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Abstract: Skeleton-based human action recognition has made great progress, especially with the
development of a graph convolution network (GCN). The most important work is ST-GCN, which
automatically learns both spatial and temporal patterns from skeleton sequences. However, this
method still has some imperfections: only short-range correlations are appreciated, due to the limited
receptive field of graph convolution. However, long-range dependence is essential for recognizing
human action. In this work, we propose the use of a spatial-temporal relative transformer (ST-RT) to
overcome these defects. Through introducing relay nodes, ST-RT avoids the transformer architecture,
breaking the inherent skeleton topology in spatial and the order of skeleton sequence in temporal
dimensions. Furthermore, we mine the dynamic information contained in motion at different scales.
Finally, four ST-RTs, which extract spatial-temporal features from four kinds of skeleton sequence,
are fused to form the final model, multi-stream spatial-temporal relative transformer (MSST-RT), to
enhance performance. Extensive experiments evaluate the proposed methods on three benchmarks
for skeleton-based action recognition: NTU RGB+D, NTU RGB+D 120 and UAV-Human. The results
demonstrate that MSST-RT is on par with SOTA in terms of performance.

Keywords: action recognition; 3D skeleton; transformer; attention; spatial-temporal

1. Introduction

Human action recognition attracts extensive attention due to its important application
prospects in many fields, such as healthcare assistance, human–computer interaction and
autonomous driving. Many exciting developments have taken place in the study of this
research topic in recent years. A consensus has been reached that the key to human action
recognition is learning how to capture sufficient spatial-temporal information.

Early research in this field was mostly based on RGB videos. However, RGB videos
are often affected by the variations in illuminations, changes in camera viewpoints and
background noise. All of these are obstacles in the process of extracting discriminative
features. Compared with RGB data, the skeleton is free from these difficulties; it also has
fewer restrictions in terms of data size. For example, it provides a compact form to represent
dynamic information. These advantages make it possible to design lightweight models
based on skeleton data. Meanwhile, with the development of human motion estimation
technologies, such as advanced human pose estimation algorithms [1] and multimodal
sensors [2], skeleton data are easier and cheaper to obtain than before, which inspires
researchers to explore various approaches based on skeleton data for action recognition. In
this paper, the action recognition research is based on 3D skeleton data.

To extract information from skeleton data, researchers have mainly explored four
aspects: handcrafted-features-based methods, convolution neural-network-based methods,
recurrent neural-network-based methods and graph convolution-network-based methods.
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In recent years, the graph convolution network (GCN) has become the most widespread
method, with the characteristics of low computation and high accuracy. Although these
methods have achieved great success in terms of performance, there some defects still
exist: (1) Most human actions are performed by a collaborative effort among the joints
that not linked in the human skeleton. For example, the left hand and right hand are not
linked, but they have a strong correlation in the action of “clapping”. Graph convolutions
only gather information from the local neighbor joints of two hands, respectively, but
neglect the relationship between hands. Applying graph convolution repeatedly would
obtain a multi-hop dependence between the two hands; however, this would occur at
the expense of increasing computational complexity and would make optimization more
difficult. (2) It is hard to achieve long-range dependence utilizing only graph convolution
in the model, although it plays an important role in temporal dimension. (3) The rich
information derived from different scales of motion can effectively supplement each other,
but this is usually neglected in the research.

In this paper, we propose a novel mechanism with a lightweight transformer to
overcome the first and second limitations mentioned in the previous paragraph, and
call it a relative transformer. The relative transformer mechanism is employed in spatial
skeleton-based architecture to build bridges between two distant joints and propagate
signals. It is also employed in the temporal dimension to capture long-range interactions
between two distant frames. As a consequence, the model is named the spatial-temporal
relative transformer (ST-RT). For the third defect, we also propose an effective dynamic
representation which fuses three different scales of motion and raw position to obtain
richer information from a skeleton sequence in ST-RT.

The overall architecture of the proposed MSST-RT is shown in Figure 1. As well as the
joint information, the bone information derived from the joints’ positions is also learned
by ST-RT. Furthermore, the skeleton sequence, obtained by different sampling strategies,
provides supplementary information through model training, e.g., 10 and 20 frames are
sampled from the joint sequence and bone sequence. Four ST-RTs are combined to extract
features from two joint sequences and two bone sequences. We name this the multi-stream
spatial-temporal relative transformer (MSST-RT). Significantly, batch normalization is
adopted instead of layer normalization in relative transformer to obtain a faster training
time and higher performance.

ST-RT

ST-RT

ST-RT

ST-RT

⨁ Prediction

Seg=10

Seg=10

Seg=20

Seg=20

Bone sequence

Joint  sequence

Skeleton  sequence

Figure 1. Illustration of the overall architecture of the proposed MSST-RT. The sum of all scores from
four ST-RTs is treated as the final prediction.

There are five main contributions of this work, summarized as follows:

• We propose an MSST-RT model comprising four ST-RTs. Each of them extracts features
from a corresponding skeleton sequence, which complement each other. It is worth
noting that MSST-RT eschews recurrence and graph convolution and instead relies
entirely on a relative transformer mechanism to learn long-distance dependencies.
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• A multi-scale dynamic representation (DR) combines various scale-of-motion features
from one skeleton sequence.

• A lightweight relative transformer module is designed for spatial and temporal
modeling. Regarding the spatial dimension, a spatial relative transformer module
(SRT) is introduced to establish long-range dependencies while maintaining the origin
skeleton topology. In the temporal dimension, the temporal relative transformer
module (TRT) studies long-range interaction between nonadjacent frames, with the
order of skeleton sequence remaining unchanged.

• Attention responses in SRT and TRT are visualized to show the effects of the attention
mechanism. This proves that the proposed ST-RT pays great attention to some nodes
and the distribution of attention is consistent with human perception.

• Our MSST-RT achieves state-of-the-art on three benchmark datasets, i.e., NTU RGB+D,
NTU RGB+D 120 and UAV-Human, in action recognition based on skeleton.

