
sensors

Article

Environmental Noise Classification with Inception-Dense
Blocks for Hearing Aids

Po-Jung Ting 1 , Shanq-Jang Ruan 1 and Lieber Po-Hung Li 2,3,4,5,*

����������
�������

Citation: Ting, P.-J.; Ruan, S.-J.; Li,

L.P.-H. Environmental Noise

Classification with Inception-Dense

Blocks for Hearing Aids. Sensors 2021,

21, 5406. https://doi.org/10.3390/

s21165406

Academic Editor: Iren E. Kuznetsova

Received: 30 June 2021

Accepted: 7 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; m10802108@mail.ntust.edu.tw (P.-J.T.); sjruan@mail.ntust.edu.tw (S.-J.R.)

2 Department of Otolaryngology, Cheng Hsin General Hospital, Taipei 112, Taiwan
3 Faculty of Medicine, and Institute of Brain Science, National Yang-Ming Chiao-Tung University,

Taipei 112, Taiwan
4 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 404, Taiwan
5 Department of Speech Language Pathology and Audiology, College of Health Technology, National Taipei

University of Nursing and Health Sciences, Taipei 112, Taiwan
* Correspondence: lieber.chgh@gmail.com

Abstract: Hearing aids are increasingly essential for people with hearing loss. For this purpose, envi-
ronmental noise estimation and classification are some of the required technologies. However, some
noise classifiers utilize multiple audio features, which cause intense computation. In addition, such
noise classifiers employ inputs of different time lengths, which may affect classification performance.
Thus, this paper proposes a model architecture for noise classification, and performs experiments
with three different audio segment time lengths. The proposed model attains fewer floating-point
operations and parameters by utilizing the log-scaled mel-spectrogram as an input feature. The
proposed models are evaluated with classification accuracy, computational complexity, trainable
parameters, and inference time on the UrbanSound8k dataset and HANS dataset. The experimental
results showed that the proposed model outperforms other models on two datasets. Furthermore,
compared with other models, the proposed model reduces model complexity and inference time
while maintaining classification accuracy. As a result, the proposed noise classification for hearing
aids offers less computational complexity without compromising performance.

Keywords: hearing aids; environmental noise classification; deep learning; convolutional neural
networks

1. Introduction

The number of people who have hearing loss has been increasing. Nevertheless, the
number hearing aid users is not obviously increasing at the same rate [1]. According to the
latest statistics from the World Health Organization (WHO), around 466 million people
worldwide suffer from hearing loss, and only 17% use hearing aids [2]. Wearing hearing
aids compensates for the hearing loss of hearing-impaired listeners, providing many bene-
fits for them [3]. However, one of the common complaints of hearing aid users is the hearing
aid’s inability to reduce ambient noise completely; instead, they cause ambient noise to be
amplified along with the human voice [4]. The hearing aid’s inability to reduce ambient
noise completely is due to their operation in various, irregular, and random environmental
sound scenarios [5]. Speech enhancement algorithms are an essential technique for hearing
aids. At present, deep neural network-based speech-enhancement methods have been
widely adopted and have shown significant performance advantages over conventional
speech enhancement techniques in complex noise environments. Several studies [6–8] have
noted that using machine-learning-based environmental noise classification techniques
to classify environmental noise, before using speech enhancement, can improve speech
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enhancement algorithm performance. Thus, the environmental noise classification (ENC)
algorithms for hearing aids deserve attention.

Figure 1 shows the typical processing flow of environmental sound classification
(ESC), consisting of two essential components: an acoustic feature extractor and a classifier.
In order to extract useful acoustic features, audio signals are first pre-processed in the
time domain, including normalization and silence reduction. Then, the audio signals are
converted to the audio frames with a cosine window function (Hanning or Hamming
window). Finally, features are extracted from each audio frame, and the extracted acoustic
features are fed into the classifier for training and testing. The result of classification is the
prediction probability for which audio signals belong to which type of sound. In previous
works [9,10], traditional acoustic feature techniques, such as mel frequency cepstral coeffi-
cients (MFCC), linear predictive coding (LPC), and perceptual linear predictive coefficients
(PLP) are already used in the ESC field. However, using more discriminative representa-
tions, such as mel filter bank features [11], wavelet-based features [12], and Gammatone
features [13], can achieve better performance. Many typical machine learning algorithms
have been used to classify sounds, such as support vector machine (SVM) [14], Gaussian
mixture model (GMM) [15], and k-nearest neighbors (KNN) [16] for ESC tasks. However,
the performance of these typical machine learning algorithms is still unsatisfactory. One
reason is that typical classifiers cannot capture time and frequency features when applied
to spectrogram-like input.

Figure 1. Typical processing flow of an environmental sound classification system.

