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Abstract: This paper assesses the performance of a localization technique for underwater visible
light networks. The proposed approach is based on a fingerprinting technique, collecting the channel
impulse responses from different wireless optical signals in the visible range. A local database
related to the power level distribution within a maritime environment is built and exploited to
estimate user position, e.g., a diver moving in a given space for underwater fish monitoring. In this
paper, we investigate on the noise effect on the localization accuracy in underwater scenarios and for
different water turbidity coefficient and we demonstrate that the estimation error suffers on variable
channel impulse responses. Different configuration parameters and environmental scenarios have
been considered, showing that the LED transmitter deployment can be effective in the localization
estimation. A comparison of the proposed localization approach to the traditional triangulation
method has been finally carried out, showing the effectiveness of the fingerprinting-based solution
for a lower number of LED transmitters.

Keywords: visible light communications; underwater positioning; accuracy; noise error

1. Introduction

Great expectations are relied on future 6G networks for ensuring extremely high ca-
pacity and enabling new emerging applications [1]. Current technologies cannot meet these
requirements and, above all, 6G networks are supposed to integrate air/space/underwater
wireless systems by means of terrestrial networks. The overall coverage will be improved
through 6G networks, by providing the high-data rate that traditional wireless networks
cannot guarantee.

In more detail, 6G networks are supposed to support transmission rates from 100
to 1000 times higher than those for 5G [2]. In this regard, one of the communication
technologies regarded with much interest is Visible Light Communication (VLC) with a
working frequency range of [400, 800] THz. Among the recent hot research topics, the
underwater VLC (UVLC) can be observed as an enabler of the Internet of Underwater
Things paradigm (IoUT) [3,4]. IoUT is a recent paradigm relying on the fundamental
consideration that water covers more than two-thirds of Earth’s surface in the form of
oceans. Several factors related to human beings are based on oceans, e.g., transportation,
climate regulation, food supply chain and many others. At the moment, oceans represent a
highly challenging environment and, as a matter of fact, most oceans remain unexplored.

IoUT can be considered as a revolutionary technology not only in the case of ocean
exploration but for its biodiversity maintenance as well. Alternative communication tech-
nologies need to be considered in such a type of environment due to the harsh conditions

Sensors 2021, 21, 5398. https://doi.org/10.3390/s21165398 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3069-298X
https://doi.org/10.3390/s21165398
https://doi.org/10.3390/s21165398
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165398
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165398?type=check_update&version=3


Sensors 2021, 21, 5398 2 of 16

in oceans and water. Among these technologies are magnetic induction, acoustic waves
and optical waves, just to mention a few. These communication mediums present some
advantages for data transmission but, at the same time, experience under performance
degradation due to the various effects of harsh underwater environments [5]. Acoustic
waves [6,7] are typically considered for their capability of reaching long distances with
stable connectivity, however, acoustic links suffer low data rates over relatively long
distances and, thus, strongly limit data transmission and infers longer delays. Typically,
data sensed from underwater sensor networks are interpreted with reference to the sensor
position, e.g., by tracking the movement of a target object and monitoring a certain area.
In such scenarios, underwater localization is very challenging, since well-known Global
Positioning System (GPS) technology cannot penetrate.

Generally, localization schemes are based on the knowledge of the position of some
nodes, referred as anchor nodes or reference nodes [8]. In [9] a scheme named 3-DUL
is proposed where three anchor nodes are used for generating the global position in a
3D space. The proposed 3-DUL approach is based on two phases where the first one is
for nodes with unknown positions to find the distance to the neighboring anchor nodes
and the second one is based on the exploitation of the pairwise distances and depth
information in order to protrude the anchors in the horizontal plane and to generate a
virtual geometric shape. Based on the shape, this node is capable to self-positioning by the
means of a dynamic trilateration, thus, becoming an anchor node. This process is iterated
in a dynamic manner in the whole topology and adapts to the dynamic change of the water
environment [10].

Fingerprinting or scene analysis allows the estimation of a position by matching online
measured data with pre-measured location-related data (i.e., power samples) [11,12]. Typi-
cally, two phases comprise a fingerprinting algorithm, i.e., (i) offline and (ii) online phase.
The offline phase consists in the collection of location related data (e.g., the received signal
strength) for each position in the environment. A location map is then built and stored.
Then, in the online phase, the current measured data are matched to the measurements
stored in the database in order to estimate a given position.

