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Abstract: River basin cyberinfrastructure with the Internet of Things (IoT) as the core has brought
watershed data science into the big data era, greatly improving data acquisition and sharing efficiency.
However, challenges in analyzing, processing, and applying very large quantities of observational
data remain. Given the observational needs in watershed research, we studied the construction
of river basin cyberinfrastructure and developed an integrated observational data control system
(IODCS). The IODCS is an important platform for processing large quantities of observational data,
including automated collection, storage, analysis, processing, and release. This paper presents
various aspects of the IODCS in detail, including the system’s overall design, function realization,
big data analysis methods, and integrated models. We took the middle reaches of the Heihe River
Basin (HRB) as the application research area to show the performance of the developed system.
Since the system began operation, it has automatically received, analyzed, and stored more than
1.4 billion observational data records, with an average of more than 14 million observational data
records processed per month and up to 21,011 active users. The demonstrated results show that the
IODCS can effectively leverage the processing capability of massive observational data and provide
a new perspective for facilitating ecological and hydrological scientific research on the HRB.

Keywords: Heihe River; river basin cyberinfrastructure; wireless sensor networks; automated
observational data integration

1. Introduction

Big data, first proposed by Alvin Toffler in The Third Wave, is characterized by broad
sources, large volumes, multiple modes, and high values, and it is changing how people
understand the world [1–3]. Big data has started to support the rapid development of
Earth sciences [4–6]. Specifically, it has begun to play an increasingly important role in the
research of Earth surface system sciences, which mainly focus on the overall characteris-
tics of the interaction among the elements in the hydrosphere, pedosphere, atmosphere,
and biosphere [7–9]. Therefore, big data can well support the integrated research of re-
gional ecological economy [10]. After years of the constant construction of Earth surface
observational systems, massive quantities of observational data have been accumulated
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into big Earth data at a considerable scale. In particular, with the rapid development of
technologies related to the Internet of Things (IoT) [11,12], observational systems on the
Earth’s surface are becoming increasingly mature, with the quantity of observational data
reaching the petabyte scale and the number of modes of observational data significantly
increasing [11,13,14]. The rise of the IoT has made it possible to acquire Earth surface obser-
vational and monitoring data in real time. We reviewed, compared, and analyzed several
typical instances of data processing systems for big data, as shown in Table 1. Most of these
systems were constructed for data delivery, storage, and visualization. However, unified
standards and integrated systems of descriptions, organization, transmissions, interfaces,
management, and applications of massive quantities of observational data are missing.
This issue has become one of the most significant challenges for managing and sharing
big Earth data [15–17]. In particular, regarding observational data from the IoT, which are
usually termed streaming data and feature high speeds, large volumes, and uncertainties,
traditional data reception, management, and visualization are confronted with challenges.
Therefore, we must develop fully automated data receiving, intelligent data quality control,
and more efficient and convenient data management and visualization methods.

Table 1. Typical instances of big data processing systems.

No. System Name Year Main Functions References

1 BigDansing 2015

A big data cleaning system to tackle efficiency, scalability, and
ease-of-use issues in data cleaning; it can be run on most
general-purpose data processing platforms, ranging from DBMSs to
MapReduce-like frameworks.

[18]

2 SWITCH 2019

It offers a flexible co-programming architecture that provides an
abstraction layer and an underlying infrastructure environment, which
can help to both specify and support the life cycle of time-critical cloud
native applications.

[19]

3 DRIP 2019

It was developed for the dynamic optimization of data services in
research support environments and might be used for a number of
similar applications involving distributed services and large, dynamic
datasets with further investigation and development.

[20]

4 SPS-IUTO 2020

To achieve significant improvements in terms of energy and redundant
data, a matrix completion-based sampling point selection joint
intelligent unmanned trajectory optimization (SPS-IUTO) scheme for
unmanned aerial vehicles (UAVs) was proposed to plan sampling
points for UAVs in both time and space.

[21]

5 BD-VTE 2020

A novel baseline data based verifiable trust evaluation (BD-VTE)
scheme was proposed to guarantee security at a low cost for massive
data. The BD-VTE scheme includes a verifiable trust evaluation (VTE)
mechanism, an effectiveness-based incentive (EI) mechanism, and a
secondary path planning (SPP) strategy, which are used for reliable
trust evaluation, reasonable reward, and efficient path
adjustment, respectively.

