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Abstract: Linear frequency-modulated (LFM) signals are the most significant example of waveform
used in low probability of intercept (LPI) radars, synthetic aperture radars and modern communica-
tion systems. Thus, interception and parameter estimation of the signals is one of the challenges in
Electronic Support (ES) systems. The methods, which are widely used to accomplish this task are
mainly based on transformations from time to time-frequency domain, which concentrate the energy
of signals along an instantaneous frequency (IF) line. The most popular examples of such transforms
are the short time Fourier transform (STFT) and Wigner-Ville distribution (WVD). However, for LFM
waveforms, methods that concentrate signal energy along a line in the time-frequency rate domain
may allow to obtain better detection and estimation performance. This type of transformation can be
obtained using the cubic phase (CP) function (CPF). In the paper, the detection of LFM waveform
and its chirp rate (CR) parameter estimation based on the extended forms of the standard CPF is
proposed. The CPF was originally introduced for instantaneous frequency rate (IFR) estimation for
quadratic frequency modulated (QFM) signals i.e., cubic phase signals. Summation or multiplication
operations on time cross-sections of the CPF allow to formulate the extended forms of the CPF. Based
on these forms, detection test statistics and the estimation procedure of LFM signal parameters have
been proposed. The widely known estimation methods assure satisfying accuracy for high SNR
levels, but for low SNRs the reliable estimation is a challenge. The proposed approach based on
joint analysis of detection and estimation characteristics allows to increase the reliability of chirp
rate estimates for low SNRs. The results of Monte-Carlo simulation investigations on LFM signal
detection and chirp rate estimation evaluated by the mean squared error (MSE) obtained by the
proposed methods with comparisons to the Cramer-Rao lower bound (CRLB) are presented.

Keywords: LFM signal detection; parameter estimation; chirp signal; cubic phase function; chirp
rate estimation

1. Introduction

LPI radars are a class of radar systems that are designed to be difficult to detect
by today’s electronic support measures (ESM) [1]. The LPI radar transmits a low power
intrapulse modulated waveform or frequency modulated continuous wave (FMCW) to
reduce the transmitted power of LPI waveforms. LFM signals are important signals among
LPI signal modulations. Such signals are addressed in Electronic Intelligence (ELINT)
which collect and process weak signals, especially radar signals, allowing tactical action
to recognise radiation sources and the type of signals modulation for effective counterac-
tion [2–4] in today’s battlefields. The growing interest in Passive Coherent Location (PCL)
systems with non-cooperative transmitters, such as those operating in ultra high frequency
(UHF) and very high frequency (VHF) bands, forces incrisingly advanced analysis of
frequency modulated (FM) signals, including LFM signals [5]. LFM signals belong to the
class of polynomial phase signals, which are intensively used in imaging of moving and
non-moving targets in modern synthetic aperture radar (SAR) imaging systems [6]. The
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rapid development of modern communication systems including wireless sensor network
applications entails the need to develop energy-efficient transmission techniques, especially
dedicated to large, low-power networks (LPWAN) [7–9]. A promising approach seems to
be the technique using the linear chirp spread spectrum (CSS) [10].

Time-frequency methods are widely used in the analysis, detection and parameter
estimation of the LFM signals. The idea behind time-frequency processing based on time-
frequency rate processing used in detection and the parameter estimation of LMF signals
has been presented by authors in [11]. The promising time-frequency rate processing for
LFM signals has been creatively developed and analysed in detail in the presented paper.

2. Problem Statement

The optimal approach to analysis of single-component LFM signals is based on the
maximum likelihood estimator (MLE) [12–14]. However MLE is ineffective for the higher
order polynomial phase signals, due to necessity of solving multidimensional optimisation
problem with inevitable high numerical burden.

LFM signals embedded in noise can be described as follows:

zr(n) = zs(n) + zw(n) = b0ej(a0+a1n+a2n2) + zw(n), −N − 1
2
≤ n ≤ N − 1

2
, (1)

where zs(n) is a noiseless polynomial phase signals with parameters b0, a0, a1, a2 and zw(n)
is complex white Gaussian noise of power σ2.

The use of MLE approach for the signal zr(n) described by (1) leads to a two stage
estimation algorithm where parameters a1, a2 (a2 is also called CR parameter) are calculated
in the following way:

(â1, â2) = arg max
(a1,a2)

N−1
2

∑
n=− N−1

2

zr(n)e−j(a1n+a2n2). (2)

Next, using â1, â2 in the dechirping process, two remaining parameters b0, a0 of the
signal can be calculated as follows:

b̂0 =
1
N

N−1
2

∑
n=− N−1

2

zr(n)e−j(â1n+â2n2), (3)

â0 = angle




N−1
2

∑
n=− N−1

2

zr(n)e−j(â1n+â2n2)


. (4)

There are several suboptimal approaches employed to the problem of parameter
estimation of LFM signals. Each of them suffers from method-specific drawbacks but also
shows method-specific advantages. The first generation of time-frequency (T-F) methods
was based on the high-order ambiguity function (HAF), product HAF (PHAF), integrated
generalized ambiguity function (IGAF) [15]. The chirp-Fourier transform or subspace-
based algorithms (e.g., MUSIC and ESPRIT) [16,17] due to the non-stationary properties
of chirp signals and the high rank of covariance matrix are much less useful than the
maximum likelihood (ML) method. A variety of different methods were recommended for
the analysis and estimation of LFM signals based on T-F processing for example extended
generalized chirp transform [18]. The WVD and the spectrogram as the square modulus
of the STFT show ideally linear dependence of frequency on time for LFM signals in T-F
plane. However the STFT transform can be also used in parameter estimation of higher
order polynomial phase signal (PPS) with polynomial order P > 2 [19]. Next, the problem
of detection and estimation of LFM signals can be solved using image processing methods,
so it is reduced to the detection of line in an image, which is an easy-solved problem
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in pattern recognition [20–22]. The Radon-Wigner transform (RWT), the Wigner Hough
transform (WHT) and the Radon-ambiguity transform (RAT) detect LFM signals in a time-
frequency image by incoherent energy integration of Wigner-Ville distribution or ambiguity
function (AF) in the image. Unfortunately these methods are complex and time consuming
compared to other known methods such as those based on the chirp-Fourier transform and
the MLE [15,23,24]. The Quasi-maximum-likelihood estimator (QML) is an extension of
the STFT. In this method, the optimal window is searched in the STFT. Next, the STFT for
the optimal window is performed to obtain rough estimates of parameters (including the
a2 parameter) [25], which are used as initial conditions in the ML procedure. The concept
of the complex phase of the STFT results in additional new structures of instantaneous a2
estimators for LFM signals [26].