On the other hand, the needs of high data rates and low latency pushes towards
Optical Wireless Communication (OWC) technologies and those on the visible range.
Indeed, UVLC and, in particular, the range of green light ranging in [495–570] nm are
of particular interest due to their low attenuation [13–15]. Typically, VLC technology
has been scarcely applied for positioning-based applications in underwater scenarios.
Indeed, Visible Light Positioning (VLP) systems have been largely applied in indoor
scenarios [16,17], where it results in easier to install LED devices and noise can be strongly
limited. VLP techniques use trilateration [18], angle-of-arrival [19,20] and time-of-arrival
algorithms. Recently, Irshad et al. [21] presented a fingerprinting-based approach that
exploits machine learning algorithms, working in both indoor and underwater scenarios.
The proposed solution has been observed to achieve overall computational accuracy and
an acceptable location estimation error, i.e., <1 m. Some important challenges have to
be accounted for in the underwater VLP systems such as the noise due to wave motion,
sunlight rays penetrating through water and existing obstacles such as fishes that need
to be assimilated to moving obstacles. Another important factor to be accounted for
is that the devices considered, i.e., LEDs and PhotoDiodes, are battery-powered and
cannot rely on an existing infrastructure as in indoor scenarios. These factors need to
be accounted for designing energy efficient localization algorithms. Another important
challenging factor to be considered is that the localization is realized in a 3D scenario As
a result, an efficient underwater VLP system should consider all these constraints [22].
In [23], a hybrid communication underwater system is developed that combines magnetic
communication and VLC links. The former work independently of Line of Sight (LoS)
requirements and turbidity but enables lower data rates than compared to VLC.

In this paper, we present extended simulation results of a footprinting-based localiza-
tion algorithm for IoUT scenarios [24]. The proposed technique has been initially described
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in [24], where its effectiveness has been assessed by considering an ideal channel with
no noise. The channel impulse response coefficients obtained from the LoS links of sev-
eral LED transmitters are a priori collected in a database. The proposed UVLP system is
comprised of a set of LED transmitters laying on the seabed, covering a given monitoring
space by providing a given illumination level. A centralized architecture comprised of a
RF device is exploited for localization computational tasks. Specifically, a RF sensor node is
adopted for data storage and processing. The localization accuracy reaches the centimeter
order (i.e., ≈20 cm) and variable errors due to the turbidity of the water. Independent from
the localization algorithm, it is important to have a correct database of channel impulse
responses that reflects the real underwater environment.

In this paper, we extend the proposed approach to consider a more realistic scenario,
where the channel model includes a Gaussian noise distribution. In underwater optical
wireless communication systems, there are several noise sources, including background
noise, thermal noise, dark current noise and shot noise, which can be all modeled as
the additive white Gaussian noise (AWGN) [25]. Specifically, we focus on the noise
effect on the localization accuracy of the proposed algorithm expressed in terms of Mean
Square Error. Simulation results have been carried out for different network configurations
(i.e., by varying geometrical factors and the number of LEDs) and environmental scenarios
(i.e., by varying the noise factor and the water type). As expected, the MSE suffers noisy
environment and water turbidity, as well as on the cardinality of number of LEDs.

This paper is organized as follows. Section 2 presents the considered UVLP sys-
tem model, while the proposed underwater localization algorithm is briefly described in
Section 3. The effectiveness of this approach is addressed in Section 4 by using extensive
simulation results expressed in terms of estimation position error. We observe the effect of
noisy environment on the positioning error, which shows an increased trend for higher
noise level. Moreover, as expected, best results are obtained when increasing the number
of LEDs, as well as for higher beam angles. Finally, conclusions are drawn at the end of
the paper.

2. System Model

Let us consider an UVLC network in which LN LED transmitters are installed in a
given three-dimensional (3D) space S [m3], as exemplary shown in Figure 1 for LN = 4.
Specifically, we consider L = {L1, L2, . . . , LN} to be the set of all LED transmitters that
are assumed to be installed at the seabed, mainly in order to omit background noise
from sunlight. Specifically, the i-th LED transmitter is posed on the seabed in a fixed
known position, i.e., Pi = (xi, yi, 0) with i = [1, 2, . . . , LN ], where the z-axis refers to the
vertical direction and the seabed is assumed to lay at z = 0. This installation scheme,
i.e., transmitters being located at the seabed, has several fundamental advantages over that
when installing the transmitters closer to the sea surface. First, this scheme will reduce the
expected noise and interference induced by sunlight, as sunlight is expected to penetrate
through the sea surface only to a certain limit. Second, installing the transmitters at the
seabed will also overcome the physical disturbance (instability) due to wave movement and
other possible objects, e.g., boats, moving on the sea surface. Based on this last advantage,
we lastly remark that the proposed installation scheme means that no further physical
equipment will be needed to fix the transmitters in the planned locations.

