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Abstract: Flexible magnetic-field-based tactile sensors (FMFTS) have numerous advantages including
low cost, ease of manufacture, simple wiring, high sensitivity, and so on. Flexible magnetic-field-
based tactile sensors need to be calibrated before use to build accurate mapping between contact force
and magnetic field intensity measured by magnetic sensors; however, when considering remanence
inconsistency of magnetic source, each FMFTS needs to be calibrated independently to enhance
accuracy, and the complex preparation prevents FMFTS from being used conveniently. A robust
estimation method of contact force and location that can tolerate remanence inconsistency of magnetic
source in FMFTS is proposed. Firstly, the position and orientation of magnetic source were tracked
using the Levenberg–Marquart algorithm, and the tracking results were insensitive to the remanence
of magnetic source with appropriate cost function. Secondly, the mapping between magnitude and
location of contact force and position and orientation of magnetic source was built with calibration of
one sensor; the mapping only depends on the structural response of flexible substrate, and thus can
be extended to estimate external force and location for other sensors with the same structure. The
proposed method was evaluated in both simulations and experiments, and the results confirm that
the estimation of magnitude and location of external force for FMFTS with the same structure and
different remanence could reach acceptable accuracy, depending on single calibration. The proposed
method can be used to simplify the calibration procedure and remove the barrier for large-scale
application of FMFTS and replacement of damaged FMFTS.

Keywords: flexible tactile sensor; magnetic source tracking; robust estimation

1. Introduction

Tactile sensors made of flexible materials can better adapt to the external environment
and provide more information, such as contact pressure, contact location, the texture
characteristics, local shape, and material characteristics of the object [1]. The development
of tactile sensors has great potential for wearable devices [2], biomedical systems [3],
human–computer interaction systems [4], and intelligent robots [5], and promotes the
development of intelligent systems [6].

At present, flexible tactile sensors draw from the following measuring principle,
including capacitive [7], resistive [8], piezoelectric [9], optical [10], magnetic [11], vision-
based [12,13], etc. The tactile sensors based on capacitive, resistive, and piezoelectric were
generally combined in array to expand the sensing area; the pitch of the taxel (tactile pixel)
limits the spatial resolution of such tactile sensors. Although the miniaturization of sensing
unit could improve resolution, this means complex manufacturing and wiring. Vision-
based tactile sensors, such as GelSight [12] and DIGIT [13], can achieve high resolution;
however, this brings higher cost and limits of installation space due to the use of cameras.
By comparison, FMFTS [14–17] embodies some wonderful features including less wiring,
low cost, and high resolution. FMFTS is generally constituted of three parts: magnetic
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source (permanent magnet or magnetic powder), flexible substrate, and magnetic sensors.
The shape of the flexible substrate could be rectangular solid, cylindrical, pyramid, etc.,
each shape shows different mechanical responses. When the contact force is applied to the
surface of the flexible substrate of FMFTS, the position and orientation (pose) of permanent
magnets embedded in the flexible substrate or the distribution of the magnetic powder will
change, and the magnetic field distribution varies accordingly, which could be captured by
magnetic field sensors [18] through magnetic flux density data monitoring. FMFTS have
received considerable attention in recent years.

Force and location estimation was necessary for FMFTS, which depends on the re-
lationship between external contact force and magnetic field distribution. The nonlinear
relationship between the magnetic flux density and the contact force can be established
through analytical models [19] or calibration; both look-up tables (LUP) [20] and neu-
ral networks [21] have been used to solve the inverse problem to acquire the external
force (normal or tangential) [22]. Chathuranga et al. used spring theory and bending
theory to build the analytical model of a flexible three-axis force sensor [19], however,
the analytical modeling method was hard to apply to wide sensors considering complex
structure responses of FMFTS. Dwivedi et al. used neural networks to build the mapping
between three-dimensional external force and magnetic flux density, and then estimated
the normal force and tangential force; however, the contact location was neglected [14].
FMFTS array was used for distributed sensing. Tomo et al. developed a permanent magnet-
based tactile sensors array which contains 16 tri-axial taxels, each unit consisting of a hall
sensor, and a magnet which was used to measure the three dimensional force [23]. The
sensing elements were discrete in the array and the distance between sensing elements
limited the resolution of this kind of sensor. Hellebrekers et al. developed a soft magnetic
tactile skin for continuous force and position estimation; they mixed magnetic particles
in a flexible medium and built the relationship between contact force and magnetic flux
density through complex calibration: neural network was used to estimate the external
force and location [21]. Nevertheless, since the distribution of magnetic particles in the
flexible substrate is uncertain, it is necessary to recalibrate and train the neural network
when making a new soft magnetic tactile sensor. Mohammadi et al. proposed a perma-
nent magnet-based soft tactile sensor with a continuous medium, and used the K-nearest
neighbors classification algorithm to calculate the location of the contact force [24], but the
magnitude of contact force was unavailable.

Previous studies on force and location estimation method are mostly based on estab-
lishing the mapping between contact force and magnetic field through calibration. The
calibration relies on large volumes of tests with different magnitude and location of contact
force and is time consuming. For replacing damaged sensors [25], or large-scale use of
FMFTS, the convenience of calibration for a large number of sensors must be considered,
as it is expected that the calibration results of one sensor could be applied to sensors with
same specification. The generality of calibration results depends on the consistency of
magnetic source and flexible substrate between different FMFTS; however, magnetization
error of magnets, demagnetization of magnets, and molding deviation of flexible substrate
is unavoidable in mass production and use of FMFTS. In face of magnetization error or
demagnetization, the remanence of each permanent magnet in FMFTS may be different,
the calibration results can no longer directly used in new tactile sensors, and recalibration
is needed. Compared with magnetization error and demagnetization, the molding devia-
tion of flexible substrate has subtle influence on force and location estimation at current
manufacturing accuracy; when the same contact force is applied to FMFTS, the variation
of position and orientation of the permanent magnet is approximately the same between
different sensors. Inspired by permanent magnet-based localization [26], if one can con-
vert the magnetic field information into the pose of permanent magnet, the influence of
magnetic source inconsistency could be reduced, and recalibration can be omitted.

