackyime + Executionyiyme status
end for
if Slack;j,;e > 0 then Return 1
else
Return 0
end if
end function

Algorithm 2 presents the flow of proposed optimized time-constraint aware schedul-
ing mechanism.

Furthermore, Figure 4 presents a step-by-step flow of the proposed optimized
time-constraint aware scheduling mechanism. In the first step, scheduler fetches
healthcare tasks based on arrival times. If an arriving healthcare task is UET, then
it executes at the given time interval. If the given healthcare task is NET and there
is periodic PT, then task idle time is calculated and passed to the optimization mod-
ule. PSO-based optimization module receives task idle time and minimizes it based
on the objective function. If Ongry, ., 18 Mminimal than Opr,, .., then schedular
executes NET with the nearest deadline; otherwise, UM is calculated to verify that
the given time slot can be allocated to a periodic PT or not. If UM is set to 0, then the
schedular executes the given periodic PT; otherwise, NET will be executed in the given
time slot.

Next, if the given task is periodic PT and there are starved tasks in the starvation
tasks list, then extracts starved task (ST) from the starvation list and idle time is
calculated for both tasks to be passed to the optimization module aims to minimize
task idle time. If the idle time of PT is lower than ST, then the scheduler executes
PT at the given time slot; otherwise, FM is calculated to allocate the given slot to
execute a starved task or not; otherwise, it executes periodic PT with high priority.
FM is calculated using periodic tasks to decide the execution of periodic PT with high
priority or execution of starving tasks. The scheduler uses tasks profile and history log
data to calculate FM to determine whether to execute periodic PT or starvation tasks
with low priority.

The scheduling process re-arranges the execution order of the mapping pairs and
adds two additional attributes, such as task execution time and priority, to the existing task
mapping process. Once the scheduling process is performed, TSM saves scheduling
results in scheduling database in the following format <heathcare_task_id,virtual_object_id,
scheduled_ task _time,healthcare_task_priority>.
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Algorithm 2 An Optimized Time-Constraint Aware Scheduling Mechanism

function HEALTHCARETASKSSCHEDULING(Tasks[0..n — 1], Task;)

> Input: Array Tasks[0..n — 1] of the given tasks and and Task; is the time step at which tasks arrived in the queue for
the execution.

Urgencymeasure < 0 > Urgency measure

Failureeasure < 0 > Failure measure

if Tasksyype = UET then > Urgent Event Task (UET)
Execute the UET

else if Tasksyype = NET then > Normal Event Task (NET)
if PT € Periodicy,, then > Periodic Task(PT)

Extract PT at time slot i from Periodic,,s
Calculate NET; g1, time and PTig1e i, using Equation (12)
ONETse sime = PSO(NETia1e._time)
OPT[d,e_f,-mg = PSO(PTidlejime)
lf ONETidleJime < OPTidle,rime then
Execute the NET with nearest deadline
else
Calculate Urgencyyeasure using Equation (14)
if Urgencymeasure = 0 then
Execute the PT with nearest deadline
else
Execute the NET with nearest deadline
end if
end if
else
Execute the NET with nearest deadline
end if
else if Tasksype = PT then
if ST; € Starvation,,g then > ST represents starved task
Extract ST at time interval i from Starvation,,g
Calculate PTig, time and STigpe time using Equation (12)
Orr, = PSO(NETia1e_time)
OsTouse sime = PSO(PTiate_time)
if Op Tidte_time < OSTidle?time then
Execute the High Priority PT
else
Calculate Failureeqsure using Algorithm 1
if Failureeqsure = 0 then
Execute Low Priority Starving Task ST;
else
Execute the High Priority PT
end if
end if
else
Execute the High Priority PT
end if
else
Invalid Task Type
end if
end function

dle_time
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Figure 4. Flow of the proposed time-constraint aware scheduling mechanism.