As shown in Figure 1, we assume several users (e.g., divers) are moving in the
monitoring space S , each of them equipped with a wearable photodetector (PD) placed on
the wetsuit. Specifically, we consider U = {u1, u2, . . . , uM} with uM 6= 0 as the set of PDs
in the given area. We also assume that the PDs are battery-powered, lasting for a given
time interval sufficient for diving tasks. Finally, the LED transmitters are able to illuminate
the entire space S so that it is guaranteed a minimum illumination level at each position.

The network architecture of the UVLC scenario is shown in Figure 1, where a RF IoUT
centralized sensor node is added due to its computational skills. Indeed, the RF IoUT node
is accordingly deployed with the aim of performing simple computational tasks necessary
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for the localization algorithm. As it will be described in Section 3, a simple comparing
operation is the only needed operation for localization computation, which then simplifies
the hardware requirements of VLC devices. The IoUT sensor can collect and process the
electrical signals at the output of the PDs in order to estimate the user position according to
the proposed localization algorithm. The position estimation data are then transmitted to a
control node (e.g., a boat in Figure 1) for monitoring and tracking tasks. Notice that the
localization process is centralized; that is, the RF-based simple IoUT sensor is responsible
for the entire localization process.

𝐿2

𝐿3

𝐿𝑁
. . .

VLC downlink

RF uplink

SENSORIoUT sensor

Underwater network

𝐿1

𝑢1
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𝑢𝑁

Cables or 
Fiber-Optics

𝑦(

𝑥(

𝑧̂

Figure 1. Schematic of a reference UVLC network, comprised of LN = 4 LED transmitters and
a centralized RF IoUT sensor node. Wearable battery-powered photodetectors are assumed to be
placed on the diver’s wetsuit.

By assuming a LoS link between the i-th LED and the j-th PD, the output signal at the
j-th PD is an electrical current Y(t) that can be expressed as follows:

Y(t) = r · X(t) ∗ hw(t) + N(t), (1)

where X(t) is the transmitted optical intensity waveform of T time duration, r [A/W] is the
responsivity of the j-th PD, hw(t) is the channel impulse response in the UVLC scenario and
N(t) is the shot noise due to the random arrival of photons at the receiver. For sufficiently
low rates, hw(t) can be approximated to the DC gain, i.e., Hw,0, which can be expressed
according to Beer–Lambert law as follows [15]:

Hw,0 = e(−c(λ)dij)·
· Ar(m+1)

2πd2
ij

cosm(φ)Ts(ψ)gj(ψ)cos(ψ)rect
(

ψ
ψC

)
,

(2)

where Ar (cm−2) is the active PD area, φ is the angle of irradiance, ψ is the angle of incidence
w.r.t. the receiver axis and Ts(ψ) and g(ψ) are the gains of the optical filter and of the optical
non-imaging concentrator, respectively. We assume Ts(ψ) = 1 and gj(ψ) = n2/sin2(ψ),
with ψc as the Field of View (FOV) of the j-th PD, i.e., the maximum angle at which the
light emitted by the i-th LED is detected by the j-th PD and n as the refraction index. In
addition, m = − ln(2)/ ln(cos(ψ1/2)) is the Lambertian order, where ψ1/2 is the LED half
intensity viewing angle and rect(x) = 1 if |x| ≤ 1 and rect(x) = 0 otherwise.

Due to Beer–Lambert law, the influence of underwater environment on the LoS
channel gains is provided by the the exponent c(λ) in Equation (2); in other words, we
have the following:

c(λ) = a(λ) + b(λ), (3)
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which represents the extinction coefficient, depending on the absorption coefficient, i.e., a(λ),
and the scattering coefficient, i.e., b(λ), for a given wavelength λ (nm) and water type.
From [26], different water types show specific extinction coefficients, such as pure sea, clear
ocean, coastal water and harbor water, and they correspond, respectively, to
[0.056, 0.150, 0.305, 2.170] m−1, which are values of the extinction coefficient. Notice that
higher (lower) values of the extinction coefficient correspond to turbid (non-turbid) water.
Then, pure seas and clear oceans are considered as non-turbid water, whereas coastal and
harbor water can be considered as turbid water [26]. It is expected that, due to water
conditions affecting visibility, the position estimation error will be higher in turbid than in
the case of non-turbid water.