In this paper, a robust force and location estimation method for FMFTS, which could
ensure accuracy and convenience of tactile sensors considering magnetic source inconsis-
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tency, is proposed. Compared with existing estimation methods, the proposed method
can be separated into two parts: pose estimation for permanent magnet, and reasoning
of external force based on pose of the permanent magnet. The magnetic source tracking
algorithm can estimate the pose of permanent magnet based on magnetic flux density, and
then the reasoning of external force will conduct based on the mapping between contact
force and pose of permanent magnet. The calibration in the proposed method aims to
build mapping between contact force and pose of permanent magnet, rather than mapping
between contact force and magnetic flux density in the traditional force and location estima-
tion method. Considering that the mapping between contact force and pose of permanent
magnet depends on structure response of substrate, the calibration process can thus be
simplified for sensors with identical mechanical structure and material properties. Using
the proposed method, the calibration result in one sensor can be extended to estimate the
external contact force for new sensors with the same mechanical structure and material
properties. The innovation of this paper is a new force and location estimation mechanism
that decouples the pose estimation of permanent magnet from force and location estimation
for FMFTS, which could simplify the calibration process and provides convenience for
mass use of FMFTS. Furthermore, in case the flexible substrate of FMFTS is damaged or the
permanent magnet is demagnetized, sensors produced in the same batch can be directly
used to replace the broken one without recalibration.

The subsequent sections are arranged as follows: Section 2 describes the scheme and
principle of robust force and location estimation method for FMFTS; the proposed method
is evaluated in Section 3 using datasets from finite element simulation; Section 4 presents
the experiment to verify the proposed method; Section 5 draws conclusions and presents
future work.

2. Materials and Methods Robust Force and Location Estimation Method
2.1. Scheme of the Proposed Method

In this paper, the poses of the permanent magnet embedded in FMFTS are solved
by magnetic source tracking algorithm, and then the relationship between the contact
force and location and the pose of the permanent magnet is established. The method to
calculate contact force and location uses the diffusion effect of flexible substrate, when
external force is applied to the surface of flexible substrate, the pose of the permanent
magnet embedded in the flexible substrate will change. It is possible to determine unknown
external force and location according to movement of permanent magnet in FMFTS. The
previous research directly constructs the relationship between the magnetic flux density
induced by permanent magnet and external force, as shown in Figure 1a. The relationship
between the magnetic flux density and external force in different FMFTS may be very
different due to magnetic source inconsistency. As a result, new tactile sensors need to
be recalibrated; in other words, the invalidity of previous calibration results was mainly
due to remanence inconsistency. For tactile sensors manufactured in same batch, the
response of permanent magnet’s position and orientation under the action of contact force is
approximately the same. The method proposed in this paper is shown in Figure 1b, and the
proposed method can be separated into two parts: pose estimation for permanent magnet,
and reasoning of external force based on pose of permanent magnet. The main difference
between the proposed method and previous methods is to decouple pose estimation for
permanent magnet from force and location estimation of FMFTS. The magnetic source
tracking algorithm can estimate the pose of the permanent magnet in the face of remanence
inconsistency; thus, the robustness of the force and location estimation for FMFTS can be
improved and calibrations can be simplified by the magnetic source tracking algorithm.

The structure of FMFTS selected in this article is shown in Figure 2, and the structure
of the flexible substrate can be changed for different application scenarios.
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The method is described in the steps below: 1. Construct the objective function for
magnetic source tracking algorithm; 2. Solve the optimization problem using LM method
to estimate permanent magnet’s pose; 3. The calibration points are collected on FMFTS
sample (Sensor_1), magnetic flux densities are captured under external force with different
magnitude and location, magnetic flux densities are converted into pose of permanent
magnet, and neural network is trained to construct the relationship between contact force
and location and pose of permanent magnet; 4. For unknown contact force acts on Sensor_1
and other FMFTS (Sensor_2), the magnetic flux densities captured by magnetic sensors
are converted into pose of permanent magnet, with the pose information as inputs of the
trained neural network, and the contact force and location as outputs.

2.2. Magnetic Source Tracking Algorithm

The pose estimation of permanent magnet embedded in FMFTS needs to establish its
magnetic field distribution model. In this paper, the axial magnetized cylindrical permanent
magnet that most FMFTS adopt is used, and the permanent magnet is approximated as the
magnetic dipole model [27]. The magnetic field distribution model is shown in Figure 3.
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Figure 3. The magnetic dipole model: (a, b, c), (m, n, p) are the position vector and orientation vector
of the permanent magnet in space; the location of the l th magnetic sensor is (xl , yl , zl); r is the vector
pointing from the center of the permanent magnet to the magnetic sensor.