In this paper, LFM signals defined by the polynomial phase of the second order are
estimated by methods based on the CPF, which are in time–frequency rate (T-FR) processing
domain. Due to nonlinearity in the exponent of the CPF transformation, this distribution
cannot be calculated exactly by the Fourier transform, so sub-band decomposition in
frequency rate (further denoted as Ω) domain should be done to reduce a number of
operations for the CPF calculation. Instantaneous frequency rate is one of arguments of the
CPF distribution whereas instantaneous frequency is an argument of well-known quadratic
time-frequency distributions like the spectrogram or the WVD in the T-F plane. Although
both the IFR and the IF are denoted by the same symbol Ω in relevant distributions, they
have completely different properties. In general, even for multi-component signal case the
IF as the first derivative with respect to time of the phase function can be calculated by the
differentiation of the STFT phase. However the IFR as the second derivative of the phase
function cannot be calculated by the second derivative of the STFT phase for the same
signal [27,28]. When a signal is the PPS of the second order (LFM signals), it is possible to
estimate IFR i.e., a2 in alternative way by analysing peaks of the CPF [29]. Having had the
IFR estimator, all parameters of LFM signals can be estimated. Hybrid CPF extensions such
as the CPF-HAF and the high order CPF-Wigner-Ville (HOCPF-WD) [30] are dedicated
to higher order PPS estimation and the a2 parameter is included in the estimated set of
parameters. Another extension called the integrated CPF (ICPF) refers to LFM signals only
and offers good properties of IFR estimation [29].

3. Extended Forms of the Standard CPF

Initially, the CPF was a distribution intended for parameter estimation of quadratic
FM signals only, but this distribution can be effectively used for parameter estimation of
linear FM signals. The CPF distribution is given as [25,31]:

CPFzr (n, Ω) =

N−1
2

∑
m=0

zr(n + m)zr(n−m)e−jΩm2
, −N − 1

2
≤ n ≤ N − 1

2
, (5)

where Ω is an argument related to the IFR of signals. The IFR is defined in the form:

IFR(n) =
d2φ(n)

dn2 , (6)

where φ(n) is a signal phase. IFR estimate at time moment n can be obtained as follow-
ing [25,31]:

ÎFR(n) = arg max
Ω
|CPF(n, Ω)|, (7)

so the estimate of the IFR is an argument, which maximises the magnitude of the CPF at
each n.
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When computing the CPF formula, the product zr(n + m)zr(m− n) is calculated first
and for LFM signals this operation results in deterministic (zdet(n)) and random (zrand(n))
components:

zr(n + m)zr(m− n) = zdet(n) + zrand(n) = b2
0ej2[(a0+a1n+a2n2)+a2m2] + zrand(n). (8)

The expression 2(a0 + a1n + a2n2) is a constant for given n and represents the ‘initial
phase’, whereas the (2a2) is a quadratic phase parameter with respect to m and corresponds
exactly to the IFR of a LFM signal. For Ω = 2a2, the CPF attains the maximum, for which
the Ω value is the IFR allowing to estimate the chirp parameter a2. Then the estimate of a1
can be found using the Fourier transform F of the dechirped signal zrd(n).

zrd(n) = zr(n)e−jâ2n2
, (9)

â1 = arg max
a1

[abs(F (zrd(n)))]. (10)

Parameters â0 and b̂0 are estimated in the same way as in (3) and (4).
The goal of our research is to develop method, which allow to improve performance

of the estimation procedure. The objective is detection of LFM signals described by the
parameters a2, a1, a0 from the noisy observations and estimation of the a2 parameter, with
the accuracy close to the CRLB and with the SNR threshold as low as possible, in low SNR
conditions. To achieve the intention, we propose two novel distributions: the SCPF and the
PCPF build as extended forms of the standard CPF distribution. We evaluate the use of the
SCPF and the PCPF by preliminary theoretical analysis and extensive simulation testing.
The proposed extensions rely on the combination (multiplying (PCPF) or adding (SPCF)) of
several CPF slices. The term slice is defined as the cross-section of the CPF taken at different
time instant n (as in (11) and (12)). This approach results in obtaining new time-frequency
rate distributions with different properties than the properties of standard CPF.

SCPF(Ω) =
L

∑
n=0

CPF(n, Ω), (11)

where the SCPF is the sum of the CPFs at different time positions n.

PCPF(Ω) =
L

∏
n=0

CPF(n, Ω), (12)

where the PCPF is the product of the CPFs at different time positions n.
It is expected that the multiplication and summing operations will amplify auto-

terms of a signal and suppress the noise component which would decrease the Signal-
to-Noise threshold (SNR threshold), under which the estimation process exhibits a rapid
deterioration of estimation accuracy. It can be easily noticed that the extended forms
show the same location of a peak related to the a2 parameter as in the CPF. The CPF-
based estimator for a2 estimation is statistically efficient, since its mean squared error
(MSE) asymptotically approaches the Cramer–Rao lower bound (CRLB) at high SNR at
n = 0 [25]. It is anticipated that extended estimators SCPF and PCPF of the a2 parameter
will reveal good statistical properties at much lower SNR threshold values than the CPF-
based estimator. The estimation process of the a2 parameter can be reformulated as the
detection of LFM signals with the set of parameters a0, a1, a2 in an observed signal, therefore
the procedure of searching IFR spectrum peaks, which exceed the detection threshold level
is proposed in the detection stage.
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4. Detection of LFM Signals with Using CPF-Based Detectors

The issue of detection of LFM signals can be solved with use of binary hypotheses
testing with two hypothesis (H0 and H1) on absence or presence of a signal in noise
background formulated as following:

H0 : zr = zw, (13)

H1 : zr = zs + zw. (14)

The CPF-based detection procedure compares the highest peak of test statistics the
TCPF and TSCPF, TPCPF proposed by authors with the threshold γXCPF. The thresholds
can be calculated based on Neyman-Pearson criterion with assumed probability of false
alarm (PFA).