2. Related Work
2.1. Skeleton-Based Action Recognition

Action recognition based on skeleton can be summarized into two major categories, i.e.,
traditional methods [3–5] that use hand-crafted features and deep learning methods. In recent
years, deep neural networks have gained increasing favor due to their remarkable performance
in the following: (1) RNN-based methods [6–10] model the contextual information by splicing
the coordinates of the key points at each moment into a vector and concatenating all vectors for
each frame. For example, H. Wang and W. Liang introduce a two-stream RNN [7] architecture
which incorporates both spatial and temporal RNN networks for skeleton based action
recognition. The HBRNN-L model [9] decompose the human skeleton into five parts, and
then feed them to five bidirectional RNN subnets. (2) CNN-based methods [11–15] usually
reconstructed the skeleton sequenceto a series of pseudo-images to obtain the spatial cues.
Wang et al. [16] propose a novel CNN network, which represents the spatial configuration and
dynamic information of a joint trajectory as three texture images by color encoding. (3) GCN-
based methods [17–19] preserve the inherent topological graph data struct of the skeleton
by treating joints and bones as vertices and edges. Taking advantage of the graph data
struct, GCN-based methods build operators in the non-Euclidean space and outperform
the other two approaches. In particular, the ST-GCN model proposed by Yan et al. [17] is
the first construct, a spatial-temporal graph that offers a new partitioning strategy.A lot of
other GCN-based methods regard it as a baseline, or improve on it.

2.2. Transformer

Transformer [20] is a novel architecture, which has now become the standard for
NLP tasks. It handles long-range dependencies by relying on self-attention rather than
sequence-aligned RNNs or convolution. Recently, many transformer-based models have
been proposed to improve the original architecture, e.g., Set Transformer [21], Routing
Transformer [22] and Star-Transformer [23]. Most of them aim to overcome the compu-
tation complexity and large memory overhead. In addition to being developed for NLP,
transformers became a research hotspot in the fields of Computer Vision. Carion et al. pro-
posed a Detection Transformer (DETR) [24], which is the first object detection framework
that combines the convolutional neural network with a transformer. Vision Transformer
(ViT) [25] utilizes transformer architecture without CNN and it outperforms the state-
of-the-art convolutional network in various image classification tasks. In our work, the
model only consists of relative transformer modules. Inspired by the Star-Transformer, the
proposed relative transformer is a variation based on standard transformer architecture
designed for skeleton action recognition.

3. Background

The transformer model mainly includes an encoding component and decoding com-
ponent. Our work is concerned with the encoding part, which is broken down into a
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self-attention layer and feed-forward neural network layer. This section will briefly review
the relevant knowledge.

3.1. Attention in the Encoding

In NLP tasks, each word has a query vector q, a key vector k and a value vector v
to calculate a score, which represents the effect of other words on the input sentence on
the encoding of the word. The score is calculated by taking the dot product sij = qi · kT

j i,
j = 1, · · · , n. The output of the self-attention layer is obtained by multiplying each value
vector by the score and summing up the weighted value vectors. While packing all query
vectors into a matrix Q, all key vectors into a matrix K and all value vectors into a matrix
V, the attention function is defined as:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

where 1√
dk

leads to a more stable gradient. Furthermore, the “multi-headed” attention

initializes multiple sets of weight matrices randomly and obtains different scores. Concate-
nating the scores as the result helps the network capture richer features.

3.2. Feed-Forward Neural Network in the Encoding

In addition to the attention layer, the encoder also contains a feed-forward neural
network, which consists of two linear transformations and an ReLU activation:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

The network projects the refined vector, which was obtained from multi-head atten-
tion, into a larger space to improve the ability to capture information. We also apply it in
our relative transformer network.

4. Multi-Stream Spatial–Temporal Relative Transformer Network (MSST-RT)

In order to solve the limitations of the small receptive field in traditional convolution,
a Transformer is introduced to the skeleton-based action recognition models instead of
graph convolution. Since the graph is in an unordered sequence, we propose a new
transformer architecture, named the relative transformer to keep the topology of the graph
with lower complexity. The proposed multi-stream spatial-temporal relative transformer
network (MSST-RT) consists of four spatial-temporal relative transformer networks (ST-
RT). Four kinds of skeleton sequence, including a joint sequence of 10 sampled frames, a
joint sequence of 20 sampled frames, a bone sequence of 10 sampled frames and a bone
sequence of 20 sampled frames (shown in Figure 1). They are fed into four ST-RTs for
feature extraction, fusion and prediction.

In this section, we will introduce our model ST-RT, where relative transformers are
employed in both space and temporal dimensions; the model architecture is illustrated
in Figure 2. It consists of three modules: dynamics representation (DR), spatial relative
transformer (SRT) and temporal relative transformer (TRT). Meanwhile, each relative
transformer module contains three node update blocks and each block is subdivided
into two sub-blocks: joint nodes update block and relay node update block. The feed-
forward neural network (FFN) is connected behind them in both a spatial and temporal
relative transformer.
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Figure 2. Illustration of the spatial-temporal relative transformer (SR-RT). The skeleton data are
processed by three modules and then fed into the fully connected layer to predict the score for each
action class.

4.1. Dynamics Representation (DR)

Temporal difference operations are always adopted for motion extraction in action
recognition, such as TEINet [26] and STM [27]. In action recognition, all the 3D positions
of skeleton joints in NTU60 and NTU120 datasets are stored, and UAV-Human stores
2D positions. Figure 3 shows the 3D positions of skeleton joints. A joint in frame a is
represented as Ja

i = (xa
i , ya

i , za
i ), the same joint in frame b(b > a) is Jb

i = (xb
i , yb

i , zb
i ). The

temporal difference is the subtraction between the same joint in the two frames, which
can be denoted as (xb

i − xa
i , yb

i − ya
i , zb

i − za
i ).In view of the significant motion variations in

actions, we combine different scale motions to model the temporal information of action,
as shown in Figure 3. This operation improves the generalization of our network, as the
fixed motion focuses on different ranges of motion while the adaptive motion focuses on
different durations.