In recent years, deep neural networks (DNNs) have succeeded in ESC tasks and have pro-
vided better performance than typical machine learning algorithms [17,18]. For audio signals,
DNNs can extract features from raw data or simple hand-crafted features. However, the deep
fully-connected architecture of DNNs is not robust for transformative features. Several studies
have shown that convolution neural networks (CNNs) can capture relevant features from
an image. Furthermore, training CNN models with spectrogram-like features from environ-
mental sounds demonstrates significant performance benefits over other methods [16,19,20].
However, existing high-accuracy CNNs also have a higher model complexity, leading to more
computational complexity, which means more floating-point operations (FLOPs). A higher
number of FLOPs is directly proportional to CPU consumption [21].

Although much work has been done on environmental sound classification, environ-
mental noise classification for hearing aids is still critically lacking. The computational
resources of hearing aids pose the major limitation that they cannot compute a large set
of high-level features, and such features cannot be fed into a sophisticated environmental
sound classifier [7]. One way to overcome these limited computational resources is to
train the model on the server; the trained model can then be downloaded to hearing aids,
which can then perform the environmental sound classification in real-time. However,
the CNN model used in the ESC tasks mentioned above have a high computational com-
plexity. Hence, reducing the computational model complexity while maintaining the model
accuracy is essential.

This study attempts to provide a new model architecture for environmental noise
classification on hearing aids that minimizes complexity by utilizing Inception-Dense
block and depthwise-separable convolution. In order to verify the effectiveness of the
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proposed model, two index data analyses are performed: 1. FLOP counts are taken,
representing the model’s computational complexity; 2. inference time—the running time
for the model on a smartphone—is measured. For this objective to be achieved, the paper
is structured as follows. Section 2 is a review of the literature, including the current
research on feature extraction, environmental sound classification, and environmental
noise classification for hearing aid. Section 3 provides a detailed introduction of proposed
methods. In Section 4, the setting of the experiments on the UrbanSound8K dataset and
the hearing aids noisy sound (HANS) dataset are described. Section 5 compares the
performance of the proposed approach with previous models used in environmental noise
classification and environmental sound classification. The conclusions and perspectives of
future work are presented in the last section.

2. Related Work

This section first introduces the feature which will be used as the input of the environ-
mental noise classifier. Then, the current research on environmental sound classification
and environmental noise classification will be introduced.

2.1. Time-Frequency Representations for Noise Signal

Several types of desirable information are contained in raw audio data, such as the
short-time Fourier transform (STFT) spectrogram, log-scaled mel-spectrogram, and gam-
matone spectrogram. This paper uses the log-scaled mel-spectrogram as the input of our
proposed model. The reasoning for choosing this feature is stated below.

With a growing amount of evidence, the log-scaled mel-spectrogram outperforms
other features in environmental sound classification tasks. Huzaifah [22] compared five sig-
nal processing methods, such as STFT-spectrogram, log-scaled mel-spectrogram, constant-
Q transform (CQT), continuous wavelet transform (CWT), mel frequency cepstral co-
efficients (MFCCs), using these features as the input of two different models. The re-
sults indicate that the model that consisted of three convolution layers and two fully-
connected layers, and which used the log-scaled mel-spectrogram as a feature, performed
the best. Su et al. [23] resulted in the finding that the performance of the log-scaled mel-
spectrogram is better than the gammatone spectrogram and the mel-spectrogram. Further-
more, and more essential, the log-scaled mel-spectrogram is computationally more efficient
for real-time implementation than the CQT spectrogram, CWT scalogram, and MFCC.

The log-scaled mel-spectrogram generation process includes:

1. Signal pre-processing.
2. A Fourier transformation to obtain the signal spectrogram.
3. Mapping of the spectrogram into a mel-spectrogram through triangular overlapping

windows whose center frequencies are distributed on the mel scale. The function B
for computing the mth mel-frequency from frequency f in Hertz and its inverse B−1

are given by [24]:

B( f ) = 2595log10(1 +
f

700
), (1)

B−1(m) = 700(10
m

2595 − 1). (2)

4. Taking a log calculation (decibles) on the mel spectrogram,

LM(n) = log(∑K
k=0Hn(k) ∗ |F(k)|2), n=1. . . N, (3)

where Hn(k) denotes the amplitude of the nth filter at frequency bin k, |F(k)|2 denotes
the FFT power spectrum.

2.2. Conventional Noise Classification Algorithms

Many conventional classification algorithms are used in noise classification. The
KNN classification algorithm calculates the distance of the new input data from the k
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nearest points which determines the class of a new input data point. It is suitable for
simple classification problems with basic training features. As the number of training
features increases, KNNs computational complexity and time increases. SVM and Neural
Networks [25] are feasible when there is a clear margin of separation between classes and
are more effective in high dimensional spaces. However, SVM performs poorly when the
data set has more noise, or the data set is too large. HMM is a widely used statistical method
for speech recognition. One major advantage of HMMs over the previously described
classifiers is that they account for the temporal statistics of different states’ occurrence in
the features.