3. Fingerprinting UVLP Algorithm

In this section, we describe our fingerprinting UVLP localization process as initially
presented in [24]. This process is mainly composed of three major phases. Initially, the chan-
nel responses between each of the LEDs and each location within the entire space of interest
are measured and stored in a map, which is also referred to as database. This database
can be generated offline. Due to variable water conditions, it should be necessary to
periodically update the database over certain time intervals.

It should be noted, that unlike the widely-investigated indoor environments in which
the user moves within a two-dimensional (2D) space (normally defined as the (x, y) space
in the Cartesian coordinates), a given user in the underwater environment can move within
a 3D space, i.e., along the three x-, y- and z-coordinates. Thus, a 3D database would be
generated and stored in the IoUT sensor. In order to facilitate building this database, we
consider a spatial sampling concept in which the entire (3D) space is designed as a 3D grid
and each point in this grid is considered as a possible user location. Specifically, the whole
3D space is modeled as S = Nx × Ny × Nz samples, where the following is the case:

Nx = lx · ∆x, Nx = lx · ∆x, and Nx = lx · ∆z, (4)

where lx,y,z (m) are the space dimensions along {x, y, z} directions and ∆{x, y, z} (with
0 < ∆{x, y, z} ≤ 1) are the sampling rates along the corresponding orthogonal directions.
Notice that the lower ∆{x, y, z} is, the higher the accuracy of the localization algorithm will
be. Indeed, reducing the gap between adjacent points in this grid will result in a higher
(smaller) localization accuracy (error). However, this would require larger memory to
store this map, which can be observed as a hardware limitation as simple IoUT devices are
expected to have a very limited memory.

Having the database stored at the IoUT device, a localization algorithm can be imple-
mented in the second phase by using that database. We consider a simple but still efficient
localization algorithm in which we measure the channel responses between the four LEDs
and the user (unknown) location to be estimated and compare these values with those
stored at the database. We then use the clear mapping between channel gains and locations
in the database to estimate the user location. The main challenge of the proposed localiza-
tion technique is to reduce the number of locations that can be considered as potential user
locations. In order to handle this issue, we consider a recursive algorithm in which we aim
at minimizing the set of possible user locations at each localization algorithm step.

Before proceeding, we should stress that the recursive algorithm detailed below is
based on the assumption that the channel gain contributions of each LED at the (unknown)
user location are estimated beforehand. This assumption is indeed required by other
algorithms based on the received signal strength indicator (RSSI). However, the localization
algorithm described here, which is based on a stored database, has a fundamental advan-
tage that no requirements are needed on the number of LEDs covering the user location to
guarantee good localization accuracy. For instance, the triangulation algorithm based on
the RSSI requires a minimum of three APs to obtain reasonable results. Thus, the algorithm
in this paper is expected to obtain reasonable results with much less LEDs covering the
entire space.
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Having this important remark in mind, we now describe the proposed localization
algorithm. Let us assume four LED transmitters are deployed in the underwater scenario
as depicted in Figure 1. The i-th user (i.e., ui) is being located at an unknown location
Pi = (xi, yi, zi), then the target is to obtain the location estimate P̂ = (x̂i, ŷi, ẑi). To this
end, the proposed localization algorithm goes through the following three steps, i.e., (i)
database construction, (ii) likely position detection and (iii) position estimation.

3.1. Step I. Database Construction

This first step corresponds to the construction of an underwater scenario channel
gain database, namely D, which is then stored in the RF sensor node. Let D carry all
the channel responses between all LED transmitters and all the possible user locations
within the underwater environment as defined in 3D space S ; in other words, we have the
following:

D =

[
h(S)

1 , h(S)
2 , · · · , h(S)

LN

]
, (5)

where LN is the number of APs and the j-th h with j = 1, 2, . . . , LN is a 3D matrix of
dimensions Nx × Ny × Nz for which its elements are the channel impulse responses from
the j-th LED. The database D is updated in a timely manner in order to compute the
position estimation as correctly relative to the real scenario. Indeed, if the database collects
channel impulse responses from a water environment type that does not reflect the real
scenario, then the position estimation can be badly affected. Finally, the database is stored
in the RF sensor local cache.