··· ···

Convolution layer
Relu layer

clip1 clip2 clip3 clip4 clipT - 3 clipT - 2 clipT - 1 clipT

··· ···

1x1xC
1x1xC1

concat

1x1xC
1x1xC2

1x1xC
1x1xC3

1x1xC
1x1xC4

I Ima Ims Iml

F Fma Fms Fml

Z

I1 I2 I3 I4 IT - 3 IT - 2 IT - 1 IT

Iorigin

Inew

Sparse Sampling

Difference 

!! !"

(#!", %!", &!") (#!#, %!#, &!#)

(#!#− #!$, %!# − %!$, &!# − &!$)

Figure 3. Illustration of dynamics representation (DR). There are four streams of skeleton information
embedded into a higher dimension by the embedding block and then concatenated as an input of the
spatial relative transformer. Each block consists of two convolution layers and two activation layers.

In more detail, we divide the original sequence Iorigin = [I1, · · · , IF] into T equal clips
and randomly sample one frame from each clip to form a new sequence
Inew = [I1, · · · , IT ] in order. The original sequence Iorigin is either a joint sequence or
bone sequence. The bone extractor proposed by Shi et al. [28] is applied to datasets to
obtain bone information, which ensures that the representation of both the bone sequence
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and joint sequence are exactly the same. I represents the row positions of all joint ponits in
single frame. The motion is computed by taking the difference of each joint node Jot

i (Jnt
i)

between two frames: Jot
i denotes the i-th joint node in frame t of Iorigin and Jnt

i denotes
the i-th joint node in frame t of Inew. The adaptive motion Ima is the difference between
consecutive frames in Inew, which represents different scales of motion information in the
unequal video:

Ima = {I1
ma, I2

ma, · · · , IT
ma} (3)

It
ma = {Jnt+1

1 − Jnt
1, Jnt+1

2 − Jnt
2, · · · , Jnt+1

N − Jnt
N} t = 1, 2, · · · , T (4)

where It
ma denotes the adaptive motion of frame t in the new sequence. Note that although

the difference is between the adjacent frames in Inew, the distance between these two frames
depends on their location of Iorigin, which is interconnected with the length of the skeleton
sequence. Hence, each skeleton sequence obtains an adaptive scale motion based on length.

Furthermore, there are two types of fixed motion: short-scale Ims and long-scale Iml .
The function is expressed in the following:

Ims = {I1
ms, I2

ms, · · · , IT
ms} (5)

Iml = {I1
ml , I2

ml , · · · , IT
ml} (6)

It
ms = {Jo f+3

1 − Jo f
1 , Jo f+3

2 − Jo f
2 , · · · , Jo f+3

N − Jo f
N} t = 1, 2, · · · , T (7)

It
ml = {Jo f+6

1 − Jo f
1 , Jo f+6

2 − Jo f
2 , · · · , Jo f+6

N − Jo f
N} t = 1, 2, · · · , T (8)

where It
ms denotes the short motion of frame t in the original sequence and It

ml is the
long motion of frame t in the original sequence. f represents the frame number in the
original video.

Finally, the row position and three different types of motion are embedded into the
high-dimension tensor, i.e., Ft, Ft

ma, Ft
ms and Ft

ml , and concatenate them.

Zt = concat([Ft, Ft
ma, Ft

ms, Ft
ml ]) = {Z

t
1, Zt

2, · · · , Zt
N} (9)

Z = {Z1, Z2, · · · , ZT} (10)

where Zt
i , Zt and Z are the dynamic representations of the i-th joint node of frame t, the

t-th frame and the new sequence, respectively.
The embedding block consists of two convolution layers and two activation layers, as

shown in Figure 3. These blocks extract features from 2D/3D position and motion tensors.
The size of the convolution kernel is explained in Section 5.2.

4.2. Spatial Relative Transformer (SRT)
4.2.1. Architecture

Different from the standard transformer, we prepend a virtual node to the graph of
skeleton as the input. The virtual node gathers the global information from each joint node
and scatters the information to all joint nodes; we named it the spatial-relay node. For the
joint node and sptial-relay node, there are two corresponding connections: the inherent
connections and the virtual connections.

Spatial Inherent Connections

As shown in Figure 4a, we establish inherent connections for all adjacent joints that
have bone connections to preserve the inherent graph topology in skeletons. Such con-
nections with prior knowledge allow each joint node to gather the local information from
its adjacent joint nodes. Meanwhile, they enable joints to obtain more direct information
from neighbors than non-adjacent joints, consistent with the general perception: neigh-
bor joints are generally more important. A skeleton graph with n joint nodes has n− 1
inherent connections.
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Figure 4. Illustration of the update blocks in a spatial relative transformer (SRT). The graph structure
in SRT is described in (a). Updating operates on each joint node by obtaining local information
from adjacent joint nodes and non-local information from the spatial-relay node in (b). Spatial-relay
nodes are updated by scoring the contribution of each node, including spatial joint nodes and the
spatial-relay node in (c).

Spatial Virtual Connections

The connections between every joint node and spatial-relay node are named after
virtual connection (see in Figure 4a). Through the virtual connections, the sptial-relay node
captures the global composition relationship; therefore, each joint node can obtain the
information between the non-adjacent joint nodes. A skeleton graph with n joint nodes
has n virtual connections. The combination of inherent and virtual connections makes the
relative transformer obtain both local and global information. Compared with the standard
transformer, the number of connections includes inherent and virtual connections. As a
consequence, the model establishes a long-range dependency with low computational
efficienvy and memory overhead.

4.2.2. Implementation of SRT

In the spatial relative transformer model, each frame has its own relative transformer
and we look at the model within one single frame. The model input Jgraph = {Jt

1, Jt
2, · · · , Jt

N}
is a sequence of joint nodes at time t, where N is the number of nodes in this frame. BJt

i
is a

set which contains the label of the adjacent joint nodes of Jt
i . Each node Jt

i (Rt) has a query
vector qt

i(q
t
r), a key vector kt

i(k
t
r) and a value vector vt

i(v
t
r).