Nordqvist and Leijon [26] used the HMM and vector quantizer to classify three kinds
of auditory environments (traffic noise environment, pure voice environment, and babble
noise environment). Büchler et al. [27] selected characteristic parameters from the perspec-
tive of acoustic scene analysis to distinguish four different acoustic scenes (voice, noisy
voice, noise, and music). Those characteristics have been evaluated together with different
pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers,
have been compared with more complex approaches, such as Bayes classifier, neural net-
work, and HMM. Abe et al. [28] selected eleven features and used Bayes classifier, SVM,
and Logistic regression to classify four kinds of auditory environments (speech, speech
in noise, noise, and classical music). The conventional noise classification algorithms
for hearing aids focused on voices and music. There is a paucity of conventional noise
classification algorithms for hearing aids on the sound field outside of voices and music.

2.3. Deep Convolutional Neural Network

A CNN is a deep learning technology based on supervised learning and is widely
used for image processing while maintaining the spatial information of the image. Re-
cently, several deep learning methods for environmental sound classification have been
conceived. Piczak [16] created a two-channel feature by applying the log-scaled mel-
spectrogram and its delta information as the inputs of his CNN model, and the model
achieved 73% accuracy on the UrbanSound8K dataset. Salamon and Bello [19] compared
different data augmentations that could influence the accuracy of each class. They used
the log-scaled mel-spectrogram as the input of the CNN model, and the accuracy was
79%. Zhang et al. [29] applied mixup and data augmentation to ESC tasks. They used the
log-scaled mel-spectrograms and their delta information a as two-channel feature, and a
similar CNN architecture to VGG net; the accuracy achieved was 82%. Palanisamy et al. [20]
computed three different window sizes and hop lengths as three-channel features for the
input to Inception [30], ResNet [31], and DenseNet [32]. The result showed that DenseNet
is the best of the three.

Although there is much discussion on environmental sound classification based on
CNNs in the literature, there is a paucity of noise classification algorithms for hearing aids
based on CNNs. Singh and Joshi [33] used log-scaled mel-spectrograms as the input of a
similar VGG net to classify background sound in a speech audio segment. Park and Lee [34]
processed the spectrogram image through a sharpening mask and median filter, which
was then used as the input of the CNN. However, the dataset is not public, and the model
structure is not clear. Roedily et al. [35] used MFCC as the input of a CNN-LSTM model
and an inference model on a smartphone. In order to evaluate the performance of our
proposed model, the model is evaluated against the environmental sound classifications
of other CNNs on the UrbanSound8k dataset, and is then evaluated against the noise
classification of the Roedily and Singh models on the HANS dataset.

3. Proposed Methodology
3.1. Inception Block with Dense Connectivity

Figure 2 shows three blocks; the dense connectivity [32], Inception [30], and Inception-
Dense blocks. The advantage of dense connectivity is that it bypasses connections. It
can reuse feature maps from the previous layers. Figure 2a illustrates the layout of the
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dense connectivity block. The `th layer receives the feature-maps of all preceding layers,
and x0, . . . , x`−1 are used as input to H`(.):

x` = H`([x0, x1, . . . , x`−1]), (4)

where [x0, x1, . . . , x`−1] refers to the concatenation of the feature-maps produced in layers
0, . . . , `− 1. H`(.) is a composite function of three consecutive operations: batch normal-
ization (BN), followed by a rectified linear unit (ReLU) and a 3× 3 convolution (Conv).
However, various frequency bands and time intervals are important characteristics of the
individual sound types. The advantage of Inception is that a combination of different kernel
sizes can take multi-level feature maps. Using multi-level feature maps from multiple filters
improves the performance of the network. Moreover, all the architectures prior to Inception
performed convolution on the spatial and channel-wise domains. Figure 2b illustrates the
layout of the Inception block. By performing the 1× 1 convolution, the Inception block
performs cross-channel correlations, ignoring spatial dimensions, followed by cross-spatial
and cross-channel correlations via the 3× 3 and 5× 5 filters.

Therefore, dense connectivity is utilized to connect all Inception blocks on the pro-
posed structure. As shown in Figure 2c, Inception blocks are connected by dense connec-
tivity, allowing each block to receive input directly from its previous block. Similar to
DenseNet, a layer in the proposed model implements a non-linear transformation F`(.),
where ` is the index of the layer. F`(.) is a composite operation function such as BN, ReLU,
Conv, or Pool. The output of `th layer is denoted as x`, which can be defined as :

x` = concate(x`−1, F`([xb1, xb2, xb3, xb4])), (5)

where x`−1 is the output of `− 1 layer, xb1, xb2, xb3, xb4 are the outputs of each branch in
Inception block. [xb1, xb2, xb3, xb4] is a filter concatenation. It concatenates feature maps
along the channel dimension.