[22]

6 DRMCS 2020
DRMCS, a data collection scheme for mobile crowdsensing vehicular
networks, was proposed to enhance the data collection rate in vehicular
networks for opportunistic communication.

[23]

7 SDAC 2021

A novel secure and dynamic access control (SDAC) model was
developed for IoT networks (smart traffic control and roadside parking
management). It allows IoT devices to securely communicate and share
information through busing wired and wireless networks (cellular
networks or Wi-Fi).

[24]

8 aiRe 2021

This open-access tool simplifies air quality data analysis and
visualization, with the desirable effects of removing ownership costs,
fostering appropriation by nonexpert users, and ultimately promoting
informed decision making for the general public and local
government authorities.

[25]
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Cyberinfrastructure (CI) is the bridge between information engineering and scientific
research [26]. With the help of information technology and network technology, CI inte-
grates observational instruments, storage devices, computing devices, and other resources
to provide more efficient, faster, and more flexible collaboration space for scientific research.
Therefore, as an application instance of CI—an integrated observational data control system
(IODCS) that combines the IoT, wireless sensor networks (WSNs), cloud computing, and
data visualization—is developed in this paper. The IODCS is considered a standardized
system that makes it possible to achieve the automated reception and storage, distributed
storage, quality control, security sharing, and visualized analysis of observational data
according to descriptive data specifications. For instance, if the observational data obtained
by each observational system could be automatically received and stored according to the
database index type and data format, data storage efficiency would be improved. The intro-
duction of distributed storage into the system serves as important technical support for the
scientific and efficient management of massive quantities of observational data. Developing
and integrating automated data quality control can achieve automated anomaly detection
and observational data processing. Moreover, data sharing is an important driving force
for promoting Earth surface research, and online data visualization allows users to more
intuitively and conveniently analyze and understand data.

In this article, the authors present a new CI application framework for automatic
observational networks and demonstrate it in the Heihe River Basin (HRB), a typical
endorheic river basin in Northwest China. The new CI application framework facilitates
scientific observational and data service related to the river basin and brings new insights
into applications in other areas.

2. Description of the Proposed System
2.1. System Overview

The IODCS was designed to provide a universal data sharing platform for basin-
scale scientific studies. The system is composed of the following functions: automated
data reception and storage, automated data quality control, distributed data storage, data
sharing services, model integration, and visualization. Figure 1 shows the framework of
the IODCS, and the details are presented as follows.

Figure 1. Framework of the IODCS.

2.2. Automated Data Reception and Storage

The automated data reception module aims to normalize different data organization
modes of observational devices from different sources. Through the programming of the
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server-side interface of the specific WSN observational device with the software develop-
ment kit (SDK) [27], the data string transmitted to the server is directly intercepted, and the
data are then reorganized as a defined standard data string. The normalized data string
simplifies the back-end automated data preprocessing and warehousing procedure.

During the automated data reception process, the data status of the WSN on the
nodes is automatically monitored, collected, and normalized in an unattended manner.
The observational equipment regularly sends the observational data in the local cache
to the data receiving interface program on the remote server. The server can also send
instructions to request data uploading from the observational equipment. Figure 2 shows
the process.

Figure 2. Process of the automatic receiving, normalizing, and storing of observational data in the IODCS.

The servo program automatically polls whether the data files in the data file pool have
changed. When there are new data, the data reception process automatically starts, and the
obtained data are pushed to a normalization program. After normalization, the disordered
multisource data string becomes a simple and standard data string that is then sent to the
database storage interface program. The data storage process has no human intervention,
and it provide a unified database access interface for various data reception programs.

The automated storage process of observational data can be accomplished synchronously
or asynchronously based on the actual needs of the system. In the synchronous mode, upon
receiving the data, the normalization program invokes the storage program to immediately
store the observational data in the database. In the asynchronous mode, the normalization
program puts data into a message queue, and then the storage program obtains data from the
message queue and stores them in the database when the system is not busy.