3.2. Step II. Likely Position Detection

For a given unknown position (i.e., Pi) of the i-th user within the monitoring space S ,
in this step the algorithm aims at identifying a subset of possible user locations based on
the measured channel gains between Pi and all APs. In addition to the possible localization
error when estimating the user position, there is another source of error that should not be
ignored, which is the channel gain estimation error. As already mentioned, the localization
algorithm in this paper is based on the assumption that the channel gains between all APs
and Pi are known in advance.

However, in practice we cannot have perfect measures for the channel gains and only
channel estimates are possible. This is indeed due to the different noise sources affecting
the received signals. In order to mathematically regard the impact of imperfect knowledge
on the channel gains, we consider the following model for the estimated channel gain
between Pi and the j-th AP, i.e., h̃Pi

j :

h̃Pi
j = hPi

j + ĥPi
j , (6)

where hPi
j is the true channel gain as expressed in Equation (2) and ĥPi

j is a term that
accounts for the channel estimation error. For the sake of simplicity and without any loss
of generality, in this paper we assume that the estimation error ĥPi

j follows a zero-mean

Gaussian distribution with a finite and known variance σ2
ĥ
.

Now, let us denote the vector carrying the estimates of the channel impulse responses
between all LEDs and the position Pi as h̃(Pi); in other words, we have the following.

h̃(Pi) =

[
h̃(Pi)

1 , h̃(Pi)
2 , · · · , h̃(Pi)

LN

]
. (7)

Notice that the smaller the distance between Pi and a given LED, the larger the
corresponding channel gain.

The position estimation algorithm starts by comparing the channel gains at the
database to the ones estimated along the user path. As a result, the algorithm will form
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several subsets of the database, collecting the possible user locations until reaching the po-
sition estimation. Let us assume D(1) ⊂ D as the first subset of the possible user locations,
obtained by comparing the channel gains at the database, i.e., h(D)` for ` = {1, 2, . . . , LN},
with the largest measured channel gain, i.e., h̃(Pi)

l = max h̃(Pi). Specifically, the subset D(1)

contains all the user locations whose channel responses satisfy the following criteria:

− ξh ≤ h(D)` − h̃(Pi)
l ≤ ξh, (8)

where ξh is a predefined deviation factor.
The subset D(1) will be further updated in order to reduce the number of possible

user locations. In particular, the channel gains at the subset D(1) will be compared with
the second largest channel gain in h̃(Pi). As a result, the second subset D(2) ⊂ D(1) will be
created, which contains all the user locations whose channel responses match the following
limits:

− 2ξh ≤ h(D
(1))

` − h̄(Pi)
l ≤ 2ξh, (9)

where h̄(Pi)
l is the updated (second) largest channel gain in h̃(Pi). In order to further reduce

the set of possible user locations, subset D(3) ⊂ D(2) is created with all the locations of
the i-th user whose channel gains satisfy Equation (9) with h̄(Pi)

l no being the third largest

channel gain in h̃(Pi) and h(D
(1))

l being replaced with h(D
(2))

l . This step will keep running
until the smallest element in h̃(Pi), which will result in the subset D(LN) ⊂ D(LN−1), where
LN is the number of LEDs.

Remark 1. In practical systems, notice that the estimation error mainly depends on the algorithm
used for the channel estimation process and it is expected to be dependent on many parameters,
in particular, on all parameters defining the received signal-to-noise-and-interference ratio (SINR).
As the channel estimation phase is beyond the scope of this paper and in order to provide general
analyses that only focus on the localization phase, we then made the assumption of modeling the
estimation error as a random variable with predefined and known parameters. However, for the sake
of completeness, let us briefly show how the estimation error can be formulated by considering a
certain estimation algorithm. From Equation (2), we notice that the distance between the transmitter
and receiver is the only unknown parameter that should be estimated. Subsequently, the process of
channel estimation is equivalent to estimating the corresponding distance. This implies that the
estimation error depends on the used distance estimation problem. To this end, we consider the
task of estimating the position of the k-th user (location), which is covered by the AP(s) for which
their index(es) is(are) defined by the set B. Furthermore, we can consider an estimation algorithm
based on the received signal strength (RSS) due to its simplicity. As a performance measure, we
adopt the Cramer-Rao bound (CRB), which defines the lower bound on the variance of any unbiased
estimator [27].