(a) Dense connectivity (b) Inception block

(c) Inception-Dense block

Figure 2. (a) Dense connectivity. (b) Inception block. (c) Inception-Dense block. (a,b) have two
common points: the first is that they all use 1x1 convolution as a BottleNeck layer; the second is that
they all use filter concatenation connections. The difference between (a,b) is that the input tensor
directly passes to the output tensor without any other middle operations in (a).

3.2. Depthwise-Separable Convolution

Inspired by [36], the standard convolution layer is replaced with a depthwise-separable
convolution layer on the Inception-Dense block. The depthwise-separable convolution
layer can reduce the total number of operations. It combines a depthwise convolution layer
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and a 1× 1 convolution called a pointwise convolution. The computational cost of a stan-
dard convolutional layer, a depthwise convolutional layer, and a pointwise convolutional
layer is defined as (6)–(8), respectively. The depthwise-separable convolution layer could
be simplified as (9), which is the sum of (7) and (8).

Win ∗ Hin ∗ Cin ∗ K ∗ K ∗ Cout, (6)

Win ∗ Hin ∗ Cin ∗ K ∗ K, (7)

Win ∗ Hin ∗ Cin ∗ Cout, (8)

Win ∗ Hin ∗ Cin ∗ (Cout + K ∗ K), (9)

where the computational cost depends multiplicatively on the number of input channels
Cin, the number of output channels Cout, the kernel size K× K, and the size of input feature
map Win × Hin. The depthwise-separable convolution layer can save 80 to 90 percent of the
computation on the 3× 3 convolution layer; on the other hand, the accuracy of the model
is likely to decrease. Consequently, two types of Inception block with dense connectivity
are used on the proposed model, as shown in Figure 3.

(a) Inception-Dense block A (b) Inception-Dense block B

Figure 3. Two kinds of basic Inception-Dense blocks in our model. The differences between the
blocks (a,b): block (a) is the traditional Inception block, while block (b) replaces the 3× 3 convolution
layer with the 3× 3 depthwise-separable convolution layer.

3.3. Network Structure

This section describes the proposed model in detail and shows that the model is
compact. The proposed model architecture is comprised of two convolutional layers, three
Inception-Dense blocks, and one fully-connected layer. The compared state-of-the-art
noise classification network structure is based on VGG Net; the classification accuracy
of this network is better than that of others [33]. The network structure is presented in
Figure 4a. It stacks two convolutional layers as a module and stacks three or four modules
into their network structure. In our model, we also use two initial convolutional layers.
Then, the module of the convolutional layer is replaced by the Inception-Dense block;
the Inception-Dense block is stacked three times in our network structure. However,
considering DenseNet, we use a transition layer after three Inception-Dense blocks. Finally,
the fully-connected layer is applied. The proposed network structure is presented in
Figure 4b.

The detailed framework of the proposed model is shown in Figure 5. Batch Normal-
ization (BN) is used to normalize the input data at first. Next, two 3× 3 convolutional
layers are used as a basic feature extractor, each convolutional layer followed by a BN and
a Rectified Linear Unit (ReLU) activation function. After the second convolutional layer,
a max-pooling layer is used to retain the most prominent features of the feature maps.
The pool size of the max-pooling layer is 4× 1. Then, three Inception-Dense blocks are used
to extract multiple features. The first block uses the Inception-Dense block A. Because of
the channel size of the feature maps, all of the 1× 1 convolutional layers use 16 filters,
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and all of the 3× 3 convolutional layers use 32 filters in the first block. The second block
and the third block use the Inception-Dense block B and the same settings. A BN and a
ReLU activation function are followed by a convolutional layer on all Inception-Dense
blocks. Next, the transition layer of DenseNet is considered, using a 1× 1 convolutional
layer and an average pooling layer, followed by a BN and a ReLU activation function.

(a)

(b)

Figure 4. The network structures. (a) The state-of-the-art network structure based on VGG Net [33].
(b) The proposed network structure.

Inspired by [37], instead of adding a fully-connected layer, a global average pooling
layer is added at last, and the vector is fed directly into the softmax layer. The advantage of
global average pooling over the fully-connected layer is that it is more native to the convo-
lution structure by enforcing correspondences between feature maps and categories. Thus,
the feature maps can be easily interpreted as categories confidence maps. The softmax func-
tion is used at the final layer to obtain class probabilities, and the chosen loss function is the
cross-entropy loss function. The cross-entropy loss and softmax are used together because
they provide a smooth and straightforward gradient, making computations much easier.

Figure 5. The overall framework of the proposed model. The purple block represents a 3× 3 convolution, and the blue
block represents a 1× 1 convolution. The grey block represents a max-pooling layer, an average pooling layer, or a global
average pooling layer. Here only one type of layer on a grey block is present.
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The configuration of the proposed model is described in Table 1. As an illustration,
the 128× 128× 1 features are used as the input of the model at the configuration. The model
is designed with full consideration of computational efficiency and practicality. The trained
model has tiny size, only 1.6 MB. It can be applied to individual devices, including even
those with limited computational resources.