2.3. Automated Data Quality Control

For automated observational data, errors, such as source errors, calibration errors,
and transmission errors, occur. Source errors are caused by the observational device itself,
calibration errors occur during the calibration and correction of observational data, and
transmission errors consist of the operational errors and interference errors incurred during
data transmission [28–32]. The data quality control model is deployed in the IODCS to
evaluate and control the quality of the observational data using unified standards and a
consistent quality control system during the generation, processing, and transmission of
data. Moreover, the transformation model deployed in the IODCS describes the conversion
type factors during automated data processing, which contributes to the application of a
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consistent conversion system in the automated process. Additionally, automated obser-
vational devices arranged in the field are produced by different manufacturers and use
different parameters and data storage formats. Thus, these differences should be converted
before data storage to guarantee that the data are stored with unified standards, namely
semantics and format. The automated conversion algorithm and the quality evaluation
algorithm are sequentially executed in the logical flow of data processing [33]. Figure 3
shows a flow chart of automated data quality control.

Figure 3. Data quality control items and flow in the IODCS.

There are two kinds of control logic processes in the data quality control flow: format
conversion and quality evaluation. The format conversion process mainly deals with
possible format problems in observational data. Quality evaluation evaluates the quality
status of data and attaches the results as a label. These two processes include a variety of
different methods or algorithms to process observational data. The details are shown in
Table 2.
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Table 2. Format conversion and quality evaluation methods used in the IODCS system.

Method Type Function Impact on Data

Instrument null value Format
conversion

Detect null values caused by
the instrument

Depending on the strategy,
the data may be modified

Unit and format conversion Format
conversion

Detect and handle unit and format
inconsistencies in observational data The data will be modified

Null value during
transmission and calculation

Format
conversion

Detect and handle null values caused
by other reasons

Depending on the strategy,
the data may be modified

Outlier Format
conversion

Detect and handle data that do not
adhere to data trends

Depending on the strategy,
the data may be modified

Redundant processing Format
conversion

Detect and delete duplicate data
based on timestamps

The duplicate data will
be deleted

Dataset integrity Quality evaluation

Check whether all the variables of
integrated observations have
observational values. For example, is
there a missing value in a
temperature profile?

The data will not be modified
but will be tagged

Timeliness Quality evaluation Check the timeliness of
warehousing data

No data will be modified, but
the system will tag
the variable

Frequency consistency Quality evaluation
Check whether the data are collected
according to the
acquisition frequency

No data will be modified, but
the system will tag
the variable

Data integrity Quality evaluation Tag the data according to the result of
outlier detection

No data will be modified, but
the system will tag
the variable

Data imperfection Quality evaluation Tag the data according to the result of
null value detection

No data will be modified, but
the system will tag
the variable

Data outlier Quality evaluation Tag the abnormal data according to
the result of outlier detection

No data will be modified, but
the system will tag
the variable

Instrument consistency Quality evaluation Detect abnormal data caused
by instrument

No data will be modified, but
the system will tag
the variable

2.4. Distributed Storage System

In the past, observational data were mainly stored in the form of text or spreadsheets.
Since the data files from different sources contained different contents and were in different
formats, the efficiency of data management, analysis, and use was rather low. As the auto-
mated observational data stored and managed in an observational database are strongly
structured, the relational database was selected as the basis of storage design in this study,
and the Greenplum distributed database [34,35] was used for data storage. After fully
investigating and analyzing the observational projects and observational elements that
had been carried out or were planned, we designed and constructed the IODCS with an
object-oriented relational database design method. The new data storage and management
mode significantly improved efficiency. Figure 4 shows the structure of the relational
database designed in this study.

As shown in Figure 5, we built a high-performance computer cluster with one master
node, multiple segment nodes, and a Greenplum distributed observational database.
The number of segment nodes can be dynamically expanded according to actual needs.
The master node is responsible for organizing and dispatching the cluster operation and
connecting with the external network. All data are stored on segment nodes. Each segment
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node can contain multiple segments. A segment is the basic unit for performing database-
concurrent operations. The number of segments per segment node may be different
according to user requirements and server hardware performance. This kind of cluster
application mode has excellent advantages in data query efficiency, especially when the
quantity of query data is large [36].

Figure 4. Conceptual structure of the relational observational database in the IODCS.