TCPF = max
Ω
|CPF(n, Ω)| ≷H1

H0
γCPF, (15)

TSCPF = max
Ω
|∑

n
CPF(n, Ω)| ≷H1

H0
γSCPF, (16)

TPCPF = max
Ω
|∏

n
CPF(n, Ω)| ≷H1

H0
γPCPF. (17)

Due to the fact that test statistics are non-linear, the Monte Carlo simulations are used
to determine the probability of signal detection for a given PFA. The proposed detection
method of LFM signals is equivalent to estimation of their CR (a2 parameter).

The concept of signal detection and estimation of its parameters using the CPF is
shown in Figure 1, where two CPF realisations are presented for the up-chirp LFM sig-
nal with bandwidth Bchirp = 100 kHz and parameters: b0 = 1, a0 = 0, a1 = −0.05,
a2 = 4.8876× 10−5. These parameters are also used in simulations presented in the
Section 6. Two cases with SNR = 0 dB and SNR = −10 dB are shown. The position
of Ω for which the CPF magnitude achieves the maximum value (Ωmax) is searched. This
position points out the estimated value of a2 parameter as follows [29]:

â2 =
Ωmax

2
. (18)
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Figure 1. Examples of the CPF realisations used in the process of a2 parameter estimation for two
signals with different SNR values.

For a noiseless signal or signal with the high SNR (as can be seen in upper part of
Figure 1), the maximum of the |CPF| clearly indicates the Ω value for which this maximum

Figure 1. Examples of the CPF realisations used in the process of a2 parameter estimation for two
signals with different SNR values.

For a noiseless signal or signal with the high SNR (as can be seen in upper part of
Figure 1), the maximum of the |CPF| clearly indicates the Ω value for which this maximum
occurs. However for low SNR values, the maximum may be ambiguous as presented in
lower part of Figure 1.

The flowchart of the a2 parameter estimation can be summarised in the following way:
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• calculate the CPF distribution (according to (5));
• calculate the SCPF or the PCPF distribution (according to (11) or (12));
• take the Ωmax value obtained from maximum value of the SCPF or the PCPF magni-

tude and calculate estimate of a2 parameter (according to (18));
• moreover, a1 estimate could be obtained in the classical way by searching maximum

in Fourier spectrum after signal dechirping with use of â2, whereas a0 and b0 could be
calculated according to (3) and (4).

5. Statistical Properties of the Chirp-Rate Parameter Estimators

In this section theoretical expression for the MSE of the parameter a2 is developed.
The exact formula for the MSE is difficult to derive because of high order of nonlinearities
of the CPF-based estimator, so only the approximate formula is proposed. In the paper,
the analysis of the MSE of the parameter a2 is performed for the standard CPF-based
estimator [31] and for two extended forms: the SCPF (first author’s idea) and the PCPF [32]
as functions of SNR parameter.

The statistical analysis of the a2 estimate is the most critical step because this param-
eter is used in the dechirping process and significantly affects the accuracy of the other
parameter estimation. The CPF applied to a noiseless LFM signal ideally concentrates
signal energy along the line Ω0 = 2a2 for each time instant n, therefore a2 parameter
estimation can be calculated according to (18). Due to noise, the location of the maximum
of the CPF for a noiseless LFM signal obtained for Ω0 may be moved by a random shift δΩ
to a new location resulting in deviated estimate Ω̂ = Ω0 + δΩ. The error δΩ of a2 parame-
ter estimation is evaluated by the MSE. Generally, the mean squared error comprise two
components MSE(δΩ) = bias2(δΩ) + var(δΩ), but IFR estimators for a phase polynomial

signal are unbiased if dkφ

dnk = 0 for k > 3. Therefore, the MSE is only the variance component
MSE(δΩ) = E{(δΩ)2}, where E{•} denotes the expectation operator. The derivation of
the asymptotic MSE is based on the first order perturbation approach under assumption
that the number of data points and SNRs tend to infinity [14].

Let’s assume that a function gN(Ω) which depends on a real variable Ω and an
integer N exists. The magnitude of that function gN(Ω) has the same global maximum at
Ω = Ω0 as the magnitude of the CPF. The perturbation function δgN(Ω) causes the small
perturbation of the function gN(Ω) because of noise. This perturbation will cause that the
point Ω0 of global maximum of the gN(Ω) is modified by an amount δΩ and the global
maximum is shifted from Ω0 to Ω0 + δΩ.

A first order perturbation for perturbation δΩ is given by the relation [31]:

δΩ ≈ − B
A

, (19)

where

A = 2Re

{
gN(Ω0)

∂2g∗N(Ω0)

∂Ω

2

+
∂gN(Ω0)

∂Ω
∂2g∗N(Ω0)

∂Ω

}
, (20)

and

B = 2Re
{

gN(Ω0)
∂δg∗N(Ω0)

∂Ω
+

∂gN(Ω0)

∂Ω
δg∗N(Ω0)

}
. (21)

The mean squared error of δΩ is described by:

E
{
(δΩ)2

}
≈ E{B2}

A2 . (22)

For the considered CPF-based estimation problem, the function gN(Ω) can be defined
in the following form [31]:

gN(Ω) = CPFzs(n, Ω). (23)
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The perturbation function δgN(Ω) is assumed as:

δgN(Ω) =
(N−1)/2−|n|)

∑
m=0

zws(n, m)e−jΩm2
, (24)

where

zws(n, m) = zs(n + m)zw(n−m) + zs(n−m)zw(n + m) + zw(n−m)zw(n + m), (25)

includes the interference of noise. To derive the perturbation δΩ equations (20) and (21)
should be used. The approximate relation below shows the MSE for given SNR (i.e., b2

0/σ2)
and N for the slice at n = 0 [31]:

E
{
(δΩ)2

}
≈

360
(

1 + 1
2SNR

)

N5SNR
. (26)

For n 6= 0 approximate properties are changed due to reduced number of samples of
the kernel zr(n + m)zr(n−m). The variance of the δΩ estimator for any n is given by the
approximate relation [31]:

E
{
(δΩ)2

}
≈ 45

4
(

N
2 − |n|

)5
SNR

. (27)

The perturbation δΩ can be expressed by the perturbation δa2 according to the relation
Ω = 2a2. For the slice n = 0 the variance of the δa2 can be expressed as [31]:

E
{
(δa2)

2
}
≈

90
(

1 + 1
2SNR

)

N5SNR
=

(
1 +

1
2SNR

)
CRLB{â2}, (28)

where the CRLB of the parameter a2 [14] is approximately determined by:

CRLB{â2} =
90

N5SNR
. (29)

The combination of different forms of the standard CPF is a promising idea to improve
performance of the estimation and detection tasks. Multiplication and summing of L slices
would be more effective because of different impact of noise on the modified estimators.
Noise can add destructively while the signal can add constructively, that’s why noise
may have relatively smaller influence on the perturbation δΩ. Moreover both extended
estimators the PCPF and the SCPF for noiseless case achieve a maximum at Ω = 2a2.
Examining the relation (27) it can be seen that the vital statistical properties lie in the
vicinity of the slice n = 0, therefore a few L << N slices are sufficiently informative.