Table 1. The configuration of the proposed model. Out Shape represents the dimension in ( f rame, mel f eatures, channel).
The model only has 97 k parameters.

Layer Filter Size/Stride (Number of Filters) Out Shape Params

Input – (128, 128, 1)
Conv1 3× 3/1 (16) (128, 128, 16) 228

Conv2 3× 3/1 (16) (128, 128, 16) 2,384

MaxPool1 3× 3/1 (None) (42, 42, 16)

Inception (a)

[1× 1/1(16)conv]*1,

(42, 42, 112) 20,128
[1× 1/1(16)conv, 3× 3/1(32)conv]*1,

[1× 1/1(16)conv, 3× 3/1(32)conv, 3× 3/1(32)]*1,
[3× 3/1(None)avergepool,1× 1/1(16)conv]

Inception (b)

[1× 1/1(32)conv]*1,

(42, 42, 240) 21,152
[1× 1/1(32)conv, 3× 3/1(32)conv]*1,

[1× 1/1(32)conv, 3× 3/1(32)conv, 3x3/1(32)conv]*1,
[3× 3/1(None)avergepool, 1× 1/1(32)conv]

Inception (c)

[1× 1/1(32)conv]*1,

(42, 42, 368) 39,584
[1× 1/1(32)conv, 3× 3/1(32)conv]*1,

[1× 1/1(32)conv, 3× 1/1(32)conv,
3× 3/1(32)conv]*1,

[3× 3/1(None)avergepool,1× 1/1(32)conv]

Conv3 1× 1/1(32) (42, 42, 32) 13,408

AveragePool 2× 2/2× 2 (None) (42, 10, 32)

GlobalAvergePool1 – (32)

Dense number of classes number of classes 330

Total Params 97,214

4. Experiments
4.1. Dataset

The proposed model is evaluated on the following datasets: the UrbanSound8K [38]
and the Hearing Aids Noisy Sound (HANS) dataset.

UrbanSound8K. The UrbanSound8k dataset contains 8732 clips (each of length less
than or equal to 4 s). The original sampling rate of each audio clip varies from 16,000 Hz
to 44,100 Hz. All audio clips are resampled to a sampling rate of 16,000 Hz, which is the
appropriate frequency for signal processing for hearing aids. The dataset is officially split
into ten folds and is divided into ten classes: air conditioner (ac), car horn (cr), children
playing (ch), dog bark (db), engine idling (ei), gunshot (gs), jackhammer (jh), siren (si),
and street music (sm). Note that the dataset is not rearranged.

Hearing Aids Noisy Sound (HANS). Many datasets are available publicly for envi-
ronmental sounds, but there is no dedicated public dataset with a specific focus on hearing
aid applications. Inspired by [5], we built a dataset called the Hearing Aid Noisy Sound
(HANS) dataset; it contains sounds considered common and difficult for hearing-aids
users. The top five categories of annoying sounds for hearing aids users are verbal human
sounds, vehicle sounds, machine tools sounds, natural sounds, and household appliance
sounds. The dataset considers the categories of annoying sounds in its description. It
selects 5 classes and 10 classes from the UrbanSound8K dataset and the ESC50 [16] dataset,
respectively. The 15 classes are separated into five major categories on the HANS dataset as
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shown in Figure 6. The UrbanSound8K and ESC50 datasets involve nonoverlapping, short
clips of environmental sounds. The ESC50 dataset is a weak label dataset, and the length
of each audio clip is equal to 5 s. The majority of the audio clip is empty; only a minor part
with one sound is included. The Urbansound8k dataset is a strong label dataset. Its sounds
are continuous, seldom empty and may contain multiple sounds which are not labeled,
such as wind and people speaking. Some sound files on the UrbanSound8K dataset were
removed because they conflict with the classes of the HANS dataset. Note that the class of
human speech is the only one that contains sound files with speech. If a file in the class of
street music only had music, or a file in the class of children playing included the sound of
laughter, then these files were removed from the HANS dataset.

Figure 6. For the hearing aids application, 15 subclasses are grouped into five major categories, and each category is
described in detail. A yellow block indicates that the subclass is selected from the UrbanSound8k dataset. A blue block
represents that the subclass is selected from the ESC50 dataset.

Because the UrbanSound8K and ESC50 datasets are small datasets, the official lit-
erature uses k-fold cross-validation to evaluate model performance. For that reason,
the HANS dataset also uses k-fold validation to evaluate model performance. However,
the UrbanSound8K dataset uses 10-fold cross-validation, and the ESC50 dataset uses 5-fold
cross-validation. In order to reasonably combine two datasets, the HANS dataset uses
5-fold cross-validation. For using 5-fold cross-validation, two folds of the UrbanSound8K
dataset are combined into one fold, such as combining the first fold and the second fold
into the first fold of the HANS dataset and combining the third fold and the fourth fold into
the second fold of the HANS dataset. The ESC50 dataset directly transferred the original
fold to the new fold of the HANS dataset, i.e., by putting the first fold of the ESC50 dataset
into the first fold of the HANS dataset. To maintain the appropriate frequency for signal
processing on hearing aids, all audio clips are subsequently down-sampled to 16,000 Hz in
the HANS dataset.