Figure 5. A high-performance computer cluster for the distributed observational database.

2.5. Model Integration

An essential function of IODCS is to integrate the online scientific model. Establishing
a scientific model for the HRB and its surrounding areas is an indispensable approach
to basin-scale scientific research. Researchers have developed different ecological and
hydrological models for the Heihe River Basin. To efficiently combine these models with
real-time observational data and to more quickly serve basin research, we developed an
online model integration module in the IODCS. The models are integrated with the model
integration module through a web service interface. As shown in Figure 6, the relevant
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models are called by the IODCS through the online integration module, and the input
parameters, output results, real-time observational data, and basic spatial data support of
the model are controlled by the IODCS.

Figure 6. The logic architecture of model integration in the IODCS.

By inputting the needed parameters of the integrated model via the visual interface of
the IODCS, users can obtain the real-time predicted results online.

2.6. Visualizations

The IODCS has many functions for observational data, including automated reception
and storage, automated format conversion and quality evaluation, statistical analysis, and
classification according to standard data description and relevant rules. All these functions
are intended to provide convenience for users, and every bit of the system’s information is
vital. Thus, we developed a visualization module to intuitively show this information.

The data visualization module was developed using the OpenLayers plug-in and
Apache ECharts control [37–39]. Figure 7 shows the functional structure of the visualization
system. The map visualization function provides visualization support for the underly-
ing surface, regional boundary, and distribution of the observational stations. The data
visualization function provides visualization support for data trends, data comparison,
data analysis, and data sharing paths. With the help of the visualization module, we can
easily check the location and configuration of the observational stations and the type and
data trends of the observational variables online. Moreover, the observational data can be
intuitively analyzed online in real time.

The IODCS optimizes the technical process of data visualization to avoid the perfor-
mance loss caused by excessively frequent connection and visualization requests between
the client and server. Based on WebSocket [40], the IODCS establishes a continuous long-
term connection between the client browser and the server, which not only reduces the
server load but also constantly provides the client with the latest data and their trends
through data visualization. In other words, once the server receives the new field data, the
client immediately updates the data.
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Figure 7. Data visualization function system in the IODCS.

3. Application in the Heihe River Basin
3.1. Case Study Area and the Overall Implementation

The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) is a large-
scale comprehensive observational experiment [41–44] in which midstream observations
were launched in 2012. To effectively capture the spatial heterogeneity of the surface
elements in the river basin and to verify the authenticity of remote sensing data, HiWATER
was carried out in a 5.5 × 5.5 km core observational area located in the Yingke/Daman
Irrigation District in the middle reaches of the Heihe River. The spatial optimization
algorithm selected a total of 198 observational stations. With the WSN as the bridge, a
great variety of meteorological, hydrological, and ecological observational projects with
multisource sensors densely distributed on the scale of the river basin/irrigation district
were integrated to establish a fully automated observational system with spatiotemporally
coordinated ecohydrological sensors. Figure 8 shows the layout of the WSN observational
nodes in the middle reaches of the HRB.

The core observational area was equipped with four types of surface variable obser-
vational devices with remote wireless data transmission, namely SoilNET for observing
the soil moisture/temperature, WATERNET for observing the soil moisture/temperature
and surface temperature, LAINET for observing the leaf area index, and AWS (automatic
weather stations), as shown in Table 3. The nodes of BNUNET (designed by Beijing
Normal University for observing the soil moisture/temperature), LAS (large aperture
scintillometer), and EC (eddy covariance system) have no remote wireless data transmis-
sion functionality.

The IODCS automatically collected more than 300 observational variables (observa-
tional variables at different heights or depths were regarded as different observational
variables), with a 10 min sampling period for each type of observational variable. During
the observational period of the synergetic enhancement between the Earth and the satellite,
the sampling period was 1 min, and a small number of other observational variables were
sampled every 30 min [45,46]. In this study, the designed fully automated observations
and IODCS comprehensively improved the overall observational ability, information level,
and observational data sharing service for the ecohydrological processes in the river basin.