Spatial Joint Nodes Update Block (SJU)

For each joint node, we calculate the strength of the correlations between them and
their adjacent joint nodes (including the neighbor nodes Jt

BJt
i

, the relay node Rt and itself Jt
i )

by taking the key dot product with the query vector, as shown in equation:

αt
ij = qt

i · kt
j
T , i ∈ N, j ∈ [i; BJt

i
; r] (11)

where αt
ij represents the importance of node j on node i. Each neighbor node value vector

vt
j is multiplied by the corresponding score αt

ij and added up to update the joint node, as
shown below:

Jt
i = ∑

j
so f tmaxj(

αt
ij√
dk

)vt
j, i ∈ N, j ∈ [i; BJt

i
; r] (12)
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where Jt
i is the updated result, aggregating local and global information. dk is the channel

dimension of the key value (shown in Figure 4b).
In the model implement, the computations are implemented in matrix form. First, the

qt
i , kt

j and vt
j vectors are packed into Qt, Kt and Vt. Matrix Qt ∈ RC×1×N contains all joints’

query vectors for a single skeleton. Both matrix Kt ∈ RC×A×N and Vt ∈ RC×A×N contain
all key vectors and value vectors, which correspond with an adjacent node matrix Ma (the
adjacent node matrix will be introduced in Section 4.4). C denotes the feature dimension;
N is the number of joints in one single skeleton; A represents the maximum number of
adjacent nodes. The attention in matrix form is defined as follows:

Att(Qt, Kt, Vt) = ∑
i∈A

(so f tmax(
mask(Qt ◦ Kt)√

dk
) ◦Vt) (13)

where ◦ is a Hadamard product and the mask operation removes the zeros taken by the
padding operation.

Spatial Relay Node Update Block (SRU)

To ensure that the spatial-relay node better aggregates the information of all joint
nodes, we also apply a transformer (see in Figure 4c). The importance of each joint node
αt

rj is computed by the query vector qt
r and the key vector kt

j , as shown in the following:

αt
rj = qt

r · kt
j
T , j ∈ [r; N] (14)

The relay node Rt is updated by:

Rt = ∑
j

so f tmaxj(
αt

rj√
dk

)vt
j, j ∈ [r; N] (15)

For the matrix key, all key vectors kt
j and value vectors vt

j are packed into matrix

Kt ∈ RC×L and Vt ∈ RC×L, respectively. The attention in matrix form is defined as follows:

Att(qt
r, Kt, Vt) = so f tmax(

qt
r · Kt
√

dk
) · (Vt)T (16)

where qt
r ∈ R1×C is the spatial relay node, · denotes the matrix product.

By alternately updating the joint nodes and the relay node, the spatial relative trans-
former will capture all the local and non-local information for an input graph. The overall
update algorithm of the SRT is shown in the Algorithm 1.

4.3. Temporal Relative Transformer (TRT)

After designing a spatial relative transformer for each skeleton frame, we then formu-
late a temporal relative transformer to the skeleton sequence. Similar to the spatial relative
transformer, the temporal relative transformer also consists of inherent connections and
virtual connections by introducing a temporal-relay node.

Temporal Inherent Connections

Along the temporal dimension, the same joints across consecutive frames are treated
as an input sequence into the model. Aside from the same joint nodes used between
the adjacent, the joint nodes in the first and last frame are also connected, constituting a
ring-shaped structure, as depicted in Figure 5d. A sequence formed by n nodes contains n
inherent connections.
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Algorithme 1 : The update of spatial relative transformer

Input : Embedded skeleton feature Zt
1, Zt

2, · · · , Zt
N

Output : The joint nodes (Jt
1)

L, (Jt
2)

L, · · · , (Jt
N)

L and relay node (Rt)L after L
updates

1 // Initialization
2 (Jt

i )
0, (Jt

i )
0, · · · , (Jt

N)
0 ← Zt

1, Zt
2, · · · , Zt

N
3 (Rt)0 ← average(Zt

1, Zt
2, · · · , Zt

N)
4 for l ← 1 to L do

5 // Update the spatial joint nodes
6 for i← 1 to N do
7 (Jt

i )
l = SJU((Jt

1)
l−1, (Jt

2)
l−1, · · · , (Jt

N)
l−1, (Rt)l−1)

8 end
9 (Jt

1)
l , (Jt

2)
l , · · · , (Jt

N)
l = FFN((Jt

1)
l , (Jt

2)
l , · · · , (Jt

N)
l)

10 // Update the spatial relay node
11 (Rt)l = SRU((Rt)l−1, (Jt

1)
l , (Jt

2)
l , · · · , (Jt

N)
l)

12 (Rt)l = FFN((Rt)l)
13 end

Temporal joint nodes 
update block

Temporal relay node 
Update block

!(#!, %!, &!)
(
"
)*+,-./(## 0 %"$)&"

(a) (b) (c)

(d)

Virtual connection 
Inherent connection 

Relay node 
Joint node 

The computed 
joint node 

1%(#%, %%, &%)

1#(##, %#, &#)

1&(#&, %&, &&)

!(#!, %!, &!)

1'(#', %', &')

(
"
)*+,-./(#! 0 %"$)&"

Figure 5. Illustration of the update blocks in temporal relative transformer (TRT). The same joint
nodes in all sampled skeleton are connected in order and the joint nodes in the first and last frame are
also connected in (d). This approach constitutes a ring-shaped structure, as shown in (a). Furthermore,
each joint node and the temporal-relay node are updated by TJU in (b) and TRU in (c), respectively,
similar to the methods in SRT.

Temporal Virtual Connections

In the temporal relative transformer, each virtual connection links a joint node to
the temporal-relay node, similar to the operation in spatial relative transformer. Hence, a
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sequence which contains n nodes has n virtual connections, as shown in Figure 5a. In a
word, temporal relative transformer can capture the relationship between adjacent frames
by the inherent connections, and the long-range relationship is captured by the virtual
connections. This means that the semantic compositions are divided between the inherent
connections and virtual connections, which enables the model to work without heavy
pre-training. Furthermore, it reduces the number of connections from n2 to 2n, where n is
the skeleton sequence length.