3.3.5. Allocation and Deployment Process of Scheduled Healthcare Tasks

The task allocation manager (TAM) uses scheduling results to allocate the input task on
a designated physical IoT device. It is also used to save task/device allocation information.
For allocation purposes, TAM uses information from the following repositories, such as
task repository, VOs repository, and scheduling repository, to allocate the tasks on the IoT
devices; sensors and actuators. Furthermore, TAM uses virtual object ID to track down
the status of physical IoT devices in the task allocation process. Finally, a task deployer
is used to deploy the task on the corresponding IoT device. It uses to allocate and deploy
the tasks based on the order received from the task scheduling manager for allocation
purposes. For example, TAM deploys healthcare tasks on corresponding physical devices
based on the healthcare tasks scheduling results of the optimized time-constraint aware
scheduling mechanism. The URI attribute of the VO is used to access the corresponding
physical device.
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4. Experimental Environment of Proposed Smart PHMS

This section presents the development and experimental environment of the proposed
smart PHMS. The proposed smart PHMS uses python as the core programming language
for implementing the proposed task orchestration architecture. Python is a high-level,
general-purpose programming language. Different researchers and programmers widely
use it to develop projects because it is easy to learn, robust and scalable due to frequent
version releases [55]. This work uses PyCharm Professional 2020 as an IDE for python
programming. Flask framework has been utilized as a web-based lightweight framework
to enable customization and accelerate the implementation process. Flask is a lightweight
and efficient web-based framework as compared to other frameworks [55,56]. The well-
known JavaScript library JSPlumb is used to map tasks on VOs to generate best-matched
pairs. Furthermore, MySQL is used as persistence storage, whereas JSON and XML are
utilized to fetch data from MySQL to the front-end application. Moreover, Bootstrap has
used Bootstrap as a front-end framework to develop a front-end application to achieve
dynamic behavior. In Table 5, an implementation environment of the proposed smart
PHMS is presented.

Table 5. Development Environment of Proposed Smart PHMS.

System Component Description
Operating System Microsoft Windows 10
CPU Intel ®Core ™ i3-2130 CPU at 3.40 GHz
Primary Memory PyCharm Professional 2020
Framework Flask Framework
Libraries Drools, JSPlumb
Core Programming Language Python, JavaScript and jQuery
Front End Framework Bootstrap
Backend Persistence MySQL
Healthcare Toolkit Libelium e-Health Sensor Shield V2.0
Hardware Arduino
Server CoAP Server

Figure 5 presents experimental testbed of the proposed smart PHMS. In this work,
a Libelium toolkit is used to monitor remote patients health conditions. The e-health toolkit
provides nine different sensors for monitoring the real-time health state of remote patients.
The information acquired using the e-Health sensor shield can be used to monitor remote
patient vital signs or used to acquire sensitive data for analyzing for medical diagnosis.
In this work, we have used five different sensors in order to monitor the health conditions
of remote patients, such as body temperature, electrocardiogram, pulse oximeter, airflow,
and sphygmomanometer sensors. Furthermore, e-Health toolkit provides an open-source
API to get sensing data from sensors equipped with remote patients body. In this work,
all five healthcare sensors are equipped with remote patients to acquire healthcare data
and send sensed data to health service providers, such as hospital, doctors, and nurses.
Furthermore, Aurdino is connected with a personal computer (PC) to store sensing data
into a database. PC is used to store vital signs data from the Aurdino. Moreover, healthcare
sensors are connected with Aurdino to read the vital signs data of patients. The vital
signs data of the following sensors like temperature, ECG, blood pressure, pulse oximeter,
and airflow are received and processed to monitor patient health. Suppose the reading
values of patients and vital signs are abnormal. In that case, event listeners are activated to
send alarm notifications in the form of text and voice to the doctor and nurse practitioner
to take appropriate action.



Sensors 2021, 21, 5430

18 of 29

Airflow Sensor
.

Libelium E-health Toolkit

Kodea

s 18931

| Sphygmomanometer

Body Temperature Sensor |

Figure 5. Experimental testbed of proposed smart PHMS.