4.2. Data Preprocessing

Log-scaled mel-spectrograms are more efficient for real-time implementation than
CQT spectrograms, CWT scalograms, and MFCCs. Regarding model performance, some
studies [35,38] show that using MFCCs as input to the model is better than the log-scaled
mel-spectrograms, and some studies [22,23] show the opposite. Consequently, a simple
comparison experiment was carried out with log-scaled mel-spectrograms and MFCCs.
The result showed that using the log-scaled mel spectrograms as the input of the proposed
model provides better performance. Thus, as mentioned above, the proposed model uses
log-scaled mel-spectrograms as the input in the following experiment.
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The parameters of data processing used were the same on the UrbanSound8K dataset
and the HANS dataset. The audio signals consist of 16,000 samples per second. Specifically,
log-scaled mel-spectrograms were extracted by the Librosa [39]. First, short-time Fourier
transform spectrograms were generated with the hamming window size of 512, hop length
of 256, and covering the audible frequency range (300–16,000 Hz). Second, the spectro-
grams were mapped to the 128 mel filters (bands). Then, the resulting spectrograms were
converted to a logarithmic scale (decibels). Finally, the spectrograms were divided into
multiple data by frame length. The data frame lengths of 60 (approximately 1 s), 90 (approx-
imately 1.5 s), and 128 (approximately 2 s) represent Set A, Set B, and Set C, respectively.
Many studies use different frame lengths, which could affect the classification accuracy.
Thus, we used statistics from those studies and experiment with three frame lengths.

4.3. Data Augmentation

Raw Data. In order to avoid overfitting and to effectively utilize the limited data on
UrbanSound8K, pitch-shifting [19] and time-stretching [19] deformation methods were
used for each audio sample in order to generate new audio samples. These augmentations
were applied using the MUDA [40] library. As shown in Table 2, the augmentation data of
Set A, Set B, and Set C were increased to 13.2, 13.2, and 14.7 times, respectively, as compared
with the corresponding original data

Table 2. The UrbanSound8K dataset is divided into three sets by the original data and the augmenta-
tion data.

Fold
UrbanSound8K UrbanSound8k (aug)

SetA SetB SetC SetA SetB SetC

1 5238 2619 873 69,593 34,792 12,841
2 5328 2664 888 70,740 35,372 12,964
3 5550 2775 925 73,766 36,885 13,528
4 5940 2970 990 78,853 39,429 14,390
5 5616 2808 936 74,556 37,280 13,555
6 4938 2469 823 65,599 32,800 11,966
7 5028 2514 838 66,804 33,405 12,250
8 4836 2418 806 64,211 32,114 11,964
9 4896 2448 816 65,035 32,519 12,118

10 5022 2511 837 66,698 33,350 12,376

Because of the data imbalance problem in the HANS dataset, the pitch of each audio
sample was shifted by a factor r. Next, the pitch-shifted sample was stretched for time
by a random factor, to generate a new audio sample. The factor ranged from 0.9 to 1.2.
However, the audio samples from the ESC50 dataset are fewer than those of from the
UrbanSound8K dataset. Therefore, data augmentation was carried out with four sets of
the relevant parameter in this research, as shown in Table 3. The differences between
the four sets are the pitch-shifting factors and the amount of new audio samples. Table 4
presents the augmentation rules that apply to the four sets to balance the fold and class data.
The augmentation was applied using the Librosa [39] library. The result after augmentation
is illustrated in Figure 7.

Table 3. The description of four groups.

Group Sample r

1.5 Even 2
2 Each 2
5 Each −2.5, −2, −1, 1, 2
6 Each −2.5, −2, −1, 1, 2, 2.5



Sensors 2021, 21, 5406 11 of 17

Table 4. The HANS dataset augmentation rule.

Major Categorie Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Vehicle engine (ve)
Helicopter 6 6 6 6 6
Airplane 6 6 6 6 6

Train 6 6 6 6 6

Machine tools (ma)
Drilling None None None 2 1.5

Jackhammer 2 None None 1.5 None
Chainsaw 6 6 6 6 6

Household appliance (ha)
Air condition None 1.5 None None 1.5

Vacuum cleaner 6 6 6 6 6
Washing machine 6 6 6 6 6

Natural (na)

Thunderstorm 5 5 5 5 5
Sea waves 5 5 5 5 5

Rain 5 5 5 5 5
Wind 5 5 5 5 5

Human speech (hu)
Children playing None None None None None

Street music 1.5 None None 2 2

(a) Set A (b) Set B

(c) Set C (d) Statistic three sets
Figure 7. (a) The frame lengths of 60. (b) The frame lengths of 90. (c) The frame lengths of 128. (d) The statistic data of the
three sets, shown distributed into five folds.