Mathematically speaking, let Pj be the transmission power of the j-th AP and hj,k be
the channel gain between the k-th user and the j-th AP. By using the CRB, the estimator
error related to the distance dj,k has the following lower bound [28]:

E = ∑
j∈B

(
−

∂hj,k

∂dj,k

)−1 σj,k

αPj
, (10)

where
∂hj,k
∂dj,k

is the partial derivative of the channel gain hj,k with respect to the distance dj,k,

σ2
j,k is the additive noise variance and α is the optical-to-electrical conversion efficiency.

Notice that Equation (10) follows from the fact that the error of estimating the distance to a
given AP is independent of the error caused when estimating the distances to the other APs.
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Remark 2. From the above analysis, notice that we considered the impact of channel estimation
error when running the algorithm but not when constructing the database. This is basically due to
the fact that the conditions when constructing the database have two fundamental differences from
the others when running the algorithm. First, constructing the database is performed offline and,
thus, it does not have the time constraints as those imposed when running the algorithm, which
should be executed in real-time. Second, the user locations are perfectly known when constructing
the database. With these two aspects, it is safe to assume a near-perfect channel estimation when
building the database. For example, having no time constraints implies that multiple measurements
can be observed for the same position and so the noise impact can be eliminated.

3.3. Step III. Position estimation

Lastly in this step, the algorithm estimates the user position using the final subset
of the possible locations D(LN). To this end, the algorithm calculates several estimates
P̂j, where j = 1, 2, . . . , |D(LN)| and |D(4)| refers to the cardinality of the subset D(LN),
as follows:

P̂j =
LN

∑
l=1
|h̃(Pi)

l − h(D
(LN ))

`,j |, (11)

where h̃(Pi)
l is the measured channel gain between the l-th LED and the i-th user location,

as defined in Equation (7), and h(D
(LN ))

`,j is the stored channel gain between the `-th LED

and the j-th user location at the subset D(LN). In Equation (11), the estimations are rep-
resented as the sums of differences among the channel gains at the receiver and those in
the subset D(LN). The algorithm then selects the user locations with the lowest P̂j values
(i.e., PRxm1

, PRxm2
) and the estimated user location will be the corresponding average; in

other words, the following is the case:

P̂i = avg{PRxm1
, PRxm2

}

=

[ xRxm1
+ xRxm2

2
,

yRxm1
+ yRxm2

2
,

zRxm1
+ zRxm2

2

]
,

(12)

where PRxm1
= [xRxm1

, yRxm1
, zRxm1

] and PRxm2
= [xRxm2

, yRxm2
, zRxm2

]. Notice that the
indexes m1 and m2 refer to those as defined in the stored database. In the special case
when the subset D(LN) has only a single possible position, i.e., D(LN) = {PRxk}, then the
algorithm simply selects PRxk as the estimated user location; in other words, the following
is the case.

P̂i = PRxk . (13)

Again, notice that the position index k refers to the k-th user position as defined in the
(original) stored database, as the corresponding index with respect to the subset D(LN) will
always be one for this specific case.

The effectiveness of the localization algorithm is then computed through the estimation
error of the i-th user position Pi, for different x, y and z directions, i.e., E (Pi)

{x,y,z} (m), defined,
respectively, as follows.

E (Pi)
x = x̂i − xi, E (Pi)

y = ŷi − yi, E (Pi)
z = ẑi − zi. (14)

Based on specific applications, the accuracy of the localization algorithm is reflected
in the following constraint:

E (Pi)
{x,y,z} ≤ ζ, (15)

where ζ is the localization upper threshold. As an instance, in case of environmental
monitoring, we can assume ζ = 20 cm.
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Finally, from Equation (14), we can derive the MSN factor (m) of the i-th user position
Pi, computed as follows.

MSE(Pi) =

√
E (Pi)

x
2
+ E (Pi)

y
2
+ E (Pi)

z
2
. (16)

4. Results

In this section, we present the extended simulated results by assessing the proposed
localization algorithm in the case of Additive White Gaussian Noise (AWGN) distribution
with zero mean value and standard deviation σn, i.e., N (0, σn), in the monitoring space.
Specifically, we show how the noise can affect the positioning estimation, expressed in
terms of Mean Square Error (MSE). Different scenarios have been evaluated in the case of
varying (i) the number of LEDs deployed in the given environment, (ii) the additive noise
and (iii) the water types. We can observe that—as expected—the MSE is strongly affected
by the number of LED transmitters covering the monitoring space, as well as by the AWGN.
It is, thus, necessary to mitigate the noise by means of noise cancellation techniques. The
noise mitigation techniques are of paramount importance in VLC systems and, above
all, for localization techniques, where noise could negatively impact on the accuracy of
localization. In [29,30], the authors have demonstrated a technique for mitigating the
impact of noise by listening to the environment for a certain time and inferring the specific
features of the noise. Based on the statistical characteristics of the noise, by applying
Yule–Walker equations, it has been possible to drastically reduce the impact of the noise.