4.3.1. Implementation of TRT

In the temporal relative transformer model, each node is considered independently.
As a result, the model is applied to the sequence J = {J1

v , J2
v , · · · , JT

v }, which represents the
same joint node from all frames in the sampled sequence. Each node Ji

v(Rv) consists of a
query vector qi

v(qr
v), a key vector ki

v(kr
v) and a value vector vi

v(vr
v).

Temporal Joint Nodes Update Block (TJU)

As shown in Figure 5b, the joint node Ji
v is updated by the relay node rv, the same joint

node in neighbor frames (Ji−1
v , Ji+1

v ) and itself. Their score α
ij
v is expressed in the following:

α
ij
v = qi

v · k
j
v

T
, i ∈ T, j ∈ [i− 1; i; i + 1; r] (17)

where α
ij
v represents the importance of the node in j-th frame on the same node in i-th

frame.The joint nodes Ji
v are updated by:

Ji
v = ∑

j
so f tmaxj(

α
ij
v√
dk

)vj
v, i ∈ T, j ∈ [i− 1; i; i + 1; r] (18)

For the matrix key, all query vectors qi
v are packed into matrix Qv ∈ RC×1×T , all key

vectors kj
v are packed into matrix Kv ∈ RC×B×T and all key vectors vj

v are packed into
matrix Vv ∈ RC×B×T . B is the total number of j. The attention in matrix form is defined
as follows:

Att(Qv, Kv, Vv) = ∑
i∈B

(so f tmax(
Qv ◦ Kv√

dk
) ◦Vv) (19)

where ◦ denotes Hadamard product.

Temporal Relay Node Update Block (TRU)

The information of all the frames is aggregated to the temporal-relay node in Figure 5c
by scaled dot-product attention, as expressed in the following:

α
rj
v = qr

v · k
j
v

T
, j ∈ [r; T] (20)

Rv = ∑
j

so f tmaxj(
α

rj
v√
dk

)vj
v, j ∈ [r; T] (21)

where α
rj
v is the attention score and 1√

dk
is a scaling factor. Rv denotes the updated

relay node.
For the matrix key, all key vectors kj

v and value vectors vj
v are packed into matrix

Kv ∈ RC×T and Vv ∈ RC×T, respectively. The attention in matrix form is defined as follows:

Att(qr
v, Kv, Vv) = so f tmax(

qr
v · Kv√

dk
) · (Vv)

T (22)

where qr
v ∈ R1×C is the temporal relay node, · denotes matrix product.
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By alternately updating the relay node and the same joint node on all frames, the
temporal relative transformer finally captures all the relationships in an input frame
sequence. The overall update algorithm of the TRT is shown in Algorithm 2.

Algorithme 2 : The update of temporal relative transformer

Input : Embedded skeleton feature Z1
v , Z1

v , · · · , ZT
v

Output : The joint nodes (J1
v)

L, (J2
v)

L, · · · , (JT
v )

L and relay node (Rv)L after L
updates

1 // Initialization
2 (J1

v)
0, (J2

v)
0, · · · , (JT

v )
0 ← Z1

v , Z2
v , · · · , ZT

v
3 (Rv)0 ← average(Z1

v , Z2
v , · · · , ZT

v )
4 for l ← 1 to L do

5 // Update the temporal joint nodes
6 for i← 1 to T do
7 (Ji

v)
l = TJU((J1

v)
l−1, (J2

v)
l−1, · · · , (JT

v )
l−1, (Rv)l−1)

8 end
9 (J1

v)
l , (J2

v)
l , · · · , (JT

v )
l = FFN((J1

v)
l , (J2

v)
l , · · · , (JT

v )
l)

10 // Update the temporal relay node
11 (Rv)l = TRU((Rv)l−1, (J1

v)
l , (J1

v)
l , · · · , (JT

v )
l)

12 (Rv)l = FFN((Rv)l)
13 end

4.4. Detail of SRT and TRT

Given an input tensor of shape (B, C, V, T), where B is the number of batch sizes, C is
the channel size of dynamic representation, V is the number of joint nodes in a skeleton
and T is the number of frames in new sequence. As shown in Figure 6, we move the T
dimension into the B dimension to get the new shape (B× T, C, V, 1) in SRT module and
move the V dimension into the B dimension to obtain the new shape (B×V, C, T, 1) in the
TRT module. The former implements the transformer on each frame independently, while
the latter applies the transformer separately on each joint along the time dimension.

In a skeleton, each joint node generally has an unequal number of adjacent nodes.
To solve this problem, we pad zeros to the nodes whose adjacent nodes are less than A.
A denotes the maximum number of adjacent nodes. By doing this, we obtain an adjacent
node matrix Ma ∈ RN×A, where N denotes the number of joint nodes in one skeleton. This
operation is contained in step “neighbor” only in the SRT module, as shown in Figure 4b.
Since these padding nodes are meaningless, we use a mask before the SoftMax operation,
so that the attention mechanism avoids them.

Otherwise, multi-head attention with Nh heads is applied to obtain richer information.
The formula for attention translates into the following form:

MultiHead(Q′, K′, V′) = Concat(head1, · · · , headN) (23)

headi = so f tmax(
(Q′WQ

i )(K′WK
i )

T√
di

k

)V′WV
i , i ∈ [1, Nh] (24)

X = X′W
X
i , X ∈ {Q, K, V} (25)

where Q′, K′, V′ is the input matrixes, and WQ
i , WK

i , WV
i are learnable parameter matrices.

di
k is the channel dimension of K for headi.
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Figure 6. Illustration of the detail of the SRT module and TRT module. The tensor shapes with black
font are for the SRT module and the blue are for the TRT module. It can be seen that the “mask”
operation is only employed in SRT. In the SRT (TRT) module, the “neighbor” operation finds the
adjacent nodes for each node according to Figures 4b and 5b .