We have demonstrated that our system developed for HiWATER and its online obser-
vational data support platform can provide observational managers and researchers with
online data services, including the visualization of two-dimensional, three-dimensional, or
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multidimensional geoscience data; on-demand data downloading; the automatic genera-
tion of observational inspection reports and FTP support; and computing services, such as
data-aided analysis, geographic information system (GIS) spatial support, and professional
model analysis.

Figure 8. Layout of the WSN observational nodes in the middle reaches of the HRB [43].

Table 3. Observational devices installed in the core observational area, their related observational variables, and their
wireless communication modes.

Device Type Number of Nodes Main Observational Variables Communication Mode

SoilNET 50 soil moisture/temperature ZigBee, GPRS/3G/4G

WATERNET 55
soil moisture/temperature/salinity, rainfall,
snow depth, air moisture/temperature, and
wind speed/direction

GPRS/3G/4G/Radio

LAINET 50 leaf area index GPRS/3G/4G/Radio

AWS 18

soil moisture/temperature/heat flux, surface
temperature air
moisture/temperature/pressure, wind
speed/direction, and radiation

GPRS/3G/4G/Radio
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3.2. Data Management and Service

Figure 9 shows the data service interface for data management and release. To date, the
IODCS of the HRB has automatically received, processed, and stored more than 1.4 billion
observational data records, with an average of over 14 million observational data records
per month. In August 2012, the month in which the most intensive observations were
carried out, the number of stored observational data records reached 340 million. On the
premise of efficiently completing the automated preprocessing and distributed storage
of observational data, the IODCS provides observers and researchers with flexible and
convenient practical functions such as online data visualization, online data querying,
on-demand data downloading, alarms for anomalies in observational devices, and the
automated generation of daily equipment inspection reports. The function of the daily
equipment inspection reports is to automatically sort the observational data generated by all
the observational equipment in the HRB observational network and generate reports every
day, which can help users intuitively understand the operational status of the observational
network and the quality of the observational data.

Figure 9. Data management and service interface of the IODCS of the HRB (translated from the user interface in Chinese).

3.3. Real-Time Online Data Browsing and Analysis

As shown in Figure 10, during the observational period in the HRB, the observational
data are collected every 10 min (1 min in intensive mode), and the related data curves are
also automatically updated every 10 min (1 min in intensive mode). Users can arbitrarily
call and display the data of any observational elements at any observational station during
any observational period and browse the data in various online visualization formats, e.g.,
curve charts, area charts, scatter charts, or column charts. Moreover, the system supports
the multivariable comparative analysis of observational data. Users can combine multiple
correlating variables together for the browsing of visual contrast.
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Figure 10. Different online visualization forms of the observational data in the HRB. (a) A curve chart example of soil heat
flux (in this example, in a corn field near Daman station); (b) an area chart example of soil temperature (in this example,
2, 4, and 6 cm underground near Daman station); (c) a scatter chart example of wind direction (in this example, near
Dashalong station on 4 November 2019); (d) a column chart example of rainfall (in this example, near Dashalong station on
4 November 2019).

3.4. Data Downloading on Demand

The application of relational databases facilitates the on-demand downloading of
observational data. In the past, observational data in the HRB were shared through data
files. Each file stored some observational elements obtained in specific areas within a given
period in a certain format. After gaining the shared data files, researchers extract and
sort the data that they need from many data files based on their research demands. This
approach is very inefficient and time consuming. To solve this problem, the authors of
this study developed the IODCS in the HRB so that researchers may directly obtain the
observational elements collected from a specific area within the required time interval from
the system according to their research needs while keeping data acquisition process simple
and efficient. Figure 11 shows the data downloading interface.
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Figure 11. Data downloading interface (translated from the user interface in Chinese).

3.5. Intelligent Analysis of the Status of the Observational Network

Because there are many observational nodes and elements in the observational area, it
is very important to know the status of the observational network in real time. The IODCS
can automatically collect and organize the observational data of all nodes in the whole
observational network every day and generate a graphical status report of the observational
network. This report can help maintenance personnel monitor the operational status of the
observational system and analyze whether there are errors in the data. Figure 12 shows
part of the equipment status inspection reports.

Figure 12. Part of the equipment status inspection report of the IODCS.
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3.6. Anomaly Detection

The IODCS applies some data analysis methods to assist in the analysis and detection
of observational data. For example, a fitting method is used to detect abrupt anomalies in
the data. An artificial neural network analyzes the abnormal fluctuation of the data, and
the integrity of the dataset is analyzed using a statistical method.