5.1. Analysis of Statistical Properties of SCPF-Based Detector

The goal of the SCPF-based estimator is improvement of statistical properties of
estimators and reduction of the SNR threshold. To derive the MSE of the SCPF for the
first two slices based on the first order perturbation, two functions gN(Ω) and δgN(Ω) are
required, which take the form proposed by authors:

gN(Ω) =
1

∑
n=0

(N−1)/2

∑
m=0

s1s2e−jΩm2
, (30)

δgN(Ω) =
1

∑
n=0

(N−1)/2−|n|
∑

m=0
zws(n, m)e−jΩm2

, (31)
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where
s1 = zs(n + m), s2 = zs(n−m),

zws = (s1 + zw1)(s2 + zw2) = s1s2 + s1zw2 + s2zw1 + zw1zw2.

For further notation simplicity the notation w1 = zw1 and w2 = zw2 is taken. The mean
squared value of (δΩ)2 can be expressed in terms of A and B according to the Formula (22).
For the considered by authors scenario, the term A is calculated by the relation:

A =
∂2gN(Ω0)

∂Ω2 = −b2
0

3N5 − 10N3 + 7N
240

. (32)

Expressions for N slices for B and its conjugate B∗ according to (21) are shown in (33)
and (34) respectively.

B =
N−1

∑
n=0

(N−1)/2−|n|
∑

m=0
m2zws(n, m)e−j(Ωm2− π

2 ) =

=
N−1

∑
n=0

(N−1)/2−|n|
∑

m=0
m2(s1s2 + s1w2 + s2w1 + w1w2)e−j(Ωm2− π

2 )

(33)

B∗ =
N−1

∑
k=0

(N−1)/2−|n|
∑
l=0

l2z∗ws(k, l)e−j(Ωl2− π
2 ) =

=
N−1

∑
k=0

(N−1)/2−|n|
∑
l=0

l2(s∗3s∗4 + s∗3w∗4 + s∗4w∗3 + w∗3w∗4)e
−j(Ωl2− π

2 )

(34)

The intermediate step for E{BB∗} is derived in (35) and (36):

E{BB∗} =
N−1

∑
n=0

(N−1)/2

∑
m=0

m2(s1s2 + s1w2 + s2w1 + w1w2)e−j(Ωm2− π
2 )

N−1

∑
k=0

(N−1)/2

∑
l=0

l2(s∗3s∗4 + s∗3w∗4 + s∗4w∗3s + w∗3w∗4)e
−j(Ωl2− π

2 ) =

=
N−1

∑
n=0

(N−1)/2

∑
m=0

N−1

∑
k=0

(N−1)/2

∑
l=0

m2l2(s1s2 + s1w2 + s2w1 + w1w2)e−j(Ωm2− π
2 )

(s∗3s∗4 + s∗3w∗4 + s∗4w∗3 + w∗3w∗4)e
−j(Ωl2− π

2 )

(35)

Based on the high-order moment properties of the Gaussian random variable [33],
E{BB∗} can be computed as multiple summations of the Kronecker delta functions.

E{BB∗} =b4
0

(N−1)/2

∑
m=0

(N−1)/2

∑
l=0

m2l2 +
N−1

∑
n=0

(N−1)/2

∑
m=0

N−1

∑
k=0

(N−1)/2

∑
l=0

m2l2

{b2
0σ2(δ(n− k−m + l) + δ(n− k−m− l)+

+ δ(n− k + m + l) + δ(n− k + m− l))+

+ σ4δ(n− k + m− l)δ(n− k−m + l)+

+ σ4δ(n− k + m− l)δ(n− k−m + l)}

(36)

Since Kronecker’s deltas δ(n− k−m− l) and δ(n− k + m + l) never yields one, these
deltas are removed from further derivation of formulas. In the next step of deriving the
relation E{BB∗} the number of slices was limited to two in the SPCF-based estimator.



Sensors 2021, 21, 5415 9 of 21

Omitting the effect of the signal itself and taking only impact of noise, the sum of two slices
for n = 0 : 1, k = 0 : 1 leads to the final formula:

E{(δΩ2)} ≈E
{

BB∗

A2

}
=

{
b2

0σ28
(

N − 1
2

)(
N − 1

2
+ 1
)(

2
N − 1

2
+ 1
)

(
3
(

N − 1
2

)2
+ 3

N − 1
2
− 1

)
1
30
− b2

0σ28




(
N−1

2

)2
+ N−1

2

2


+

+ 4b2
0σ2
(

N − 1
2

)(
N − 1

2
+ 1
)(

2
N − 1

2
+ 1
)

1
6
+

+ σ22
(

N − 1
2

)(
N − 1

2
+ 1
)(

2
N − 1

2
+ 1
)

(
3
(

N − 1
2

)2
+ 3

N − 1
2
− 1

)}
1
30

1
(
−b2

0
3N5−10N3+7N

240

)2

(37)

It is assumed that the estimate â2 differ from true value of a2 by δa2. Taking the relation
Ω = 2a2 and (22) into account, the E{(δa2)

2} is expressed in the final form developed
by authors:

E{(δa2)
2} ≈ 60

(
6SNR((2N − 5)N2 + 2N + 5) + N(3N2 − 7)

)

N2SNR2b4
0(N2 − 1)(3N2 − 7)2

. (38)

The relation of the theoretical MSE (38) and the CRLB (29) versus the SNR is presented
in Figure 2.