The radius of cylindrical permanent magnet is rmag, the length is L, and the residual
magnetization is M. The magnetic flux density generated by the permanent magnet at any
point in space can be expressed as [28]:

→
B =

µ0

4π

[
3(
→
m•→r )→r

r5 −
→
m
r3

]
(1)

where µ0 is the vacuum permeability,
→
m is the magnetic dipole moment of permanent

magnet, which can be expressed as
→
m = V

→
M = (πr2

magL)(Mm̂), and m̂ is the unit vector
of the direction of the magnetic dipole moment. Therefore, Equation (1) can be further
expressed as:

→
B =

µ0r2
magLM

4

[
3(m̂•→r )→r

r5 − m̂
r3

]
= BT

[
3(m̂•→r )→r

r5 − m̂
r3

]
(2)

where BT is related to the characteristics of permanent magnet, and the remaining part is
related to the pose of the permanent magnet. The magnetic flux density at the location of
the lth magnetic sensor is:

→
B l = Blx

→
i + Bly

→
j + Blz

→
k (l = 1, 2, · · · · · · , N) (3)
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where Blx, Bly, Blz could be represented by

Blx = BT

{
3[m(xl − a) + n(yl − b) + p(zl − c)](xl − a)

R5
l

− m
R3

l

}
(4)

Bly = BT

{
3[m(xl − a) + n(yl − b) + p(zl − c)](yl − b)

R5
l

− n
R3

l

}
(5)

Blz = BT

{
3[m(xl − a) + n(yl − b) + p(zl − c)](zl − c)

R5
l

− p
R3

l

}
(6)

where Rl =
√
(xl − a)2 + (yl − b)2 + (zl − c)2.

When the cylindrical permanent magnet rotates around its central axis, the magnetic
field around it does not change with the rotation of the magnet, so the following constraints
are added:

m2 + n2 + p2 = 1 (7)

In this paper, four three-axis magnetic sensors were used in one FMFTS. From the
equation system composed of Equations (4)–(7), it can be seen that there are five unknown
parameters, twelve equations need to be solved to acquire all unknown parameters, and
all equations are statically indeterminate nonlinear. It is difficult to solve such equations
analytically, therefore nonlinear numerical optimization methods were generally used.

To use the numerical optimization method, it is necessary to construct the objective
function. According to Formulas (4)–(6), the theoretical magnetic field value of the perma-
nent magnet at the lth three-axis magnetic sensor can be obtained, and the actual measured
magnetic flux densities can be obtained through communications with magnetic sensors.
The objective function was given by finding the difference between the theoretical value
and the measured value of magnetic sensors, as follows:

Ei =
N

∑
l=1

(B′li − Bli) (8)

where i represents space axis (x, y or z), and B′li and Bli are the measured value and
theoretical value of lth magnetic sensor in axis i.

x = arg min (E2
x + E2

y + E2
z) (9)

where x = (a, b, c, m, n, p).
It can be seen from Equation (9) that this is a nonlinear least squares problem. There

are many methods to solve this kind of problems. The Levenberg–Marquardt (LM) method
is a frequently used method for solving nonlinear least squares. It combines the advantages
of the Gauss–Newton method and steepest descent method. The iterative formula is
as follows:

xk+1 = xk − (JT J + µI)
−1

gk (10)

where JT J is approximate value of Hessian matrix, gk is negative gradient direction, I
is identity matrix. µ is damping coefficient, under the condition that µ is greater than
zero, the matrix can be guaranteed to be positive definite. When µ is very large, the
iteration process is close to the steepest descent method, and when µ is small, it is close
to the Gauss–Newton method. Previous studies have proved that this method has higher
positioning accuracy [28]. Therefore, this paper selects the LM algorithm to solve the pose
of the permanent magnet. The initial point of the optimization algorithm in this paper
has been given, namely the pose of the permanent magnet in the unstressed state of the
tactile sensor.
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2.3. Reasoning of External Force Based on Position and Orientation of Magnet

The pose of the permanent magnet under different contact forces and location can be
obtained using LM algorithm, and then the relationship between the pose of the permanent
magnet and contact force and location can be established. The relationship is nonlinear due
to the characteristics of the structure and material of flexible substrate. Given any pose of
permanent magnet, reasoning of external force aims to find the potential external force that
leads to the corresponding pose. According to the mapping between pose of the permanent
magnet and external contact force and location, neural networks have been proven to be
an efficient solution, and are not limited by the nonlinear model of flexible substrate [29].
Back propagation (BP) neural network and radial basis function (RBF) neural network
are the most widely used neural networks in practical applications and can approximate
any nonlinear function with reasonable precision. In this paper, in order to compare the
effectiveness of different neural networks, the mapping relationships between the pose
of permanent magnet and external contact force and location were established using BP
neural network and RBF neural network.

The structures of BP neural network and RBF neural network are shown in Figure 4.
BP neural network works on the idea of error back propagation, which continuously
corrects the weights and thresholds in the network, so that the error between the expected
output and the predicted value is continuously reduced until the accuracy requirements are
met. The RBF neural network uses the radial basis function to form a hidden layer and maps
the input vector from low-dimensional to high-dimensional without weight connection, so
that the low-dimensional linear inseparability can be separated in high-dimensional. In this
paper, the MATLAB neural network toolbox is used to establish the mapping relationship
between the pose of permanent magnet and external force and location.
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3. Evaluation of Robust Force and Location Estimation Method with Simulation

To evaluate the robustness of the proposed estimation method in the face of rema-
nence inconsistency, firstly, the magnetic field induced by permanent magnet is analyzed
numerically, and magnetic fields for permanent magnets with the same pose and different
remanence are compared. Secondly, the pose estimation of permanent is evaluated; the
magnetic field distributions of permanent magnets with the same poses and different re-
manence are different, however, using the pose estimation method, the pose of permanent
magnets with different remanence can be correctly estimated. Third, the magnetic–solid
coupling model of FMFTS is established; the magnetic flux densities for sensors with
different remanence under various contact force and locations are collected, upon which
the proposed force and location estimation method are trained and evaluated.