5. Experience

In this section, we evaluate the performance of the proposed MSST-RT on three
large-scale skeleton datasets, namely, NTU RGB+D [29], NTU RGB+D 120 [30] and UAV-
Human [31]. Extensive ablation studies are conducted to validate the contributions of
different components in our model. Finally, we visualize the attention probabilities in SRU
and TRU block to prove the effectiveness of the proposed ST-RT model.

5.1. Datasets
5.1.1. NTU RGB+D

The data in NTU RGB+D are collected in the lab environment by three Microsoft
Kinect v2 cameras, which are widely used for skeleton-based action recognition tasks.
They contain 56,680 skeleton sequences performed by 40 subjects, covering a total of
60 action classes. Each sequence contains, at most, two subject skeletons and each skeleton
is composed of 25 joints. As the authors of this dataset recommended, we used two
evaluation protocols, namely cross-subject (CS) and cross-view (CV). In the CS setting,
20 subjects were used for training and the rest for testing. In the CV setting, the sequences
captured by camera 2 and camera 3 were used for training while the rest were used
for testing.

5.1.2. NTU RGB+D 120

NTU RGB+D 120 is an extension of NTU RGB+D, whose action classes are increased
to 120, subjects are increased to 106 and sequences are increased to 114,480. There are
also two benchmarks, namely, cross-subject (C-subject) and cross-setup (C-setup). In the
C-subject setting, 53 subjects are used for training and the rest for testing. In the C-setup
setting, the dataset is divided by the parity of the setup IDs into two group, with one used
for training and another used for testing.

5.1.3. UAV-Human

UAV-Human is a new dataset which is of significance fo practical UAV application
scenarios. This dataset covers different types of human behavior and is collected by a flying
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UAV in multiple urban and rural districts in the day and night. It contains 155 activity
classes in six different modalities including RGB, depth, IR, fisheye, night-vision, and
skeleton sequences. There are 22,476 frames with the 2D positions of 17 major key-points of
the human body for skeleton-based recognition, 16,169 frames for training and 6307 frames
for testing.

5.2. Implementation Details

All experiences are performed on the Pytorch platform. Similar to [20] , we used the
Adam optimizer with β = [0.9, 0.98] and ε = 10−9. Moreover, a two-phase training strategy
was utilized to make the model convergence faster and more stable. The gradual warmup
strategy linearly increased the learning rate from 4× 10−7 to 0.0005 for the first training
phase (the first 700 steps), while natural exponential decay with the weight decay of 0.9996
proportionally decreased the learning rate for the second phase. During training, the batch
sizes for NTU60, UAV-Human and NTU120 were 64, 64 and 100, respectively, and the
total training epochs was set to 30. Label smoothing of value εls = 0.1 was employed for
all experiences.

In terms of data processing, the original skeleton coordinates of each frame were
replaced with its displacement relative to the first frame. The actions, which contained
two skeletons, such as hugging, were divided into two sequences so that each sequence
contained only one. Moreover we employed data argumentation by randomly rotating the
3D skeletons to create more variational samples, which could improve the generalization
ability of the network.

Raw position, short motion, long motion and adaptive motion were embedded from
dimension space 2 (for UAV-Human) or 3 (for NTU and NTU120) to a dimension space of
(C) 64 by the first convolution in all the experiments. Through the second convolution, they
were embedded from a space of dimension (C) 64 to a space of dimension (C1, C2, C3, C4)
256, 256, 128 and 128, respectively. Note that the weights of the convolution layers are not
shared among them.

5.3. Comparison to State of the Art

The performance of the proposed MSST-RT is compared with other state-of-the-art
methods on the NTU60 , NTU120 and UAV-Human datasets in Tables 1–3, respectively.
The contents of the “ST-RT()” brackets represent the number of sampled frames (10 or 20)
and the type of input skeleton data (joint or bone), respectively.

Table 1. Performance comparison on NTU RGB+D.

Methods Year CS(%) CV(%)

HBRNN-L [9] 2015 59.1 64.0
Part-Aware LSTM [29] 2016 62.9 70.3

ST-LSTM+Trust Gate [32] 2016 69.2 77.7
Two-stream RNN [7] 2017 71.3 79.5

STA-LSTM [33] 2017 73.4 81.2
VA-LSTM [34] 2017 79.4 87.6
ST-GCN [17] 2018 81.5 88.3

DPRL+GCNN [19] 2018 83.5 89.8
HCN [35] 2018 86.5 91.9

AS-GCN [36] 2019 86.8 94.2
TS-SAN [37] 2020 87.2 92.7

ST-RT(seg = 10, joint) - 86.20 91.03
ST-RT(seg = 10, bone) - 85.10 90.51
ST-RT(seg = 20, joint) - 86.44 92.46
ST-RT(seg = 20, bone) - 85.61 90.61

MSST-RT - 88.43 93.21
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As shown in Table 1, MSST-RT achieves a good performance, with 88.43% and 93.21%,
respectively, for Cross Subject (CS) and Cross View (CV) settings of NTU RGB+D 60. It
is worth noting that STA-LSTM and TS-SAN both adopt the attention mechanism, which
is similar to the model idea that we proposed. The difference is that STA-LSTM uses
LSTM in addition to the attention mechanism, while our proposed model only uses the
attention mechanism. Moreover, our model outperforms this model by 14.96% with CS and
12.0% with CV. Cmparing our model with TS-SAN, the attention mechanisms in ST-RT are
employed not only between video frames, but also between the joint nodes of the skeletons.
Our model outperforms it for 1.23% with CS and 0.51% for CV.

Table 2. Performance comparison for NTU RGB+D 120.