Sensors 2021, 21, 5415 9 of 21

relation E{BB∗} the number of slices was limited to two in the SPCF-based estimator.
Omitting the effect of the signal itself and taking only impact of noise, the sum of two slices
for n = 0 : 1, k = 0 : 1 leads to the final formula:

E{(δΩ2)} ≈E
{

BB∗

A2

}
=

{
b2

0σ28
(

N − 1
2

)(
N − 1

2
+ 1
)(

2
N − 1

2
+ 1
)

(
3
(

N − 1
2

)2
+ 3

N − 1
2
− 1

)
1
30
− b2

0σ28




(
N−1

2

)2
+ N−1

2

2


+

+ 4b2
0σ2
(

N − 1
2

)(
N − 1

2
+ 1
)(

2
N − 1

2
+ 1
)

1
6
+

+ σ22
(

N − 1
2

)(
N − 1

2
+ 1
)(

2
N − 1

2
+ 1
)

(
3
(

N − 1
2

)2
+ 3

N − 1
2
− 1

)}
1
30

1
(
−b2

0
3N5−10N3+7N

240

)2

(37)
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Figure 2. Theoretical MSE of sum of slices n = {0, 1}.

The proposed approach is focused only on the assessment of the a2 parameter. After
the estimate of the parameter a2 is obtained, the signal zr is dechirped and the final signal
is the linear phase signal in additive noise, therefore conventional estimation methods can
be used for remaining parameters.

5.2. Analysis of Statistical Properties of PCPF-Based Detector

The theoretical analysis of statistical properties of the product of slices at different
time positions in the PCPF is limited to product of any two slices at n = n1 and n = n2.
Derivation of approximate expressions using the first order perturbation for the mean
squared errors of the estimated parameter a2 for higher number of slices of extended
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The proposed approach is focused only on the assessment of the a2 parameter. After
the estimate of the parameter a2 is obtained, the signal zr is dechirped and the final signal
is the linear phase signal in additive noise, therefore conventional estimation methods can
be used for remaining parameters.

5.2. Analysis of Statistical Properties of PCPF-Based Detector

The theoretical analysis of statistical properties of the product of slices at different
time positions in the PCPF is limited to product of any two slices at n = n1 and n = n2.
Derivation of approximate expressions using the first order perturbation for the mean
squared errors of the estimated parameter a2 for higher number of slices of extended
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estimators requires very high computational load [32]. Therefore estimation results for
higher number of slices are verified only by numerical simulations.

The function gN(Ω) and the function δgN(Ω) in the PCPF case are defined as follows [32]:

gN(Ω) =
N1

∑
m=0

zs(n1 + m)zs(n1 −m)e−jΩm2 ·
N2

∑
m=0

zs(n2 + m)zs(n2 −m)e−jΩm2
(39)

δgN(Ω) =
N1

∑
m=0

zs(n1 + m)zs(n1 −m)e−jΩm2
N2

∑
m=0

zws(n2)e−jΩm2
+

+
N2

∑
m=0

zs(n2 + m)zs(n2 −m)e−jΩm2
N1

∑
m=0

zws(n1)e−jΩm2

(40)

where

zws(n1) = zs(n1 + m)zw(n1 −m) + zs(n1 −m)zw(n1 + m) + zw(n1 −m)zw(n1 + m), (41)

zws(n2) = zs(n2 + m)zw(n2 −m) + zs(n2 −m)zw(n2 + m) + zw(n2 −m)zw(n2 + m). (42)

As previously, gN(Ω) contains only signal-related terms and therefore is deterministic,
whereas δgN(Ω) includes interacting signal-and-noise terms which are random. Functions
found in Equations (20) and (21) may be approximated by the relation [32]:

gN(Ω0) ≈ b2
0K2N1N2, (43)

∂gN(Ω0)

δΩ
≈ −jb4

0K2 1
3
(N1N3

2 + N3
1 N2), (44)

∂2gN(Ω0)

δΩ2 ≈ −b4
0K2 1

45
(9N1N5

2 + 10N3
1 N3

2 + 9N5
1 N2), (45)

δgN(Ω0) ≈ b2
0KN2

N1

∑
m=0

zws(n1)e−jΩ0m2
+ b2

0KN1

N2

∑
m=0

zws(n2)e−jΩ0m2
, (46)

∂δgN(Ω0)

δΩ
≈ jb2

0KN2

N1

∑
m=0

(
m2 +

N2
2

3

)
zws(n1)e−jΩ0m2−

− jb2
0KN1

N2

∑
m=0

(
m2 +

N2
1

3

)
zws(n2)e−jΩ0m2

(47)

where Ω0 is that value when Ω = 2a2, N1 = (N − 1)/2− n1, N2 = (N − 1)/2− n2 and
K = ej(2a0+a1(n1+n2)+a2(n1+n2)

2). Inserting (43)–(47) into (20) and (21), the MSE of the δa2
can be approximately given by the relation [32]:

E
{
(δa2)

2
}
≈

45
[
(46N5

1 N2
2 + 16N2

1 N5
2 − 14N6

1 N2) +
8N5

1 N2
2+8N2

1 N5
2

SNR

]

256SNR(N1N5
2 + N5

1 N2)2
+

+
45(32N6

1 N2 − 30N2
1 N5

2 + 14N1N6
2 )

256SNR(N1N5
2 + N5

1 N2)2
1(N − 4n1)

(48)

where 1(·) is the unit step function. General expression (48) is adopted for the analysis of
the product of the first two slices n1 = 0 and n2 = 1 due to their important role in building
of the MSE formula. As previously mentioned, the estimate â2 differs from true value of a2
by δa2. The relation of the theoretical MSE (48) and CRLB (29) versus SNR is presented in
Figure 3.
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6. Simulations Results

Simulation investigations of the proposed algorithms were carried out for up-chirp
LFM waveform. The parameters of signal modelled as in (1) were: b0 = 1, a0 = 0,
a1 = (−BchirpTs)/2, a2 = (BchirpTs)/(2N). We assumed the bandwidth of the LFM
signal Bchirp = 100 kHz and time duration of the signal equal to NTs where N = 1023
is the number of samples taken every sampling period Ts = 10−6s. The noise zw(n) was
assumed to be complex Gaussian with variance depending on SNR. To assess the proposed
detection methods based on test statistics: TCPF (15), TSCPF (16) and TPCPF (17), Monte-
Carlo simulations for Ns = 104 runs were carried out. The probability of detection (PD)
for thresholds established for assumed probabilities of false alarm (PFA) in various SNR
conditions has been determined.

The Figure 4 presents probability of detection with use of the TCPF statistics for
different PFA in various SNR conditions.
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The PD as function of SNR presented in Figure 4 characterises the performance of the
basic detector based on TCPF statistics. It may be treated as basis to assess the effectiveness
of the more advanced detectors based on TSCPF and TPCPF, which PD versus SNR for
various PFA are shown in Figures 5–8.