Table 6 summarizes the installed healthcare sensors with certain parameters. The cer-
tain parameters are normal range, abnormal range, and the main objective of the installed
sensors in order to collect valid data from remote patients. The normal range of temper-
ature sensor is from 36.5 °C to 37.5 °C (97.7 °F-99.5 °F), whereas the abnormal range of
patient body temperature is from 40.0 °C to 41.5 °C (104-106.7 °F). Similarly, a heart rate
sensor is used to measure the electrical activity or rhythm of the heart. The normal range
of patient heart rate must be up to 120 ms, whereas the abnormal range must be less than
120 ms. The SpO2 or pulse oximeter sensor monitors the amount of saturation oxygen in
the patient’s blood. The normal reading of the pulse oximeter sensor should be between
94% and 100%, whereas if it is less than 90%, then it denotes as abnormal. Similarly,
an airflow-based sensor is used to measure the total number of breaths a patient takes
per minute. The normal respiration rate should be between 15 bpm and 30 bpm, whereas
resting is considered as the abnormal readings. Furthermore, a sphygmomanometer sensor
is used to measure blood pressure. It is used to record both systolic and diastolic pressures.
The normal range of systolic pressure should be from 90 mm Hg to 119 mm Hg, whereas the
normal range of diastolic pressure should be from 60 mm Hg to 79 mm Hg. The abnormal
range of systolic pressure is above 119 mm Hg, whereas the abnormal range of diastolic is
above 80 mm Hg.

Furthermore, Figure 6 presents a visualization of vital sign data of remote patients
using the Libelium sensors toolkit as discussed earlier in the testbed scenario. In this study,
reading of the following vital signs data is visualized, such as temperature, heart rate, blood
pressure, pulse oximeter, and respiration rate. It can be observed that the body temperature
data varies mostly between the valid temperature ranges (97.8 °F to 106 °F). The normal
temperature is 98 °F, and the abnormal temperature is 106 °F. Similarly, It can also be
observed that the data of the patient’s heart rate (ECG) varies mostly between the following
ranges (0 ms to 200 ms). Normal resting heart rate is 60 to 100 beats per minute (bpm).
Abnormal heart rhythms can be described as a heart beating too fast (above 100 bpm) or
slow (below 60 bpm). Likewise, reading of patient’s blood pressure data are visualized;
it has been analyzed that the blood pressure data varies between 70 mm Hg and 120 mm
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Hg. The blood pressure data of patients can be classified into the following six categories
using systolic and diastolic blood pressures: hypotension, desired, prehypertension, stage
1 hypertension, stage 2 hypertension, and hypertensive crisis. Equation (15) specified the
categories of blood pressure using systolic blood pressure S, and diastolic blood pressure
Dy, readings.
Hypotension, Spp <90 and Dy, < 60
Desired, 90 < pr < 119 and 60 < Dbp <79

Prehypertension, 120 < pr < 139 and 80 < Dbp < 89
Stage 1 Hypertension, 140 < pr < 159 and 90 < Dbp <99
Stage 2 Hypertension, 160 < pr < 179 and 100 < Dbp <109
Hypertensive Crisis, pr > 180 and Dbp > 110

BlOOd_PressureCategories - (15)

™
E 105 A
2
o
L)
o
§
= 100 4
=
b=
(=]
@ T T T T T T
0 20 40 60 80 100
200 1 ]
=
£
2
[+
£ 100
£
m
[ V]
I
T T T T T T
0 20 40 60 80 100
el
I
£
£ 100 A
L
=]
W
in
o
[=%
B 751
°
@ T T T T T T
0 20 40 60 80 100
2 100 4
E
E
e
B
[
E
B
(=] 80 4
@
h
3
o T T T T T T
0 20 40 60 80 100
€
g 254
=
9
£
I
0 -
T T T T T T
0 20 40 60 80 100
Time Step

Figure 6. Visualization of healthcare tasks reading data using different sensors.