Methods Year CS(%) CV(%)

Part-Aware LSTM [29] 2016 25.5 26.3
ST-LSTM + Trust Gate [32] 2016 55.7 57.9

GCA-LSTM [8] 2017 58.3 59.2
Two-Stream GCA-LSTM [38] 2017 61.2 63.3

RotClips+MTCNN [39] 2018 64.6 66.9
SGN [40] 2020 79.2 81.5

ST-RT(seg = 10, joint) - 76.22 80.26
ST-RT(seg = 10, bone) - 75.09 78.37
ST-RT(seg = 20, joint) - 76.67 79.58
ST-RT(seg = 20, bone) - 76.45 76.85

MSST-RT - 79.33 82.30

As shown in Table 2, the proposed MSST-RT achieves the best performance, with
79.33% for the C-subject setting and 82.30% for the C-setup setting. Most of the methods
we compare are reported in [22].

Table 3. Performance comparison on UAV-Human.

Methods Year Accuracy (%)

ST-GCN [17] 2018 30.25
DGNN [18] 2019 29.90

2s-AGCN [28] 2019 34.84
HARD-Net [41] 2020 36.97
Shift-GCN [42] 2020 37.98

ST-RT(seg = 10, joint) - 36.83
ST-RT(seg = 10, bone) - 35.86
ST-RT(seg = 20, joint) - 38.73
ST-RT(seg = 20, bone) - 37.18

MSST-RT - 41.22

As shown in Table 3, the proposed MSST-RT achieves the best performance, with
41.12%, and outperforms the second place by 3.24%. UAV-Human is a new dataset, released
in 2021, and we compare the performance of our model with the results reported in [31].
Single-stream ST-RT, namely “ST-RT(Seg = 20, joint)”, outperformed all methods.

5.4. Ablation Study

Ablation studies of performance were performed by the proposed ST-RT model on
the NTU RGB+D dataset with the CS setting. Firstly, two normalization methods were
chosen for comparison to provide faster training and better performance. Moreover,
we compared dynamic representations with different motion combination methods and
different networks with different stream combination methods. Finally, the models were
investigated with different hyper-parameters, such as the number of sampled frames,
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layers and heads. Furthermore, an ablation study regarding computation cost was based
on UVA-Human.

5.4.1. The Effect of Different Normalization Methods

Normalization is used in both dynamic representation modules and relative trans-
former modules. The normalization method in a relative transformer module can either
use layer normalization or batch normalization, while the normalization method in the
dynamic representation module only can use layer normalization. Table 4 shows that
“ST-RT (BatchNorm)” is superior to “ST-RT (LayerNorm)” by 2.03%. The accuracy of the
two normalization methods is shown in Figure 7 as a function of the epoch. The accuracy
of “ST-RT (BatchNorm)” increases faster than that of “ST-RT (LayerNorm)” and it is stable
at a higher value. The experiments demonstrate that batch normalization provides faster
training times and a better performance.

Table 4. Accuracy comparison of the ST-RT models between two normalization methods in ST-
RT model.

Norm Methods CS(%)

ST-RT (LayerNorm) 84.42
ST-RT (BatchNorm) 86.46

Acc

Epoch40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

batch_norm layer_norm

Figure 7. Difference in terms of accuracy and convergence speed between an ST-RT with batch
normalization and an ST-RT with layer normalization.

5.4.2. The Effect of Dynamics Representation with Different Combination

To demonstrate that each motion provides different information, we compare our
ST-TR model with three different models whose DR module only contains two motions,
and show the results in Table 5. “ST-RT(w/o X motion)” denotes that the “X” motion is
removed from the DR module in the ST-RT model, “X” is “short”, “long” or “adaptive”.
The accuracy of the ST-TR model has a 0.60% reduction, a 1.17% reduction and a 0.69%
reduction when it is without short motion, long motion or adaptive motion, respectively.
This means that the information captured from each motion can complement the other two
motions. According to the reduction in accuracy, we conclude that long motion contains
richer dynamic information compared to short motion.
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Table 5. Accuracy comparison of the ST-RT models with different motion and their combination.
“w/o” equals without.

Methods CS (%)

ST-RT(w/o short motion) 85.86
ST-RT(w/o long motion) 85.29

ST-RT(w/o adaptive motion) 85.77
ST-RT 86.46

Table 6 shows the effect of sampling frame numbers on model performance. From the
results of “ST-RT(Seg = 15)” to “ST-RT(Seg = 10 && Seg = 15)”, we observe that the model
underperforms in both superfluous and insufficient frame scenarios. The experiments
demonstrate that the model achieves the best performance with 86.46% when sampling 20
frames. In addition, we combined networks with different sampling frames (shown in the
last four rows of Table 6, i.e., “ST-RT(Seg = 10 && Seg = 15)” denotes the combination of
the network with 10 sample frames and the network with 15 sample frames). “ST-RT(Seg =
10 && Seg = 20)” outperforms other combinations with 87.48%, and this optimal parameter
was applied in MSST-RT.

Table 6. Accuracy comparison of the ST-RT models with different sampling strategies and their
combination. “X && Y” means the fusion of the model with X sampling strategy and the model with
Y sampling strategy.

Methods CS (%)

ST-RT (Seg = 10) 86.20
ST-RT (Seg = 15) 86.07
ST-RT (Seg = 20) 86.46
ST-RT (Seg=25) 85.21

ST-RT (Seg = 10 && Seg = 15) 86.93
ST-RT (Seg = 10 && Seg = 20) 87.74
ST-RT (Seg = 10 && Seg=25) 87.00
ST-RT (Seg = 15 && Seg = 20) 87.40
ST-RT (Seg = 15 && Seg = 25) 86.92
ST-RT (Seg = 20 && Seg = 25) 87.41

5.4.3. The Effect of Number of Layers and Multi-Heads in ST-RT Model

The results of ST-RT model with a different number of layers and heads are shown
in Table 7. “LX” represents the SRT (TRT) module with X layers; each layer contains one
SJU (TJU) block, one SRU (TRU) block and two FFNs. “HY” represents each attention
mechanism in ST-RT model with Y multi-heads. By comparing the number of heads, we
observe that more multi-heads always results in better performance, especially when the
model’s heads increase from 4 to 8. However, the affect of head number peaks when
it increases to 12, and excessive heads can make the accuracy of the lightweight model
decrease (shown in “ST-RT (L2H8)” and “ST-RT (L2H12)”). From the results of “ ST-RT
(L2H8)”, “ ST-RT (L3H8)” and “ ST-RT (L4H8)”, we conclude that the model underperforms
if the number of layers is too high or too low. In sum, number of layers and heads is set as
3 and 8, respectively, for the proposed model, considering the number of parameters and
the accuracy.
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Table 7. Accuracy comparison for the ST-RT models with different sampling strategies, and their
combination. “X && Y” means the fusion of the model with X sampling strategy and the model with
Y sampling strategy.