3.1. Simulation of Magnetic Field of the Permanent Magnet

In this section, the finite element model of the permanent magnet is firstly established
in COMSOL 5.5 (COMSOL Inc., Stockholm, Sweden). The size of the permanent magnet is
set to 2 mm in diameter, 2 mm in height, and the material is NdFeB. Taking a sphere with
the radius of 50 mm around the permanent magnet as the air model, the outer surface of
the sphere is selected as the zero magnetic scalar potential surface and used as the initial
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condition for applying the magnetic field. In order to obtain the magnetic flux density in the
space, domain point probes were set at four points, namely p1 (8, 8, 0), p2 (8, −8, 0), p3 (−8,
8, 0), and p4 (−8, −8, 0), equivalent to four magnetic sensors, as is shown in Figure 5.
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Figure 5. Magnetic field simulation model of the permanent magnets in two poses.

According to magnetization error, the remanence difference between permanent
magnets of the same grade is about 0–0.05 T [30]. The position and orientation of permanent
magnet can be expressed as a vector (a, b, c, m, n, p), where (a, b, c) represents the three-axis
position coordinates, respectively, and (m, n, p) represents the direction vector. In the
simulation, the first position and orientation (Pose_1) of the permanent magnet is set to
(0, 0, 12, 0, 0, 1), the remanence of the permanent magnet is set to 1.18 T, 1.20 T, 1.23 T,
1.25 T, 1.28 T, respectively, and then the three-axis magnetic density at the four probes is
obtained. The second position and orientation (Pose_2) of the permanent magnet is set to
(0.707, 0, 11.707, 0.707, 0, 0.707) and the above steps repeated. The results are shown in Table 1.

Table 1. Magnetic field simulation results of permanent magnets with different remanence.

Pose_1 Pose_2

rema(T) 1.18 1.20 1.23 1.25 1.28 1.18 1.20 1.23 1.25 1.28

p1x(G) −1.3707 −1.3939 −1.4287 −1.4520 −1.4868 −1.3668 −1.3899 −1.4247 −1.4479 −1.4826
p1y(G) −1.3801 −1.4035 −1.4386 −1.4620 −1.4971 −0.4252 −0.4324 −0.4432 −0.4504 −0.4612
p1z(G) 0.8084 0.8221 0.8427 0.8564 0.8767 −0.3668 −0.3730 −0.3823 −0.3885 −0.3978

p2x(G) −1.3702 −1.3934 −1.4283 −1.4515 −1.4863 −1.3611 −1.3842 −1.4188 −1.4419 −1.4765
p2y(G) 1.3707 1.3939 1.4287 1.4520 1.4868 0.4183 0.4254 0.436 0.44308 0.45371
p2z(G) 0.8055 0.81912 0.8396 0.8533 0.8737 −0.3655 −0.3717 −0.381 −0.3872 −0.3965

p3x(G) 1.3844 1.4078 1.4430 1.4665 1.5017 0.8588 0.8733 0.8952 0.9097 0.93155
p3y(G) −1.3796 −1.403 −1.4380 −1.4614 −1.4965 −1.5771 −1.6038 −1.6439 −1.6707 −1.7108
p3z(G) 0.8082 0.8219 0.8424 0.8561 0.8767 1.4492 1.4737 1.5106 1.5351 1.572

p4x(G) 1.3711 1.3944 1.4292 1.4525 1.4873 0.8572 0.8717 0.8935 0.908 0.9298
p4y(G) 1.3737 1.397 1.4319 1.4552 1.4901 1.5788 1.6055 1.6457 1.6724 1.7126
p4z(G) 0.8032 0.8168 0.8372 0.8508 0.8713 1.4503 1.4749 1.5117 1.5363 1.5732

3.2. Position and Orientation Tracking of Magnet

To deal with the magnetic field information collected by magnetic sensors in simula-
tion, we established the objective function and LM algorithm in MATLAB2016 (Mathworks,
Natick, MA, USA), and the pose of the permanent magnet can be estimated. In Equations
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(2) and (9), the remanence of permanent magnet is theoretically set to 1.23 T, which means
the target remanence without magnetization error. The pose estimation results are shown
in Table 2.

Table 2. The calculation result of the poses of the permanent magnets.

Pose_1 Pose_2

rema(T) 1.18 1.20 1.23 1.25 1.28 1.18 1.20 1.23 1.25 1.28

a(mm) −0.0313 −0.0314 −0.0312 −0.0313 −0.0314 0.5380 0.5381 0.5381 0.5382 0.5380
b(mm) 0.0443 0.0442 0.0442 0.0441 0.0444 0.0063 0.0061 0.0063 0.0063 0.0062
c(mm) 12.2578 12.2578 12.2579 12.2578 12.2579 11.7935 11.7935 11.7935 11.7934 11.7935

m −0.0052 −0.0053 −0.0054 −0.0056 −0.0057 0.6561 0.6672 0.6838 0.6950 0.7117
n 0.0051 0.0051 0.0053 0.0053 0.0055 0.0005 0.0005 0.0005 0.0005 0.0005
p 0.9816 0.9982 1.0232 1.0398 1.0647 0.6849 0.6965 0.7139 0.7255 0.7429

It can be seen from Tables 1 and 2 that when the permanent magnets are in the
same pose (Pose_1 or Pose_2), the magnetic field distribution of permanent magnets with
different remanence are different. After the permanent magnet’s pose is solved by the
LM algorithm, the correct pose is estimated in the face of remanence inconsistency. The
Pose_1 is theoretically (0, 0, 12, 0, 0, 1), and poses of the permanent magnets with different
remanence obtained by the LM algorithm are approximately (−0.0313, 0.0443, 12.2578,
−0.0052, 0.0051, 1.0232). The case of Pose_2 is similar. Therefore, when the mapping
between force and location and pose of the permanent magnet is constructed, other sensors
can directly use this mapping to predict contact information.