Furthermore, SpO2 readings are also visualized to analyze pulse and oxygen quantity
in patient blood. The normal SpO2 varies between 95% and 100%, as shown below the
graph. Normal pulse oximeter readings usually range from 95 to 100 percent. Values under
90 percent are considered low. Abnormal values can be considered as a pulse oximeter is
too low (<90). Moreover, readings of the respiration rate of patients are also visualized.
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The airflow sensor readings show that respiration rate varies between normal and abnormal
ranges. For example, the patient’s respiration rate is normal if the reading of the airflow
sensor varies between 15 bpm and 30 bpm; otherwise, it will be abnormal. Different vital
signs data of patients are received and analyzed to monitor the health status of patients.
In case of abnormal readings, our proposed system will alert healthcare practitioners to
take appropriate action. In our proposed smart PHMS, event listeners are deployed in the
system to inform healthcare practitioners about the emergencies.

Table 6. Threshold for reading vital signs data.

Sensing Devices Normal Range Abnormal Range Objective
Body Temperature Sensor [57] 97.8 °F to 99 °F Temperature higher It is used to determine
(36.5°Ct037.2°QC) than 100.4 °F (38 °C) body temperature.
ECG is used to measure the

Heart Rate Sensor (ECG) [57] 120 < x <200 0<x<120 electrical activity of the heart.

Systolic: Systolic: It is used to monitor the
Sphygmomanometer [57] 90 < x < 120 (mm Hg) 90-119 (mm Hg) blood pressure rate. It is used

Diastolic: Diastolic: to measure both systolic
60 < x < 80 (mm Hg) 60-79 (mm Hg) and diastolic pressures.

Pulse Oximeter (SpO2) [57]

Airflow Sensor [57]

It is used to measure the
quantity of oxygen in the blood.
Airflow sensor is used to
measure the respiration rate.

x <120 94 — 100% (70-100 bpm)

15 < x <31 x <150rx > 31

5. Performance and Comparative Analysis

This section presents performance and comparative analysis results of the proposed
smart PHMS.

5.1. Performance Analysis

This subsection presents RTT, throughput, latency, and response time analysis to
evaluate the performance of the proposed smart PHMS. In this research study, a bench-
mark tool known as Apache JMeter has been utilized to evaluate the performance of
the proposed mechanism [58-60]. For the simulation of subjects, we used Locust. There
are three different subject sets defined, such as 30 subjects, 40 subjects, and 50 sub-
jects, to evaluate the performance of the proposed system. The RTT is defined as the
total time takes by the system from the generation of healthcare tasks to the deploy-
ment process and response of IoT devices back to the self-management application.
Figure 7 is used to present RTT-based statistical analysis, such as minimum RTT, maxi-
mum RTT, and average RTT for each given healthcare task. It is evident that the average
RTT is 4.6 ms in the case of event-driven healthcare tasks, for instance, "NotifyViaLED’.
On the other hand, the minimum, maximum, and average RTT for the ‘GetECG’ task
are 16 ms, 32 ms, and 25.2 ms, respectively. Thus, the average RTT is 13.02 for all the
executed healthcare tasks, which shows the effectiveness of the proposed smart PHMS.
The minimum RTT for the given tasks is 3 ms, and maximum RTT is 32 ms.

Figure 8 presents different statistical measures to evaluate the throughput of
the proposed system using a different set of subjects. The x-axis represents different
subjects groups, whereas the y-axis represents throughput as the total number of
healthcare tasks executed per second.
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It can be observed that minimum, maximum, and average throughput for 30 subjects
is 21, 32, and 23 tasks per second. It can also be observed that the throughput of the system
improved as the number of subjects increased. It has been analyzed that the throughput of
the system gets enhanced as the number of subjects increases from 30 to 40 subjects. Finally,
the average throughput for 50 subjects is approximately 59 tasks per second, which shows
the usability of the proposed system.