Figure 2 depicts the different network configurations used in the simulation results
for variable number of LEDs, i.e., LN = [2, 4, 6, 8]. Notice that LEDs are randomly deployed
in the whole space according to a grid configuration. Specifically, the i-th LED is positioned
in (xi, yi, 0) assuming an inter-LED distance (m); it is expressed as follows:

d(i,i+1) = lx/(LN/2 + 1). (17)

All the LEDs transmit the same power level Pt = 10 Watt. All the parameters used to
generate the simulation results are collected in Table 1.

Table 1. Main parameters used in the simulations.

Parameter Values

LED Power 10 W
Beam angle [50, 80]◦

Monitoring space S (lx × ly × lz) 10 m × 10 m × 10 m
PD field of view (FOV), ψC 60◦

Refractive index, n 1.5
Optical filter gain, Ts(ψ) 1

Effective PD area, Ae 1 cm2

Noise standard deviation σn [0, 10−6]
Number of LEDs [2, 4, 6, 8]

Extinction coefficient, c [0.056, 0.150, 0.305, 2.170] m−1

Figures 3 and 4 show the MSE trends versus the noise standard deviation σn for dif-
ferent LED configurations and beam angles. As expected, the MSE shows an increasing
behavior for increasing noise, as well as a reduction due to higher number of LEDs de-
ployed. Specifically, we observe high MSE values for the case of only LN = 2 LEDs, which
represents the worst scenario for localization purpose. Indeed, in this LED configuration,
the estimation error occurs as a result of the error in estimating the distances, which are the
distances to both LEDs, as well as the localization ambiguity error. Thus, also for σn = 0,
the configuration LN = 2 provides a MSE equal to ≈2.5 m, which is not acceptable for
common localization applications requiring centimeter accuracy.
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Figure 2. Map of different LED transmitter scenarios deployed in the seabed following a grid
structure. Green, blue and red stars refer to LN = [4, 6, 8], respectively. The case of LN = 2 overlaps
with two LEDs of the (LN = 6) LED configuration.

0 0.2 0.4 0.6 0.8 1

10-6

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

10-6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a) (b)

0 0.2 0.4 0.6 0.8 1

10-6

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

10-6

0

1

2

3

4

5

6

(c) (d)

Figure 3. MSE of the position estimation behavior versus the noise standard deviation for different network configurations
and water types, i.e., (a) pure, (b) clear, (c) coastal and (d) harbor water. We assume a beam angle of 50◦.
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Figure 4. MSE of the position estimation behavior versus the noise standard deviation for different network configurations
and water types, i.e., (a) pure, (b) clear, (c) coastal and (d) harbor water. We assume a beam angle of 80◦.

Interesting, the MSE keeps an almost flat behavior for small values of σn for LN = [6, 8]
scenarios. Here, the MSE value is ≈0.5 m, which is the most acceptable. This is noticeable
for turbidity values corresponding to pure, clear and coastal waters, while for harbor water
the MSE shows a very fast increasing behavior for small values of σn and keeps high values
for increasing noise. In this case, shown in Figure 3d, the water turbidity strongly affects
the localization estimation, providing MSE values higher than 4 m.

Similar considerations applied to the case of increased LED beam angles, i.e., θ = 80◦,
except that it induces a degradation of the MSE performance. Indeed, higher beam angles
can provide a less accurate localization estimation, since the LED coverage areas will be
larger. In the case of no noise, i.e., σn = 0, the MSE is still comparable to the previous case
of θ = 50◦, but small variations of noise standard deviation correspond to fast increasing
MSE values. In the worst case corresponding to σn = 10−6, the MSE reaches ≈5 (m) for all
LED configurations and independently from the considered water type. On the other
side, in Figure 3, the MSE reaches lower values that are easily distinguishable for different
water types.