Figure 3. Theoretical MSE of product of slices n = {0, 1}.

6. Simulations Results

Simulation investigations of the proposed algorithms were carried out for up-chirp
LFM waveform. The parameters of signal modelled as in (1) were: b0 = 1, a0 = 0,
a1 = (−BchirpTs)/2, a2 = (BchirpTs)/(2N). We assumed the bandwidth of the LFM
signal Bchirp = 100 kHz and time duration of the signal equal to NTs where N = 1023
is the number of samples taken every sampling period Ts = 10−6s. The noise zw(n) was
assumed to be complex Gaussian with variance depending on SNR. To assess the proposed
detection methods based on test statistics: TCPF (15), TSCPF (16) and TPCPF (17), Monte-
Carlo simulations for Ns = 104 runs were carried out. The probability of detection (PD)
for thresholds established for assumed probabilities of false alarm (PFA) in various SNR
conditions has been determined.

The Figure 4 presents probability of detection with use of the TCPF statistics for
different PFA in various SNR conditions.

Sensors 2021, 21, 5415 11 of 21

−16 −14 −12 −10 −8 −6 −4 −2 0
−135

−130

−125

−120

−115

−110

−105

−100

SNR [dB]

M
SE

of
a 2

[d
B]

theoretical MSE of product of slices n = 0, 1
CRLB

Figure 3. Theoretical MSE of product of slices n = {0, 1}.

6. Simulations Results

Simulation investigations of the proposed algorithms were carried out for up-chirp
LFM waveform. The parameters of signal modelled as in (1) were: b0 = 1, a0 = 0,
a1 = (−BchirpTs)/2, a2 = (BchirpTs)/(2N). We assumed the bandwidth of the LFM
signal Bchirp = 100 kHz and time duration of the signal equal to NTs where N = 1023
is the number of samples taken every sampling period Ts = 10−6s. The noise zw(n) was
assumed to be complex Gaussian with variance depending on SNR. To assess the proposed
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The PD as function of SNR presented in Figure 4 characterises the performance of the
basic detector based on TCPF statistics. It may be treated as basis to assess the effectiveness
of the more advanced detectors based on TSCPF and TPCPF, which PD versus SNR for
various PFA are shown in Figures 5–8.
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The PD as function of SNR presented in Figure 4 characterises the performance of the
basic detector based on TCPF statistics. It may be treated as basis to assess the effectiveness
of the more advanced detectors based on TSCPF and TPCPF, which PD versus SNR for
various PFA are shown in Figures 5–8.

In Figures 5 and 7 TSCPF and TPCPF statistics which employ only first two slices
(n = {0, 1}) are presented while the scenario with first thirty one slices (n = {0, 1, . . . , 30})
is considered in Figures 6 and 8.
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Comparing Figure 5 with Figure 4 leads to observation that the TSCPF statistics with
only two slices significantly increases detection performance in relation to the standard
TCPF. Moreover Figures 5 and 6 allow to notice considerable increase of PD with growing
number of slices, however on the cost of rising computational burden.
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Comparisons of characteristics shown in Figures 5–8 lead to conclusion that the
efficiency of TSCPF and TPCPF statistics is very similar. Moreover it can be clearly
seen that detection performance increases evidently with growing number of slices for
both the TSCPF and the TPCPF. The investigation results on this issue is presented in
Figures 9 and 10, where the relation between PD and number of slices for different SNR
and PFA are analysed.
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Figures 9 and 10, where the relation between PD and number of slices for different SNR
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The results shown in Figures 9 and 10 lead to the conclusion that a certain balance
between the performance and computational load should be considered in particular cases.

The assessment of the CR estimate accuracy has been performed using SCPF and PCPF
estimators. Numerical examples verify the theoretical results and show that the proposed
SCPF and PCPF estimators outperform the standard CPF-based estimator. Figure 11 shows
the theoretical and simulation results of the MSE of the CR parameter using the SCPF-
based estimator.
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between the performance and computational load should be considered in particular cases.

The assessment of the CR estimate accuracy has been performed using SCPF and PCPF
estimators. Numerical examples verify the theoretical results and show that the proposed
SCPF and PCPF estimators outperform the standard CPF-based estimator. Figure 11 shows
the theoretical and simulation results of the MSE of the CR parameter using the SCPF-
based estimator.
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Figure 11. Theoretical and measured MSEs of the SCPF for n = {0, 1}.

In presence of heavy noise the maximum of the SCPF may occur at the true value of
the a2 or may occur away from this true value. This last scenario is known as the ‘outlier’
scenario, which may initialize the SNR threshold phenomenon clearly visible in MSE
characteristics presented in Figure 11. The SNR threshold effects arise when the probability
of an outlier becomes significant. The SNR threshold can be defined as a level of SNR
at which the accuracy of estimation deteriorates rapidly and significantly differs from
the theoretical MSE. The SNR threshold effect for various number of slices is presented
in Figure 12. The explanation of the phenomenon can be also given by comparing the
detection characteristics presented in Figures 5–8 with the MSE characteristics presented in
Figures 11–14. As can be seen the SNR threshold occurs when the probability of detection
decreases below 1. It means that some of the CR estimates are calculated with growing
errors which lead to rapid increase of the MSE.

Figure 10. Dependence of the probability of detection on number of slices used in the TSCPF statistics
for different SNR and PFA = 0.001.
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The results shown in Figures 9 and 10 lead to the conclusion that a certain balance
between the performance and computational load should be considered in particular cases.