Figure 9 is used to evaluate the performance of the proposed system in terms of tasks
latency. To evaluate tasks latency, we have considered three different subjects to evaluate
the latency of executed healthcare tasks in terms of minimum, maximum, and average
latency. The average latency for 30 subjects is 15.49 ms, whereas minimum and maxi-
mum latency for 30 subjects are 4.28 and 37.52 ms, respectively. Similarly, in the case
of 40 subjects, the average latency of executed tasks also get increased from 15.49 ms to
21.72 ms. Furthermore, the average latency of executed tasks for 50 subjects is 37.18 ms.
Thus, the statistical analysis shows that the average latency of executed tasks increases
slightly as the number of subjects increases, which indicates the significance and reliance
of the proposed smart PHMS.

Statistical Analysis of Latency

B Minimum B Maximum = Average

Maximum, 89.83

Maximum, 53.31

Maximum, 37.52 Average, 37.18

Average, 21.72
Minimum , 13.18

30 Subjects 40 Subjects 50 Subjects
Number of Subjects (Patients)

Average, 15.49

Figure 9. Latency of healthcare tasks deployment.

In Figure 10, another performance metric is utilized to evaluate the performance
of the executed tasks in terms of response time. A comparative analysis is presented to
evaluate executed healthcare tasks in terms of average response time. The average response
time values of periodic healthcare tasks fluctuate between 62 ms to 150 ms. In contrast,
the average response time values of the event-based task are varied between 27 ms to 93 ms.
The comparative analysis shows that the average response time of event tasks is slightly
low compared to periodic tasks because event-driven tasks have high priority compared to
the sensing healthcare tasks.

In Figure 11, a comparative analysis is presented to compare baseline scheduling
mechanisms with an optimized scheduling mechanism to demonstrate the significance of
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the proposed smart PHMS. The performance analysis of the proposed optimized scheduling
mechanism is compared with fair emergency first (FEF) scheduling and rate monotonic
(RM) scheduling schemes. The comparative analysis is performed based on the reading of
vital signs data of remote patients. The following essential metrics are taken into account
to analyze the performance of the scheduling mechanism, such as starvation and drop rate
of healthcare tasks.
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Figure 10. Performance analysis of event and periodic healthcare tasks in terms of Response Time.
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It is evident that the failure and starvation rate of healthcare tasks using an optimized
scheduling mechanism is minimal compared to the FEF and RM scheduling mechanisms.
The starvation rate and a dropout rate of our proposed optimized scheduling mechanism
are 12% and 15%, respectively. In contrast, starvation and tasks failure rates of the baseline
RM scheduling mechanism are 28% and 36%, respectively. Similarly, starvation rate and
drop rate of healthcare tasks of the baseline FEF scheduling scheme are 26% and 32%,
respectively. Based on the analysis, it is found that the proposed optimized scheduling
mechanism reduces tasks starvation rate by 16% and tasks failure rate by 21% compared to
the baseline RM scheduling scheme. It can also be analyzed that the proposed scheduling
scheme reduces the starvation rate of healthcare tasks by 14% and tasks failure rate by 17%.
Thus, the comparative analysis demonstrates that an optimized scheduling mechanism
minimizes the starvation and failure rates of healthcare tasks and increases the overall
performance of the proposed smart PHMS.

Figure 12 depicts a comparison of actual recovery time and optimized recovery time of
sensors from faults. The y-axis represents the actual and optimized recovery time in which a
faulty sensor is replaced with a backup sensor to monitor a patient’s data effectively. The x-
axis represents a simulated number of sensing devices used to monitor a patient’s health
conditions. The main objective of the optimization module is to minimize the ILR index
based on the time taken (in terms of minutes) by sensing devices to recover from the faults.
As a result, it can be observed that the recovery time of the faulty sensors is minimized as
compared to actual recovery time, which significantly increases the information retrieval
ratio and decreases the information lost ratio during the context switching process of the
faulty sensor to the backup sensor. The average recovery time of the baseline scheme
is 37 min (m), and the average optimized recovery time using stochastic programming
(SP) is 30 m. The comparison results proved that our proposed SP approach significantly
minimizes the recovery time of the sensors from fault failure and improves the information
retrieval ratio for better health data analysis.