Spectrogram. Mixup is a simple but effective method to generate training data [41],
which we utilized. It uses mini-batch data which is selected from the whole of the original
training data. Differently from traditional approaches, mixup generates new samples
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through the linear interpolation of two samples and their labels. New samples are deter-
mined by

x̃ = λxi + (1− λ)xj,

ỹ = λyi + (1− λ)yj,
(10)

where (xi, yi) and (xj, yj) are two samples randomly selected from training data. x represents
raw input samples, y represents a one-hot label. The mix factor λ is a hyper-parameter α
and λ ∼ Beta(α,α). Note that mixup was only used for the training phase.

4.4. Training Settings

For the training stage, the Adam optimizer was used to train all models. The learning
rate was initialized as 0.01 and reset as 0.01 when the learning rate was lower than 0.00001.
The learning rate was automatically decreased by a factor of 0.5 when the validation loss
stopped improving; after seven epochs for the UrbanSound8K dataset and five epochs
for the HANS dataset. Every batch consisted of 32 samples randomly selected from the
training set without repetition. The models were trained for 100 epochs and 50 epochs for
UrbanSound8K and HANS, respectively.

For the testing stage, feature extraction and audio cropping patterns were the same
as those used in the training stage. The k-fold cross-validation was used to evaluate the
classification performance of the methods. For the UrbanSound8K dataset, k was set as 10
to produce a fair comparison with the results reported by Salmon et al. [38]. For the HANS
dataset, k was set as 5 to validate mean accuracy.

All models were trained using the Keras [42] library with the TensorFlow backend on
Nvidia GeForce RTX2080 with 16GB RAM. The inference time of all models was measured
on the android mobile device Pixel 3a, and the models used TensorFlow Lite (TFLite).
This mobile device possesses a Qualcomm Snapdragon 670 64-bit ARM-based octa-core
system on a chip (SoC). The clock speed of this CPU varies between 1.7 and 2.0 GHz
depending on the core being used. The internal memory of this smartphone is 4GB
LPDDR4x RAM. It also possesses an Adreno 614 GPU. Note that TensorFlow for Mobile
does not utilize this GPU.

5. Results

In this section, the performance of the proposed model and its classification results
are shown. First, the performance of the proposed model on four conditions of the Ur-
banSound8k dataset are introduced. We provide comprehensive comparisons with other
existing models [16,19,20,29] including the accuracy, the number of parameters, and total
FLOPs. Afterward, the performances of the proposed model and three existing mod-
els [29,33,35] on the HANS dataset for noise classification is examined. We also provide
various other comparisons with those models, including the accuracy, the number of pa-
rameters, total FLOPs, and inference time. Note that the android mobile device is used to
measure the inference time.

5.1. Classification Results on Urbansound8k

Figure 8 shows the classification accuracy of the proposed model. The values in
the figure are the average classification accuracy (%), which represent the rate of correct
predictions on the total set of input data. MO represents the proposed model on the
original data without data augmentation; MM represents the proposed model using the
mixup technique on the original dataset; MA represents the proposed model on the
augmentation dataset; MMA represents the proposed model using the mixup technique on
the augmentation dataset. Figure 8a displays the classification results of Set A under four
conditions. Comparing the accuracy of MO and other conditions, MM, MA, and MMA
improvements are up to 2.28%, 2.49%, and 4.24%, respectively. Figure 8b displays the
classification results of Set B under four conditions. Comparing the accuracy between MO
and other conditions, MM, MA, and MMA improvements are up to 2.96%, 3.12%, and 5.27%,
respectively. Figure 8c displays the classification results of Set C under four conditions.
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Comparing the accuracy between MO to other conditions—MM, MA, and MMA—the
improvements are up to 2.81%, 3.61%, and 6.82%, respectively. Thus, data augmentation is
shown to be an important technique for increasing the performance on a limited dataset.
Moreover, the mixup technique is a powerful way to improve the classification accuracy
in the training phase, resulting in better performance than for the model without mixup.
Furthermore, when the two techniques are used simultaneously, the performance of the
proposed model is at its best.

Figure 8d shows the average classification accuracy of three sets under four condi-
tions. Set C produces the highest classification accuracy in the time division compared to
other sets.With the increasing frame length of the spectrogram, the classification accuracy
increases. Although greater sound length increases the number of frames, it provides more
information about the environmental sound.

(a) (b)

(c) (d)
Figure 8. The classification results under four conditions of MO, MM, MA, and MMA and three sets Set A, Set B, and Set C.
(a) The classification results of Set A. (b) The classification results of Set B. (c) The classification results of Set C. (d) The
classification results of three sets.