The assessment of the CR estimate accuracy has been performed using SCPF and PCPF
estimators. Numerical examples verify the theoretical results and show that the proposed
SCPF and PCPF estimators outperform the standard CPF-based estimator. Figure 11 shows
the theoretical and simulation results of the MSE of the CR parameter using the SCPF-
based estimator.
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In presence of heavy noise the maximum of the SCPF may occur at the true value of
the a2 or may occur away from this true value. This last scenario is known as the ‘outlier’
scenario, which may initialize the SNR threshold phenomenon clearly visible in MSE
characteristics presented in Figure 11. The SNR threshold effects arise when the probability
of an outlier becomes significant. The SNR threshold can be defined as a level of SNR
at which the accuracy of estimation deteriorates rapidly and significantly differs from
the theoretical MSE. The SNR threshold effect for various number of slices is presented
in Figure 12. The explanation of the phenomenon can be also given by comparing the
detection characteristics presented in Figures 5–8 with the MSE characteristics presented in
Figures 11–14. As can be seen the SNR threshold occurs when the probability of detection
decreases below 1. It means that some of the CR estimates are calculated with growing
errors which lead to rapid increase of the MSE.
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In presence of heavy noise the maximum of the SCPF may occur at the true value of
the a2 or may occur away from this true value. This last scenario is known as the ‘outlier’
scenario, which may initialize the SNR threshold phenomenon clearly visible in MSE
characteristics presented in Figure 11. The SNR threshold effects arise when the probability
of an outlier becomes significant. The SNR threshold can be defined as a level of SNR
at which the accuracy of estimation deteriorates rapidly and significantly differs from
the theoretical MSE. The SNR threshold effect for various number of slices is presented
in Figure 12. The explanation of the phenomenon can be also given by comparing the
detection characteristics presented in Figures 5–8 with the MSE characteristics presented in
Figures 11–14. As can be seen the SNR threshold occurs when the probability of detection
decreases below 1. It means that some of the CR estimates are calculated with growing
errors which lead to rapid increase of the MSE.

As can be seen in Figure 12 increasing the number of slices significantly changes the
SNR threshold. With an increase of the number of slices in the SCPF, noise influence is
reduced resulting in the lowering of the SNR threshold.

The PCPF algorithm for the same parameters as in the SCPF algorithm is applied and
results of experiments are presented in Figures 13 and 14. The SNR threshold phenomenon
is also visible in obtained MSEs.



Sensors 2021, 21, 5415 15 of 21

Sensors 2021, 21, 5415 15 of 21

As can be seen in Figure 12 increasing the number of slices significantly changes the
SNR threshold. With an increase of the number of slices in the SCPF, noise influence is
reduced resulting in the lowering of the SNR threshold.

−16 −14 −12 −10 −8 −6 −4 −2 0

−140

−130

−120

−110

−100

−90

SNR [dB]

M
SE

of
a 2

[d
B]

CPF for n = 0
SCPF for n = 0, 1
SCPF for n = 0, ..., 3
SCPF for n = 0, ..., 5
SCPF for n = 0, ..., 10
SCPF for n = 0, ..., 20
SCPF for n = 0, ..., 30

Figure 12. Influence of the number of SCPF slices on MSE.

The PCPF algorithm for the same parameters as in the SCPF algorithm is applied and
results of experiments are presented in Figures 13 and 14. The SNR threshold phenomenon
is also visible in obtained MSEs.

−16 −14 −12 −10 −8 −6 −4 −2 0
−140

−120

−100

−80

SNR [dB]

M
SE

of
a 2

[d
B]

MSE - PCPF for n = 0, 1
theoretical MSE - PCPF for n = 0, 1
CRLB (n = 0)

Figure 13. Theoretical and measured MSEs of the PCPF for n = {0, 1}.
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It can be concluded that expected lowering of the SNR threshold is achieved by
summing and multiplying of the CPF slices, which is a novel approach proposed in the
paper. As shown in Figure 15 despite different calculations of both the SPCF and the PCPF
obtained MSEs demonstrate similar results.

−16 −14 −12 −10 −8 −6 −4 −2 0
−140

−120

−100

−80

SNR [dB]

M
SE

of
a 2

[d
B]

SCPF
PCPF

Figure 15. MSE of the SCPF-based estimator and the PCPF-based estimator for n = {0, . . . , 4} slices.

As outlined in Section 2, there are a number of methods presented in literature which
are dedicated to estimation of the parameters of the PPS. The estimation algorithms can be
divided into three groups:

• maximum likelihood estimators,
• estimation methods in T-F plane,
• estimation methods in T-FR plane.

Simulations results presented in literature can be used as a basis for comparison,
however most of them were performed on shorter lengths of signals, e.g., N = 64, N = 128,
N = 256. Simulation research examined in the paper were carried out for number of sam-
ples N = 1023, which resulted from the assumed frequency bandwidth B = 100× 103 [Hz]
of the LFM signal and the sampling frequency f s = 1× 106 [Hz], which corresponded
to the actual LFM signals. In order to compare the performance of algorithms presented
in the paper with results reported in the literature, experiments were repeated with new
experimental parameters N = 255 and N = 63 with adequate lowering of sampling rate
(e.g., f s = 255/1023× 106 for N = 255), which ensures the same value of B, a0, a1, a2 as in
the main experiment.
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It can be concluded that expected lowering of the SNR threshold is achieved by
summing and multiplying of the CPF slices, which is a novel approach proposed in the
paper. As shown in Figure 15 despite different calculations of both the SPCF and the PCPF
obtained MSEs demonstrate similar results.
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ples N = 1023, which resulted from the assumed frequency bandwidth B = 100× 103 [Hz]
of the LFM signal and the sampling frequency f s = 1× 106 [Hz], which corresponded
to the actual LFM signals. In order to compare the performance of algorithms presented
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As outlined in Section 2, there are a number of methods presented in literature which
are dedicated to estimation of the parameters of the PPS. The estimation algorithms can be
divided into three groups:

• maximum likelihood estimators,
• estimation methods in T-F plane,
• estimation methods in T-FR plane.

Simulations results presented in literature can be used as a basis for comparison,
however most of them were performed on shorter lengths of signals, e.g., N = 64, N = 128,
N = 256. Simulation research examined in the paper were carried out for number of sam-
ples N = 1023, which resulted from the assumed frequency bandwidth B = 100× 103 [Hz]
of the LFM signal and the sampling frequency f s = 1× 106 [Hz], which corresponded
to the actual LFM signals. In order to compare the performance of algorithms presented
in the paper with results reported in the literature, experiments were repeated with new
experimental parameters N = 255 and N = 63 with adequate lowering of sampling rate
(e.g., f s = 255/1023× 106 for N = 255), which ensures the same value of B, a0, a1, a2 as in
the main experiment.

Presented results of estimation characteristics (MSE) for shorter signals are shown in
Figures 16 and 17 for the SCPF-based estimator. Results for the PCPF-based estimator are
similar as those in Figures 16 and 17.