In Figure 5, we compare the MSE values sampled along a given user’s path, as depicted
in Figure 6. MSE trends are obtained assuming different values of noise standard deviation,
i.e., σn = [0, 10−8, 10−9], in case of LN = 4 and pure water. Furthermore, we distinguish
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two cases, i.e., assuming (i) a variable and (ii) a fixed user position along z direction. In
Figure 5a, we observed higher values of MSE for increasing noise, while in the absence of
noise the MSE is kept lower than 1 m along the user path. On the other side, in Figure 5b,
we observed that assuming the user does not move along the z-direction, i.e., zi = 4 m,
strongly reduces the MSE component along the z-direction and also the overall MSE value.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

0 5 10 15 20 25 30
0

0.5
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(a) (b)

Figure 5. Comparison of MSE trends for different values of noise standard deviation computed for
different user positions, for (a) variable and (b) fixed position along z-direction, i.e., z = 4 m.

Figure 6. User path within the monitoring space S .

Furthermore, for comparison purposes, in Figure 7 we demonstrated the performance
of the proposed fingerprinting-based approach as compared to the well-known triangu-
lation: In the case of a variable number of APs (i.e., from 2 to 12) randomly deployed in
the considered scenario. As expected for both two cases, in increasing number of APs,
the estimation error decreases, since the environment is covered by a higher number of
devices. Moreover, in increasing the value of the extinction coefficient, the error is higher
than compared to the case of low-turbidity water. The comparison of triangulation to the
fingerprinting approach shows a variable behavior, where, initially, the lower number
of APs in the proposed approach outperforms the triangulation technique. In increasing
the number of APs, the triangulation approach shows better performance than the finger-
printing one. This occurs at ≈8 APs, while this threshold lowers at ≈6 APs for harbor
water (see Figure 7c). Furthermore, the variation of the average MSE obtained with the
fingerprinting approach is shorter than the triangulation case. For instance, in the case
of harbor water in Figure 7d, the average MSE obtained with the fingerprinting solution
ranges from ≈3.71 m to ≈1.34 m, while the triangulation method showed higher range
(i.e., from ≈6 m for LN = 2 to ≈0.1 m for LN = 12).
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Figure 7. Average MSE comparison of fingerprint to triangulation approaches versus the number of APs and for different
water types, i.e., (a) pure, (b) clear, (c) coastal and (d) harbor water. We assume a beam angle of 60◦.

Finally, in this section we illustrate the impact of noise on the distance estimation
error. We particularly highlight the impact of the solar noise, i.e., due to the sunlight, on the
estimation performance. As shown in Equation (10), the system noise affects the estimation
error lower bound through the noise variance σ2

j,k. Considering the solar noise, we can then

express σ2
j,k as follows [31]:

σ2
j,k =

π2D2Ψ2
c ∆λLs

4
, (18)

where D (m) is the diameter of the photodiode aperture, ∆λ is the optical filter bandwidth
and Ls is the up-welling solar radiance, which is provided by the following:

Ls =
ERL f ace−c·dw

π
, (19)

with E as the down-welling irradiance, R as the underwater reflectance, L f ac as the factor
describing the directional dependence of the underwater radiance and dw (m) is the water
depth, i.e., the distance between the water surface and the receiver. In this case, if the
total water depth is dw,tot (m), then dw = dw,tot − rv, where rv (m) is the vertical distance
between the transmitting and receiving planes.
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The effect of sunlight noise on the estimation algorithm is expressed in Figure 8,
which describes this effect as a function of the vertical distance rv and for different water
conditions, assuming E = 1440 (W/m2), R = 1.25 and ∆λ = 20 (nm). We also assume a
total water depth of 10 m. As clearly observed, increasing the vertical distance results in
a drastic increase in the estimation error, especially as the distance goes beyond a certain
value, e.g., when the distance is greater than ≈6 m for coastal water and ≈4 m for harbor
water. This is, indeed, expected, as increasing rv means that the user is getting closer to the
water surface and, hence, the sunlight is getting brighter. Notice that a vertical distance of
10 m means that the user is located directly on the water surface, while the transmitters are
located on the seabed.
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Figure 8. Maximum achievable estimation error (m) versus the vertical distance, for different
water types.

5. Conclusions

This paper has investigated the noise effect on a fingerprinting-based localization VLC
approach for underwater scenarios. The proposed approach has been initially presented
in [24] and, here, novel simulation results have been extended, dealing with noise effect
and different network configurations. We have observed how the noise distribution can
strongly affect the localization estimation, as well as the LED deployment and water tur-
bidity. As a conclusion, we can state that an efficient localization approach (i.e., providing
centimeter-order accuracy) needs to consider an optimized LED deployment, as well as
noise cancellation techniques. In particular, the characterization of the statistical character-
istics of the noise can be exploited to apply efficient mitigation techniques.
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