Methods CS (%)

ST-RT (L2H4) 85.60
ST-RT (L2H8) 86.26

ST-RT (L2H12) 86.15
ST-RT (L3H4) 84.76
ST-RT (L3H8) 86.46

ST-RT (L3H12) 86.81
ST-RT (L4H4) 81.71
ST-RT (L4H8) 85.21

ST-RT (L4H12) 85.35

5.4.4. The Effect of Dynamics Representation with Different Combination.

The speed and accuracy of different variants of MSST-RT with different numbers of
streams are shown in Table 8. When using the same number of frames, the joint stream has
a similar computation cost to the bone stream. The computation cost increases with the
increase in the number of frame. In the variants with two streams, "ST-RT(s3+s4)" achieves
the best performance, which is slightly lower than MSST-RT, and the computation cost
is half of MSST-RT’s. Hence, the stream numbers can be reduced if there are concerns
regarding computation cost.

Table 8. The effect of number of streams in the ST-RT Model on UAV-Human. “s1” is the stream with
10 frames, joint frames, “s2” is the stream with 10 frames, bone frames, “s1” is the stream with 20
frames, joint frames, “s1” is the stream with 20 frames, bone frames. Furthermore, “ST-RT(X + Y)”
is the fusion of the model with X stream and the model with Y stream. “Computation cost” means
average second per epoch on the train set.

Methods Accuracy (%) Computation Cost(s)

ST-RT(s1) 36.83 305.00
ST-RT(s2) 35.86 312.28
ST-RT(s3) 38.73 447.51
ST-RT(s4) 37.18 450.94

ST-RT(s1 + s2) 39.05 617.28
ST-RT(s3 + s4) 41.18 898.45
ST-RT(s1 + s3) 39.46 752.51
ST-RT(s2 + s4) 38.20 763.22

MSST-RT 41.22 1515.73

5.5. Visualization of SRU and TRU

Our model applies the attention mechanism when updating joint nodes and virtual
nodes in both the spatial and temporal dimensions. The attention response is visualized
from the last SRU block in the Spatial Relative Transformer (SRT) and the last TRU block in
the Temporal Relative Transformer (TRT).

The action salute is selected to visualize the attention response for eight multi-heads
from the last SRU layer in Figure 8. The red circles represent the spatial-relay nodes and
the blue circles represent the joint nodes. The blue lines represent the inherent connections
and the yellow lines represent the virtual connections. We zoom in on the five nodes with
the highest corresponding attention values, and the other nodes are shown by small circles.
The attention response of each head is different and head1, head2, head3 and head4 all
focus mainly on the left hand. This suggests that the attention mechanism works in a
similar way to human perception. Otherwise, the actions clapping and kicking something
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are visualized in Appendix A, which shows that different actions focus on different nodes.
Both left and right hands are important for “clapping”, so most heads focus on hands in
Figure A1a. For “kicking something” in Figure A1b, only the right foot is of great value.

Figure 9 shows the attention response for the action “salute” for eight multi-heads
from the last TRU layer. The red circles represent the temporal-relay nodes (the left one
in the sequence is the node before updating and the right one is the node after updating)
and the 20 blue circles represent the eighth joint nodes from 20 sampled frames. The
transparency of lines indicates the intensity of the attention response. The brighter color
denotes the higher response. This shows that different frames are noted in different heads,
and the information from each frame, including the temporal-relay node itself before being
updated, is converged to the temporal-relay node. We can see that the temporal-relay node
in last layer (the left red node in the sequence) receives a large amount of attention from
head1 and head5.

head1 head2 head3 head4

head5 head6 head7 head8

Figure 8. Visualization of the attention responses of the last SRU block in ST-RT model the action
is salute.

head1 head2 head3 head4 head5 head6 head7 head8

Figure 9. Visualization of the attention responses in the last TRU block in the ST-RT model.

6. Conclusions

In this work, transformer architecture is introduced to establish a long-range de-
pendence instead of graph convolution. Significantly, MSST-RT relies on transformer
architecture instead of recurrence, LSTM or graph convolution, which is a full attention
model. Specifically, we propose a novel architecture based on standard transformer and
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named a relative transformer. This compensates for the deficiencies of the standard trans-
former while retaining the inherent topology of the skeleton, and significantly reduces
computational complexity. The architecture, meanwhile, makes it possible for this to work
without heavy pre-training. Furthermore, the relative transformer module evolves into
a spatial relative transformer and temporal relative transformer, respectively, to extract
spatial-temporal features. In addition, the DR module combines multi-scale motion in-
formation to adaptively recognize actions with different durations and different ranges
of motion. Finally four streams with an ST-RT module, with four dynamic data streams,
are fused to complement each other, realizing the further enhancement of performance.
The final network, MSST-RT, achieves a state-of-the-art performance in skeleton-based
action recognition on NTU RGB+D, NTU RGB+D 120 and UAV-Human. It is worth noting
that single-stream ST-RT outperformed other methods on UAV-Human. It outperformed
TS-SAN [37], which also adopted attention architecture. The results of attention response
visualization verify the effectiveness of the proposed model for skeleton-based action
recognition tasks.
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Appendix A

head1 head2 head3 head4
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Figure A1. Visualization of the attention responses of the last SRU block in ST-RT model with respect
to two actions, i.e., clapping (a) and kicking something (b).
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