- Actual Recovery Time - «=-0ptimized Recovery Time using SP

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Simulation Sensors

Figure 12. Comparative Analysis of Actual and Optimized Sensors Failure Recovery Time (m).

Similarly, Figure 13 presents a comparison of actual and optimized sensors failure
frequency on an annual basis. The y-axis represents the average and optimized sensors
failure frequency. The x-axis represents a simulated number of sensors. The main objective
of the proposed optimization module is to minimize the sensor’s failure frequency to
improves the reliability of the proposed system to provide reliable health services to remote
patients. It can be observed that sensors failure frequency is significantly reduced using
the optimization scheme compared to the actual annual frequency of sensors failure faults.
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The average actual frequency of sensors failure is 306, and the average optimized sensors
failure frequency is 157 on an annual basis. The comparison results revealed that our
proposed SP approach significantly improves the reliability of the proposed PHMS.
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Figure 13. Comparative Analysis of Actual and Optimized Sensors Failure Frequency (Annually).

5.2. Comparative Analysis

This subsection presents a comparative analysis of the proposed smart PHMS with
existing IoT-based e-Health systems. To the best of the author’s knowledge, our proposed
smart PHMS is the first-ever attempt from the e-Health industry to utilize task orchestration
and optimization-based mechanisms to provide reliable and cost-effective health services
to patients. There are essential features are considered to demonstrate the effectiveness and
significance of the proposed work. These vital features include self-management support,
type of application, the simulation of patients data, tasks level management including
tasks allocation and tasks scheduling mechanisms, and optimization functionalities to
provide reliable and cost-effective health care services. The existing IoT-based e-Health
systems, such as H-IOT [8], PHMS [22], HAMS [24], WSN [25], VSM [43], and HI-IOT [61]
are developed based on static tasks allocation and tasks scheduling mechanism to monitor
patients vital signs data, which cause high latency, low throughput, and high tasks failure.
All these existing IoT-based e-Health systems are not well structured to tackle high priority
(emergent healthcare tasks) effectively and dynamically. Furthermore, all these existing
IoT-based e-Health systems do not support user interfaces for service customization and
tasks level management to automatically generate healthcare tasks and schedule tasks to
tackle high-priority healthcare tasks effectively. Furthermore, none of the mentioned IoT-
based healthcare systems attempted to utilize optimization-based strategies to minimize
tasks failure and connection cost to provide reliable health services to patients.

In contrast, our proposed smart PHMS is developed based on tasks orchestration
architecture and optimization schemes to monitor patient’s vital signs data, minimize tasks
failure, and network connection costs to provide reliable health services. Furthermore, our
proposed smart PHMS is well-structured to generate autonomous healthcare tasks based
on NLP techniques and a dynamic scheduling approach to handle high-priority health
tasks effectively. Moreover, it supports the self-management approach to allow users to
interact with a user-friendly interface to customize services related to the healthcare domain.
The proposed system is flexible because it supports employing different algorithms for tasks
generation, scheduling, and allocation process. Dynamic scheduling, self-management
approach, and optimization functionalities make our solution effective and significant
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in the IoT-based remote healthcare domain. Table 7 presents a detailed analysis of the
proposed smart with existing IoT-based healthcare systems.

Table 7. Comparative analysis of the proposed smart PHMS with existing e-Heath Systems.