The estimation results presented in Figures 16 and 17 reveal the SNR threshold th = −8 dB
and th = −4 dB for N = 255 and N = 63 respectively, both with 31 slices. Comparison
of these results with results for longer signal (N = 1023) shown in Figure 12 points out
loss by 4 dB and 8 dB in location of the SNR threshold. The results obtained with use of
the proposed method can be compared with estimation results with use of the ICPF-based
estimator from [29], where the SNR threshold was th = −8 dB for N = 64 but with bigger
number (64) of slices.

The detection algorithms considered in the paper are formulated as searching of a2
parameter in the T-FR plane. The detection characteristics with N = 255 and N = 63 based
on the TSCPF statistics used for detection are presented in Figures 18 and 19. Results
for the TPCPF statistics are similar. The results for TSCPF statistics and N = 63 can be
directly compared with the detection characteristics using the CPF-based detector and the
ICPF-based detector presented in [29].
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Figure 19. Probability of detection with use of the TSCPF statistics employing slices n = {0, . . . , 30}
for N = 63.

The comparison of results presented in Figure 19 for PFA = 0.01 and results presented
in [29] indicates that detector based on the TSCPF statistics outperforms detector based
on the TICPF statistics. It should be noticed that the detection algorithm from [29] uses
64 slices whereas the algorithm proposed in the paper only 31 slices.
Moreover, as can be seen in Figures 6, 10, 18 and 19 detection achieves better efficiency
with increasing number of signal samples and with increasing number of slices.

The extended comparison of the obtained results with results from the literature,
which apply both selected time-frequency (T-F) methods and selected time-frequency rate
(T-FR), is presented in the Table 1. The SNR threshold was selected as an evaluation method.

As can be seen in the Table 1, the proposed detection and estimation methods show the
significantly lower SNR threshold than other algorithms used for detection and estimation
of LFM signals.

Figure 18. Probability of detection with use of the TSCPF statistics employing slices n = {0, . . . , 30}
for N = 255.
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The comparison of results presented in Figure 19 for PFA = 0.01 and results presented
in [29] indicates that detector based on the TSCPF statistics outperforms detector based
on the TICPF statistics. It should be noticed that the detection algorithm from [29] uses
64 slices whereas the algorithm proposed in the paper only 31 slices.
Moreover, as can be seen in Figures 6, 10, 18 and 19 detection achieves better efficiency
with increasing number of signal samples and with increasing number of slices.

The extended comparison of the obtained results with results from the literature,
which apply both selected time-frequency (T-F) methods and selected time-frequency rate
(T-FR), is presented in the Table 1. The SNR threshold was selected as an evaluation method.

As can be seen in the Table 1, the proposed detection and estimation methods show the
significantly lower SNR threshold than other algorithms used for detection and estimation
of LFM signals.

Table 1. Comparison of the SCPF-based estimator with other methods.

a2 Estimation
Method SNR Threshold [dB] Signal Parameters Publication

HAF 11 P = 4, N = 256 [34]

HAF 17 P = 5, N = 256 [34]

PHAF 5 P = 4, N = 256 [34]

PHAF 9 P = 5, N = 256 [34]

STFT 3 P = 4, N = 256 [19]

STFT 16 P = 5, N = 256 [19]

QML 0 P = 4, N = 256 [34]

QML −1 P = 5, N = 256 [34]

Complex STFT 0 P = 2, N = 250 [26]

WHT 5 P = 2, N = 16 [15]

HOCPF-WD 1 P = 6, N = 128 [30]

ICPF −6 (256 slices)
estimation P = 2, N = 256 [29]

ICPF −3 (64 slices)
detection P = 2, N = 64 [29]
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Table 1. Cont.

a2 Estimation
Method SNR Threshold [dB] Signal Parameters Publication

Proposed SCPF −8 (31 slices)
estimation P = 2, N = 255 Proposed method

Proposed SCPF −8 (31 slices)
detection P = 2, N = 255 Proposed method

Proposed SCPF −6 (31 slices)
estimation P = 2, N = 63 Proposed method

Proposed SCPF −6 (31 slices)
detection P = 2, N = 63 Proposed method

Proposed SCPF −12 (31 slices)
estimation P = 2, N = 1023 Proposed method

Proposed SCPF −12 (31 slices)
detection P = 2, N = 1023 Proposed method

7. Conclusions

This paper has presented the new approach for both detection and parameter esti-
mation of LFM signals based on time-frequency rate distributions with use of developed
SCPF and PCPF hybrid structures. It should be noted that most papers refer to well-known
processing in the T-F plane, whereas the processing in T-FR isn’t well examined yet, so the
paper is part of efforts to explore this area. The advantages of the developed approach
result from the simplicity of the calculation of the SCPF-based estimator and PCPF–based
estimator due to optimisation only in 1-D space. The obtained analytical results and per-
formed simulations have shown effectiveness of the proposed methods. It has been proved,
that the developed SCPF and PCPF as extended forms of the standard CPF reveal noticeable
increase in the detection and estimation efficiency. Statistical properties of chirp-rate param-
eter estimation achieved with the PCPF-based and SCPF-based estimators turned out to be
more accurate compared to methods based on the standard CPF or other combinations of
distributions known in the literature. PCPF-based and SCPF-based T-FR estimators are
also characterised by lower order of nonlinearities, which results from preserving bilinear
transformation in the proposed hybrids of the CPF. It results in a lower SNR threshold
compared to other time-frequency distributions with higher order of nonlinearities. It is
possible to notice good agreement of theoretical formulas and the simulation results for
SNR greater or equal than 0 dB. For SNR less than 0 dB, the theoretical analysis is no longer
valid because the perturbation method, on which the statistical analysis of the estimation
was based, is not satisfied enough. Both the SCPF and the PCPF provide a bigger difference
between peak magnitude of IFR spectrum and noise level compared to the standard CPF
and other time-frequency representations. These features of presented estimators make
the detection and estimation more effective. The complete assessment of reliability of
CR estimates can be obtained by joint analysis of detection and estimation characteristics.
As shown in the paper, the occurrence of the SNR threshold visible on the estimation
characteristics results from the detection characteristics. The presented research has also
proved that increase of number of slices in the SCPF and PCPF estimators improves the
detection efficiency and estimation accuracy.

The proposed approach of detection and parameter estimation of LFM signals offers
the reduction of computational cost compared to standard T-F and T-FR distributions
and methods involving pattern recognition in time-frequency images. Moreover, the
calculation procedure can be carried out in a parallel way for each slice. In this case the
total computation time of SCPF and PCPF-based estimators is close to the calculation time
of the standard CPF.
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