3.3. Force and Location Estimation

The FMFTS works on the coupling between magnetic field of the permanent magnet
and deformation of the flexible substrate. In this section, we establish the coupling model
for solid mechanics and magnetic field to simulate the actual response of FMFTS with
external contact force.

3.3.1. Magnetic–Solid Coupling Model

In this paper, the polydimethylsiloxane (PDMS) is selected as the substrate. It is
a hyperelastic material, and the relationship between stress and strain is nonlinear. The Neo-
Hookean model, Ogden model, and Mooney–Rivlin two-parameter model are commonly
used hyperelastic material models [31]. Since the Mooney–Rivlin two-parameter model
can better express the hyperelastic properties of PDMS when the material is with small
strain, we choose the Mooney–Rivlin two-parameter model for finite element analysis. The
expression of strain energy density of the Mooney–Rivlin two-parameter model is:

W = C10(I1 − 3) + C01(I2 − 3) +
1
d
(J − 1)2 (11)

where W is the strain potential energy function, C10 and C01 are the material constants,
I1 and I2 are the first strain deviation invariant and the second strain deviation invariant
respectively, d is the material incompressible parameter, and J is the relevant parameter.

C10 =
E

5(1 + v)
C01 =

E
20(1 + v)

(12)

where E is the elastic modulus of PDMS, and v is the Poisson’s ratio of PDMS. The initial
bulk modulus is defined as

K =
2
d

(13)

where d = 1−2v
C10+C01

.
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PDMS can change the elastic modulus according to different ratios of its basic compo-
nents and curing agent [32], In the simulation, set E = 1.21 MPa, v = 0.49, C10 = 0.162416 MPa,
C01 = 0.040604 MPa, and K = 20.30201 MPa. The magnetic–solid coupling simulation model
for FMFTS is shown in Figure 6; the degree of mesh refinement has a great influence on
simulation accuracy, the spherical air domain is divided into finer mesh, and the grid at
the position of probes is extremely fine.
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The range of the tactile sensor can be considered as the force corresponding to the
maximum displacement at the center of the sensor; if the contact force continues to increase,
FMFTS will present different performance due to contact with the base plate, so the range
is set to 2.0358 N in this simulation. The minimum external force can be considered as the
force corresponding to the minimum change of magnetic flux at the boundary that can
be detected, which is set to 2.827 mN. It is noteworthy that the maximum and minimum
external force for FMFTS in this simulation are affected by elastic modulus and thicknesses
of the PDMS.

The magnetic flux densities under remanence of 1.23 T and 1.28 T, and contact force
of 0.2827 N, 1.1310 N, and 1.9792 N, are collected. The action area of contact force is
a circular area with diameter of 6 mm on the surface of FMFTS; within such area, forces are
applied every 2 mm and the magnetic flux densities on four probes are recorded. A total of
675 datasets were collected under remanence 1.23 T; 675 datasets were used for calibrating
and 90 datasets were used for testing. A total of 90 datasets were collected under remanence
of 1.28 T; such datasets were used to verify whether the calibration results constructed
under remanence of 1.23 T can be used for sensors with remanence of 1.28 T.

3.3.2. Force and Location Estimation Results

Under the forces of 0.2827 N, 1.1310 N, and 1.9792 N at different contact locations,
the three-axis magnetic flux densities at the four probes are generated, and the pose of the
permanent magnet under different forces can be obtained through pose estimation. We use
the data collected by the FMFTS with a remanence of 1.23 T for training to construct the
mapping between contact force and location and pose of permanent magnet; the mapping
between contact force and location and magnetic flux densities are also built for comparison.
Then, the test datasets collected by FMFTS with remanence 1.23 T and remanence 1.28 T
were used to verify the accuracy of force and location estimation.

In MATLAB, the BP model and RBF model are established by using the newff function
and the newrb function. The BP neural network parameters include hidden layer size,
activation function, and training function. The RBF neural network parameters include
spread of radial basis functions, maximum number of neurons, and all parameters are
selected through five-fold cross-validation.

The force and location estimation was evaluated in four cases:
Case 1: The training sets are acquired on FMFTS which has embedded permanent

magnet of remanence 1.23 T; BP neural network was built through calibration to represent
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the mapping between contact force and location and magnetic flux densities, namely
BP_ftp_1.23.

Case 2: The training sets are acquired on FMFTS which has embedded permanent
magnet of remanence 1.23 T; BP neural network was built through calibration to represent
the mapping between contact force and location and pose of the permanent magnet, namely
BP_ptp_1.23.

Case 3: The training sets are acquired on FMFTS which has embedded permanent
magnet of remanence 1.23 T; RBF neural network was built through calibration to represent
the mapping between contact force and location and magnetic flux densities, namely
RBF_ftp_1.23.

Case 4: The training sets are acquired on FMFTS which has embedded permanent
magnet of remanence 1.23 T; RBF neural network was built through calibration to represent
the mapping between contact force and location and pose of the permanent magnet, namely
RBF_ptp_1.23.