The mean classification accuracy of the proposed model compared with other existing
models [16,19,20,29] is shown in Table 5. It can be observed that our method achieves
a mean accuracy of 83.03% on UrbanSound8K. The mean classification accuracy of our
method outperforms PizcakCNN [16] (baseline) and SBCNN [19] by 10.33% and 4.06%,
respectively. In comparison with the ZhangCNN [29], the mean accuracy of the proposed
model only increases 0.43%. However, the parameters and FLOPs of the proposed model
are much lower than for ZhangCNN, indicating that the proposed model has significant ad-
vantages in computational efficiency over other models. Moreover, the mean classification
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accuracy of our method outperformed ResNet, Inception, and DenseNet by 9.77%, 7.79%,
and 6.73%, respectively. The results show that our model, which uses the Inception-Dense
block, is effective.

Table 5. Comparison of classification accuracy with other models on UrbanSound8K dataset.
The bold number is our result.

Approach Mean Acc Parameters FLOPs

PiczakCNN [16] 73.09 109,134,090 515,806,780
ResNet [20] 73.26 23,608,202 5,044,643,516

Inception [20] 75.24 21,823,274 3,196,935,548
DenseNet [20] 76.30 18,341,194 5,367,216,252
SBCNN [19] 79.00 874,746 170,694,732

ZhangCNN [29] 82.60 1,186,322 882,779,336

Proposed model 83.03 97,214 394,483,170

5.2. Classification Results on the Hearing Aids Noisy Sound (HANS) Dataset

The mean classification accuracy of the proposed model and three existing
models [29,33,35] is presented in Figure 9 for noise classification. It can be observed that the
proposed model is superior to other models due to its higher average classification accuracy.
Figure 9a shows that Set C produces the highest classification accuracy compared to the other
sets. The mean classification accuracy of Set A, Set B, and Set C can achieve the best precision
by using the proposed model on the HANS dataset. The accuracies of Set A, Set B, and Set C
are 72.73%,73.22%, and 74.03%, respectively. As a result, the proposed model is more effective
than other models. Figure 9b shows that all models using the mixup technique significantly
improved their accuracy. Compared with other models, the proposed model achieves the
best accuracy in every Set. The improvements on Set A, Set B, and Set C are up to 0.47%,
1.62%, and 1.24%, respectively. Thus, we can state that the mixup technique is helpful on the
HANS dataset.

(a) (b)

Figure 9. (a) The mean classification accuracy of models on the HANS dataset (b) The mean classification accuracy of
models on the HANS dataset with the mixup technique. The frame length of Set A is 60, Set B is 90, and Set C is 128.
The mean accuracy is the average score when performing 5-fold cross-validation.

Table 6 presents the performance of different architectures on the HANS dataset. It
is apparent that the proposed model has the best accuracy and the fewest parameters
among all models. The FLOPs of the proposed model are the second least of all models.
Although the Roedily model has fewer FLOPs than those of our model, the accuracy of
our model is much higher. Therefore, the proposed model can use fewer parameters and
FLOPs while achieving better accuracy and inference time.
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Table 6. Comparison of the four models on HANS dataset. The bold is our result.

Approach Param Set Acc (%) FLOPs
Inference Time (s)

Model FLM

Roediy [35] 116,869
A 57.70 6,184,606 0.012 0.033
B 57.48 9,234,590 0.023 0.045
C 58.72 13,191,710 0.036 0.057

Zhang [29] 1,183,081
A 71.29 377,229,476 0.064 0.084
B 72.56 582,501,796 0.093 0.112
C 71.01 860,721,316 0.130 0.146

Singh [33] 4,694,473
A 72.53 3,072,945,444 0.264 0.283
B 73.78 4,637,731,620 0.391 0.408
C 74.75 6,676,496,676 0.549 0.565

Proposed model 97,049
A 73.20 187,247,748 0.032 0.061
B 74.84 280,86,4388 0.049 0.067
C 75.27 394,482,820 0.067 0.084

FLM: First Load tflite Model on mobile device.

6. Conclusions

In this article, we present a specially designed network for accurately recognizing
urban and noise sounds. The proposed model aims to take full advantage of the low-level
information in log-scaled mel-spectrograms to make its classification decisions. This ar-
chitecture is shown to be competitive with other deep learning architectures evaluated on
the UrbanSound8K dataset and our HANS dataset. Moreover, the input spectrograms are
generated using three different frame lengths. We found that the classification accuracy
of the proposed model gradually increased with an increased frame length of the input
spectrogram. Thus, we can deduce that more information can be obtained due to the longer
audio frame length.

Additionally, the mixup technique is used to increase data diversity in the training
phase. The experimental results showed that the mixup technique could enhance classifica-
tion accuracy. The proposed model performed better than other models on two datasets,
and the inference time of the proposed model is short. Despite the proposed model’s
performance being competitive, there are limitations to improving the accuracy of the
proposed model on the HANS dataset. Thus, we plan to use different input-transform
methods and other data-augmentation methods to further improve the proposed model in
our future work. The proposed noise classifier will be used as part of a noise reduction app
for hearing-improvement purposes.
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