E-Health Self-Management Type of Real Tasks Optimization Lo
System Support Application Simulation Scheduling Functionality Objective
IoT-SHS [6] No Mobile/Web Yes No No Monitor both patinet health and
environmental conditions
H-IoT [8] Yes Web-based No Yes No Vital signs management
PHMS [22] Partial Mobile Yes No No Vital signs management
HMS [24] No Mobile Yes No No Real time monitoring of patient
heart condition
WSN [25] Yes Web-based Yes No No Vital signs management
VSM [43] No Middleware No No No Vital signs management and
classification of event occurrence
FDS [45] Yes Mobile/Web Yes No No Fall detection system
HAMS [62] No Unknown Yes No No To monitor patient heart pulse and
respiration data
HI-IoT [61] No Unknown No No No Monitor patient vital signs data
Proposed Optimal healthcare tasks
Yes Mobile/Web Yes Dynamic Yes management, vital signs
smart PHMS monitoring, optimization

of tasks starvation rate and
minimization of tasks failure rate.

6. Conclusions and Future Work

The provisioning of a cost-effective and reliable health facility is essential for remote
patients and is considered the most effective and significant measure for human lives.
The vital signs data of patients are used to indicate the status of vital functions of the
patient’s body, and thus these vital signs have been used to predict various diseases.
The real-time IoT-based systems are an emerging field to support the development of
healthcare applications in the IoT context and enable the connection of a vast network
of connected devices, which aimed to monitor, process, and analyze patient’s vital signs
data to provide better health services. This paper presented a smart PHMS to collect
vital signs data of patients in a real-time IoT-based task orchestration architecture using
optimized time-constraint-aware scheduling mechanisms. The proposed smart PHMS
integrated two core modules: optimized scheduling and optimization of healthcare ser-
vices modules, using a real-time IoT-based task orchestration to monitor vital signs data
of remote patients. An optimized time-constraint scheduling module is developed using
a real-time IoT-based task orchestration architecture to generate autonomous healthcare
tasks, schedule healthcare tasks in the time domain, and dynamically handle the deploy-
ment process for high-priority healthcare tasks. The optimization module is developed
using optimization schemes to optimize e-Health services based on objective function
to provide cost-effective and reliable services to remote patients. This work utilized the
Libelium e-Health toolkit to monitor the vital signs data of remote patients. Additionally,
a self-management plane was developed to allow health service providers to customize
their services, such as mapping healthcare tasks on corresponding virtual objects. Different
performance analysis metrics were utilized to evaluate the significance of the proposed
smart PHMS, such as RTT, latency, throughput, response time, and task drop and starvation
rates. The experimental results proved that an optimized scheduling mechanism reduces
the starvation and failure rate of the healthcare tasks to increase the efficiency of the pro-
posed smart PHMS. The starvation rate of the proposed optimized scheduling mechanism
is 12%. In contrast, tasks starvation rate of baseline RM and FEF scheduling mechanism is
starvation rate is 28% and 26%, respectively, which indicates that the proposed scheduling
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mechanism significantly improves the overall performance of healthcare tasks. Similarly,
the tasks drop rate of the proposed optimized scheduling mechanism is 15%, which is mini-
mal compared to the RM and FEF scheduling algorithms. Overall, our proposed optimized
scheduling mechanism reduced tasks starvation rate by 16% and 14% compared to the RM
and FEF scheduling schemes. Furthermore, our optimized scheduling mechanism reduced
tasks drop rate by 21% compared to the baseline RM scheduling and 17% compared to
the FEF scheduling. The performance analysis reveals that the proposed smart PHMS is
an effective and sustainable solution towards a real-time IoT-based e-Health industry to
handle the allocation process of emergent healthcare tasks effectively and dynamically.
Furthermore, a comparative analysis is performed based on vital factors to demonstrate
the effectiveness of the proposed smart PHMS with existing IoT-based e-Health systems.
The future direction of the proposed work can be considered to integrate predictive analyt-
ics with IoT to predict vital signs data to improve the performance of IoT-based healthcare
services. The proposed smart PHMS can also be enhanced by considering more vital signs
data to provide reliable healthcare services.
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