The neural network’s performance of the four cases is shown in Figure 7. As can
be seen from Figure 7, the performance of BP_ftp_1.23, BP_ptp_1.23, RBF_ftp_1.23, and
RBF_ptp_1.23 are 0.00011709, 0.0013538, 0.0184519, and 0.021851, respectively. The perfor-
mance of BP_ftp_1.23 is slightly better than BP_ptp_1.23, and RBF_ftp_1.23 is also slightly
better than RBF_ptp_1.23, which can be explained by the fact that the pose estimation of
permanent magnet is an optimization process and causes discontinuities between the train
data, and the RBF neural network does not perform as well as the BP neural network in this
scenario (note: “Test” in Figure 7a,b represents a part of the data extracted from the training
set to verify the performance of the network, and the specific test results are as follows).
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The force and location estimation results using testing datasets are shown in Figure 8,
and the mean absolute error (MAE) and root mean squared error (RMSE) are summarized
in Table 3. Figure 8a,b,e,f,i,j give the results for case 1, the training sets are acquired on
FMFTS with remanence of 1.23 T, Figure 8a,e,i are the test results using datasets acquired
from FMFTS with remanence of 1.23 T, Figure 8b,f,j are the test results using datasets
acquired from FMFTS with remanence of 1.28 T; BP_ftp_1.23 in Table 3 gives MAE and
RMSE in case 1. It can be seen that the mean absolute error of x, y, and F (MAE_x, MAE_y,
MAE_F) for FMFTS with remanence 1.23 T are 0.1817 mm, 0.3336 mm, and 0.0144 N,
respectively, while MAE_x, MAE_y, and MAE_F for FMFTS with remanence 1.28 T are
19.0919 mm, 15.5591 mm, and 3.0408 N, respectively. It is impossible to predict the contact
force and location acting on the tactile sensor with remanence of 1.28 T.

Table 3. Error analysis of the training result of neural networks.

Train_Model Test_re(T) MAE_x(mm) MAE_y(mm) MAE_F(N) RMSE_x(mm) RMSE_y(mm) RMSE_F(N)

BP_ftp_1.23 1.23 0.1817 0.3336 0.0144 0.28226 0.73234 0.0230
1.28 19.092 15.559 3.041 22.231 21.943 4.0066

BP_ptp_1.23 1.23 0.3369 0.3293 0.0179 0.5565 0.6497 0.0280
1.28 0.5675 0.6167 0.0299 0.8404 1.1090 0.0491

RBF_ftp_1.23 1.23 1.1853 1.2158 0.0392 1.6199 1.9133 0.0493
1.28 886.072 690.953 85.857 906.338 743.304 86.767

RBF_ptp_1.23 1.23 1.3664 1.4441 0.0565 1.9219 2.0262 0.0859
1.28 1.4633 1.7049 0.0556 1.9229 2.6503 0.0806

Figure 8c,d,g,h,k,l give the results for case 2, the training sets are acquired on FMFTS
with remanence of 1.23 T, Figure 8c,g,k are the test results using datasets acquired from
FMFTS with remanence of 1.23 T, Figure 8d,h,l are the test results using datasets acquired
from FMFTS with remanence of 1.28 T; BP_ptp_1.23 in Table 3 gives MAE and RMSE in
case 2. It can be seen that MAE_x, MAE_y, and MAE_F for FMFTS with remanence 1.23 T
are 0.3369 mm, 0.3293 mm, and 0.0179 N, respectively, while MAE_x, MAE_y, and MAE_F
for FMFTS with remanence 1.28 T are 0.5675 mm, 0.6167 mm, and 0.0299 N, respectively.
Compared with constructing the mapping relationship between contact force and location
and magnetic flux densities in case 1, establishing the relationship between contact force
and location and pose of permanent magnet in case 2 can predict contact information acting
on the FMFTS with remanence of 1.23 T and 1.28 T, which shows that the robust contact
force and location estimation method proposed in this paper is feasible. Furthermore, the
difference in estimation error under different pressures is not large. In an ideal simulation
environment, the location estimation error using the proposed algorithm is less than 1 mm,
and the force error is about 0.0282 N; the accuracy may be further improved by increasing
the number of training datasets.

Figure 8m,n,q,r,u,v give the results for case 3, the training sets are acquired on FMFTS
with remanence of 1.23 T, Figure 8m,q,u are the test results using datasets acquired from
FMFTS with remanence of 1.23 T, Figure 8n,r,v are the test results using datasets acquired
from FMFTS with remanence of 1.28 T; RBF_ftp_1.23 in Table 3 gives MAE and RMSE
in case 3. It can be seen that MAE_x, MAE_y, and MAE_F for FMFTS with remanence
1.23 T are 1.1853 mm, 1.2158 mm, and 0.0392 N, respectively, while MAE_x, MAE_y, and
MAE_F for FMFTS with remanence 1.28 T are 886.0721 mm, 690.9536 mm, and 85.8573 N,
respectively. Similarly, the contact force and location acting on the tactile sensor with
remanence of 1.28 T cannot be predicted.
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FMFTS with remanence of 1.23 T, (e,i) actual forces and estimated forces based on test datasets from FMFTS with remanence
of 1.23 T, (b) actual locations and estimated locations based on test datasets from FMFTS with remanence of 1.28 T, (f,j) actual
forces and estimated forces based on test datasets from FMFTS with remanence of 1.28 T; (c,d,g,h,k,l) case 2, (c) actual
locations and estimated locations based on test datasets from FMFTS with remanence of 1.23 T, (g,k) actual forces and
estimated forces based on test datasets from FMFTS with remanence of 1.23 T, (d) actual locations and estimated locations
based on test datasets from FMFTS with remanence of 1.28 T, (h,l) actual forces and estimated forces based on test datasets
from FMFTS with remanence of 1.28 T; (m,n,q,r,u,v) case 3, (m) actual locations and estimated locations based on test
datasets from FMFTS with remanence of 1.23 T, (q,u) actual forces and estimated forces based on test datasets from
FMFTS with remanence of 1.23 T, (n) actual locations and estimated locations based on test datasets from FMFTS with
remanence of 1.28 T, (r,v) actual forces and estimated forces based on test datasets from FMFTS with remanence of 1.28 T;
(o,p,s,t,w,x) case 4, (o) actual locations and estimated locations based on test datasets from FMFTS with remanence of 1.23 T,
(s,w) actual forces and estimated forces based on test datasets from FMFTS with remanence of 1.23 T, (p) actual locations
and estimated locations based on test datasets from FMFTS with remanence of 1.28 T, (t,x) actual forces and estimated forces
based on test datasets from FMFTS with remanence of 1.28 T.