Figure 13 shows the detection of data exceptions using the polynomial curve fitting
method (using the same strategy as MATLAB; see https://www.mathworks.com/help/
matlab/ref/polyfit.html (accessed on 28 June 2021)). Considering the WSN data for soil
moisture within a certain period as an example [47], according to the time-series scatter
diagram and the fitted results of the sample data, the observed soil moisture value sharply
increased at approximately 01:20:00 on 26 June 2012. On that day, due to the change (rain)
in the external environment, the fitted data revealed the fluctuation well.

Figure 13. Detection of data exceptions using the fitting method.

The data at point β might be misjudged as abnormal data if there were accidental
errors but can be correctly identified among the quality control elements with abnormal
fluctuation. However, with a residual error of 0.3135, which was much greater than three
standard deviations (standard deviation = 0.0278), the data at point α were abnormal.

Figure 14 shows the analysis of data exceptions using the backpropagation (BP) neural
network method. Taking the measured WSN data for soil moisture on a specific day as an
example, we analyzed the fluctuation in the observational data. Figure 14 illustrates that as
the number of training iterations increased, the model’s accuracy was greatly improved.
Then, we used the true data range from 18:36 to 20:24 as the samples by which the BP
algorithm was applied to train the network, and the corresponding weight matrixes and
their eigenvectors were calculated. By comparing these eigenvectors with the standard
eigenvector, e.g., the eigenvector of the data collected during a rain spell, researchers could
determine whether data are abnormal.

Figure 14. Analysis of data exceptions using the BP neural network method.

https://www.mathworks.com/help/matlab/ref/polyfit.html
https://www.mathworks.com/help/matlab/ref/polyfit.html
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3.7. Online Computing with Integrated Models

We used online calculations for growth monitoring and yield prediction [48,49] and
soil moisture spatial interpolation of crops as examples of these integrated models [50,51].
Table 4 shows the details of the integrated models.

Table 4. Models integrated into the IODCS.

No. Model Function Development Language

1 WOFOST crop growth model

With the physiological and ecological processes
of crops, e.g., assimilation, respiration,

transpiration, and dry matter partitioning, as
the simulation basis, the WOFOST crop growth
model simulates the growth of crops under the
circumstances of potential growth, restricted

water, and limited nutrients.

Fortran [52]

2 Spatial kriging interpolation model

After examining soil moisture in the typical
irrigated farmland in the upper reaches of the

Heihe River as the object of study, relevant
extension packs of the Python language are

applied to analyze the spatial variability in the
observational data and build the spatial

kriging interpolation model to estimate the soil
moisture in the study area.

Python

The predicted results of crop growth, yield, and biomass are shown in Figure 15. The
predicted results of the soil moisture spatial interpolation model are shown in Figure 16.

Figure 15. Prediction results of the crop growth model.

Figure 16. Online calculation results of the soil moisture spatial interpolation model (using discrete
soil moisture observational data as the input, the platform calls the online spatial interpolation model
to calculate the spatial distribution data for soil moisture).
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4. Summary and Outlook

The IODCS developed in this paper is a highly standardized, strongly interactive,
secure, and reliable instance of CI application. The HRB area application shows that
the IODCS has completely changed the method of storing and managing observational
data using data files by applying a relational database to manage strongly structured
observational data, which greatly increases data management efficiency. The change in
the data management mode also directly influences the subsequent use of observational
data, not only making it possible to efficiently query, analyze, and download the obser-
vational data but also remarkably improving the method and efficiency of data service
and sharing. The IODCS facilitates other application modes for observational data, such
as online model integration application and the intelligent analysis of the status of the
observational network.

However, due to the current level of automated data processing, only a limited number
of automated preprocessing algorithms are used in the IODCS, which, to a certain degree,
confines the processing capacity of the CI system. To meet the demands of scientific field
observations in the big data era, the IODCS must be further optimized to combine big
data with machine learning and deep learning to provide a one-stop platform for data
management and model development for massive observational data to support big Earth
data sharing services for scientific research in the HRB.
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