Figure 8o,p,s,t,w,x give the results for case 4, the training sets are acquired on FMFTS
with remanence of 1.23 T, Figure 8o,s,w are the test results using datasets acquired from
FMFTS with remanence of 1.23 T, Figure 8p,t,x are the test results using datasets acquired
from FMFTS with remanence of 1.28 T; RBF_ptp_1.23 in Table 3 gives MAE and RMSE in
case 4. It can be seen that MAE_x, MAE_y, and MAE_F for FMFTS with remanence 1.23 T
are 1.3664 mm, 1.4441 mm, and 0.0565 N, respectively, while MAE_x, MAE_y, and MAE_F
for FMFTS with remanence 1.28 T are 1.4633 mm, 1.7049 mm, and 0.0556 N, respectively.
The RBF neural networks show similar assessment results, that is, if the relationship
between contact force and location and magnetic flux densities is constructed, the neural
network calibrated by the FMFTS with remanence of 1.23 T is not suitable for FMFTS with
remanence of 1.28 T due to the inconsistency of the magnetic source. After constructing
the relationship between contact force and location and pose of permanent magnet, the
influence of the inconsistency of the magnetic source is reduced, and the neural network
calibrated by the FMFTS with remanence of 1.23 T is also suitable for the FMFTS with
remanence of 1.28 T. Therefore, the contact information of the FMFTS with remanence of
1.28 T can be obtained correctly.

In brief, although the performance of BP_ptp_1.23 is slightly worse than BP_ftp_1.23,
in BP_ptp_1.23, the robust estimation method could estimate the contact information of
FMFTS with remanence of 1.28 T, while BP_ftp_1.23 cannot. Furthermore, from the error
analysis of the training results, it can be seen that the error of the test results obtained by
the BP neural network is lower than the RBF neural network in this scenario. Therefore,
case 2, namely the robust estimation of contact force and location for FMFTS considering
magnetic source inconsistency, is feasible.

4. Experimental Evaluation of Robust Force and Location Estimation Method
4.1. Experimental Setup

Similar to the above simulation, we create two FMFTSs (Sensor_1 and Sensor_2) with
the remanence of 1.046 T and 1.068 T and build the sensor calibration platform to verify
the proposed force and location estimation method. As shown in Figure 9, the fabrication
of FMFTS comprises three steps: (1) fabrication of flexible substrate; (2) fabrication of
magnetic sensors; (3) assembly.

The manufacturing process of the flexible body has several stages: (1) PDMS (Syl-
gard 184, Dow Corning) where a ratio of elastomer to curing agent of 10:1 is prepared.
After thoroughly mixing and vacuum degassing, PDMS is poured into mold 1 for vacuum
degassing and curing at room temperature; (2) the upper part of the mold is taken out
and the permanent magnet is placed into the remaining groove; (3) this is replace with
a new mold, and the PDMS liquid is poured into the new mold 2; (4) vacuum degassing:
when it is completely cured at room temperature, the shaped flexible substrate is taken out.
Four magnetic sensors (Honeywell HMC5983) are used to locate the permanent magnet.
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Since the I2C communication address of the magnetic sensor is fixed, TCA9548a is applied
to select the channel and Stm32F103 is used to collect magnet flux density data. Finally, the
flexible substrate and HMC5983 are assembled.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 9. (a) Schematic of the fabrication process; (b) flexible substrate embedded with permanent magnet of different 
remanence; (c) magnetic sensor array; (d) flexible magnetic-based-field tactile sensor prototype. 

As is shown in Figure 10, the calibration platform for FMFTS consists of the X–Y 
motion platform (DZWNX120-CD, Winner Optics, Beijing, China), voice coil motor 
(CBL35-010-71-1M3A, SMAC, Carlsbad, CA, USA), force sensor (LSZ-F02C, OBTE, 
Suzhou, China), and a 6 mm diameter loading rod. The force exerted on the tactile sensor 
can be controlled by the voice coil motor and force sensor, and the X–Y motion platform 
controls the position of the force exerted on FMFTS. 

 
Figure 10. Calibration platform of tactile sensor. 

4.2. Experimental Procedure 
The origin of the coordinate system is set at the center of the FMFTS. The external 

forces for FMFTS act between −14 mm and 14 mm with 2 mm intervals, and at each point, 
external force varies from 0 N to 4 N with 0.5 N intervals. A total of 1800 datasets were 
collected from Sensor_1, and the calibration was implemented based on datasets from 

Figure 9. (a) Schematic of the fabrication process; (b) flexible substrate embedded with permanent magnet of different
remanence; (c) magnetic sensor array; (d) flexible magnetic-based-field tactile sensor prototype.

As is shown in Figure 10, the calibration platform for FMFTS consists of the X–Y
motion platform (DZWNX120-CD, Winner Optics, Beijing, China), voice coil motor (CBL35-
010-71-1M3A, SMAC, Carlsbad, CA, USA), force sensor (LSZ-F02C, OBTE, Suzhou, China),
and a 6 mm diameter loading rod. The force exerted on the tactile sensor can be controlled
by the voice coil motor and force sensor, and the X–Y motion platform controls the position
of the force exerted on FMFTS.
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4.2. Experimental Procedure

The origin of the coordinate system is set at the center of the FMFTS. The external
forces for FMFTS act between −14 mm and 14 mm with 2 mm intervals, and at each point,
external force varies from 0 N to 4 N with 0.5 N intervals. A total of 1800 datasets were
collected from Sensor_1, and the calibration was implemented based on datasets from
Sensor_1; we randomly collected 90 datasets from Sensor_1 and Sensor_2 with different
remanence to test the proposed method. The training data and the test data are the magnetic
flux of the permanent magnet at the four three-axis magnetic sensors under different contact
information, which is converted into a pose by magnetic source tracking algorithm, then
the BP neural network built the mapping between contact force and location and pose of
the permanent magnet, namely BP_ptp_Sensor_1.

In actual measurement, the magnetic sensor will be interfered with by external mag-
netic noise. Before loading the flexible magnetic-based tactile sensor, we first need to collect
the magnetic noise in the environment, and then subtract the magnetic noise from the
training set and test set data in order to obtain a real signal.

4.3. Experimental Results and Discussion

The training process of the neural network is shown in Figure 11. Mean squared error
decreases with epoch and has little variation after 500 epochs.
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The force and location experimental estimation results using testing datasets are shown
in Figure 12, and the mean absolute error (MAE) and root mean squared error (RMSE) are
summarized in Table 4. The training sets are acquired on Sensor_1, Figure 12a–d are the
test results using datasets acquired from Sensor_1, Figure 12e–h are the test results using
datasets acquired from Sensor_2; BP_ftp_Sensor_1 in Table 4 gives MAE and RMSE. It can
be seen that the mean absolute error of x, y, and F of Sensor_1 are 0.7923 mm, 0.9889 mm,
and 0.3385 N, respectively. The mean absolute error of x, y, and F of Sensor_2 are 2.8450 mm,
2.2251 mm, and 1.2008 N, respectively, which indicates that by using the neural network
trained by Sensor_1, Sensor_2 can also estimate contact force and location. Compared with
the location error, the force error is larger.

Within the 8 mm range of the length and width of Sensor_2′s surface, the mean
absolute error of x, y, and F are 1.8207 mm, 1.8755 mm, and 0.7958 N, respectively, and
it can be seen from Figure 12h that the error near the center is smaller. The deformation
of FMFTS at the edge is small, which leads to low signal-to-noise ratio (SNR) and poor
prediction results. It is also possible that the accuracy of the 3D printing mold is not high
enough, resulting in differences in the mechanical properties of the tactile sensors. However,
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the prediction results basically meet the requirements of tactile sensing. It is possible to
improve the accuracy of contact force and position estimation by proper structure design
of the flexible substrate to increase SNR or by improving the production accuracy of the
FMFTSs to make the FMFTS’s mechanical response consistent.
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Table 4. The error analysis results of the experiment.

Train_Model Test_Model MAE_x(mm) MAE_y(mm) MAE_F(N) RMSE_x(mm) RMSE_y(mm) RMSE_F(N)

BP_ptp
Sensor_1

Sensor_1 0.7923 0.9889 0.3385 1.1293 1.3296 0.4103
Sensor_2 2.8450 2.2251 1.2008 3.5743 2.9337 1.5005

In conclusion, the mapping between contact force and location and position and
orientation of magnetic source was calibrated in one FMFTS and can be used to estimate
the external force and location for sensors with the same structure, which means that this
estimation method of contact force and location can tolerate remanence inconsistency of
magnetic source in FMFTS and improve robustness of external force and location estimation.

5. Conclusions

In conclusion, we have proposed an effective method for robust estimation of contact
force and location for the FMFTS, considering magnetic source inconsistency. Differently to
the previous research, we have improved the sensing mechanism of flexible magnetic-field-
based tactile sensor. The proposed method is evaluated in simulations and experiments.
The result of experiments is that the location error and force error of FMFTS (Sensor_2)
without recalibration are 2 mm and 1 N, respectively, which confirms that the estimation of
contact force and location for FMFTS with same structure and different remanence could
reach acceptable accuracy, which depends on single calibration. This method improves
the robustness between tactile sensors, and provides convenience for large-scale use and
replacement of damaged tactile sensors. The tactile sensor can adjust the shape and elastic
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modulus of the flexible medium according to different application scenarios and achieve
the purpose of predicting external contact information through the data-driven methods.

In the future, we will consider the influence of shear force, prove that this method is
also feasible under shear force, and extend its application to complex situations such as
multipoint contacts. When estimating the pose of the permanent magnet, we only use the
LM algorithm to solve the problem; however, a dynamic tracking method such as Kalman
filter or particle filter will be used to locate the permanent magnet in order to reduce the
influence of magnetic noise.
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