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Abstract: Routine rodent inspection is essential to curbing rat-borne diseases and infrastructure
damages within the built environment. Rodents find false ceilings to be a perfect spot to seek shelter
and construct their habitats. However, a manual false ceiling inspection for rodents is laborious and
risky. This work presents an AI-enabled IoRT framework for rodent activity monitoring inside a false
ceiling using an in-house developed robot called “Falcon”. The IoRT serves as a bridge between the
users and the robots, through which seamless information sharing takes place. The shared images by
the robots are inspected through a Faster RCNN ResNet 101 object detection algorithm, which is used
to automatically detect the signs of rodent inside a false ceiling. The efficiency of the rodent activity
detection algorithm was tested in a real-world false ceiling environment, and detection accuracy
was evaluated with the standard performance metrics. The experimental results indicate that the
algorithm detects rodent signs and 3D-printed rodents with a good confidence level.

Keywords: rodent detection; faster RCNN; deep learning; object detection; IoRT; inspection robot

1. Introduction

A routine pest control measure is essential in commercial buildings, such as food stalls,
offices, shopping malls, etc. Specifically, a routine rodent inspection is mandated in the
built environment to prevent rat-borne diseases and to avoid infrastructure damage and
electrical or fire accidents. Hence, regular rodent activity monitoring is indispensable to the
building management system. Generally, false ceilings seem to be a great place to hide and
build their habitat. However, routine rodent inspection in a false ceiling environment has
many challenges for pest management companies. Generally, human inspectors are widely
used for rodent inspection in a false ceiling environment (Figure 1). They use fluorescent
tracking gel, gnawing marks, and droppings to analyze the rodent’s activity. Besides, rodent
traps, rodent poison baits, rodent repellents, etc., control rodent infestation. However,
the manual inspection method is labor-intensive, time-consuming, and prone to a high risk
of accidents because of electrical wire networks, gas pipes, and ducts. Furthermore, due to
health difficulties, labor in complex surroundings (maintenance holes, sewage networks),
and low wages, a workforce shortage is a key concern for pest management companies.
Hence, automating the rodent inspection of the false ceiling is a viable solution.
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Figure 1. Manual inspection and hazard of pests on false ceiling (source: Google images).

Robot-assisted inspection has become more popular in the last decade. It is widely
used for various inspection applications, including monitoring built environment defects,
power transmission line fault detection, ship hull inspection, industry production manage-
ment, cleaning applications, and so on, as found in the robotics literature [1–7]. Automating
the rodent inspection of the false ceiling using robot-assisted technology is an attractive
solution. Recently, a reconfigurable designed wheel for the false-ceiling inspection task
was presented in Reference [8], based on the self-reconfigurable robot design using the
induction approach discussed in Reference [9,10]. However, the automation of false ceiling
inspection using inspection robots has a lot of practical constraints:

• the systems need an adaptable teleoperated robot with robust locomotion characteris-
tics to operate in dynamic and unstructured complex false ceiling environments;

• the systems need a secure wireless communication framework for controlling and
collecting the visual information from the robot; and

• the systems need a rodent activity detection algorithm for automatically detecting
rodent signs and rodents from the collected visual feed.

The Internet of Things (IoT) combined with Artificial Intelligence (AI) has been used
in various applications in advanced systems, such as transportation, robotics, industrial,
and automation systems. The IoRT (Internet of Robotic Things) is a more advanced
version of the Internet of Things. It is a combination of many technologies, such as
Cloud Computing, Artificial Intelligence (AI), the Internet of Things (IoT), and robotics
technology [11,12]. In the IoRT, robots are intelligent machines with sensors that can
perceive actions in the actual world by gathering sensor data from numerous sources and
taking necessary problem-solving measures. Recently, AI-enabled computer vision has
emerged as a technique that can be leveraged to overcome the various shortcomings in
robot-assisted remote monitoring and inspection application.

In Reference [13], Gary et al. used robotics and computer vision systems to inspect
enclosed spaces in the built environment. The author uses the q-bot inspection robot, mask
Regions Convolutional Neural Network (mask-RCNN) to inspect the built environment
and reports that the inspection framework detects the enclosed spaces (floorboards, joists,
vents, pipes) with 80% accuracy. Muhammad et al. [14] developed a utility pipes structural
health monitoring system for a built environment using an autonomous inspection robot
and deep learning-based defect detection algorithm. The authors reported that the deep
learning algorithm detects cracks in the recorded video inside the pipe with an accuracy
of 83.3%. Similarly, the deep learning framework YOLOv3 (You Only Look Once) has
been used for the sewer pipe inspection [15]. The authors trained the framework on six
types of sewer pipe defects (broken, holes, deposits, cracks, fractures, and roots) and found
that the framework detects the defects with an 85.37% mean Average Precision (mAP).
A mobile robotic platform with an AI-enabled vision system for real-time construction site
monitoring application is proposed in Reference [16]. The robot uses an ENet Pixel-wise
semantic segmentation framework for navigating construction sites, monitoring work
progress, and structure defect inspection. In Reference [6,7], authors proposed the shape-
shifting robot ’Mantis’ for glass facade crack inspection and cleaned the high rise glass
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facade building. The robot can automatically move one glass facade panel to another
panel without human assistance and also has 15 layers of a deep learning framework for
detecting the crack on the glass panel. Quality inspection and assessment robot QuicaBot
was reported by Yan et al. [17]. The robot was used for quality assessment of buildings after
construction and performed defect identification tasks, including hollowness, alignments,
cracks, evenness, and inclination. Aircraft surface inspection using a reconfigurable,
teleoperated robot, ’Kiropter’ was reported by Balakrishnan et al. The authors developed
a reconfigurable vertical climbing robot for reaching limited places, overlapping joints,
and the fuselage of the aircraft’s body. Further, they used deep learning for recognizing
and classifying the stains, as well as the defects of an aircraft surface [1].

Similarly, the role of IoT, robotics, and computer vision techniques in various animal
and pest monitoring applications has been extensively researched [18–21]. In Reference [22],
Ruilong Chen et al. developed an automated image classification algorithm to identify the
wild animal badgers from domestic animals in farm buildings. Two deep learning-based
image classification frameworks were used in this experiment. One is a self-trained frame-
work (CNN-1) trained from scratch using a wildlife dataset. The other one is the AlexNet
framework fine-tuned with a wildlife dataset. The author describes that the AlexNet frame-
work obtained 98.05% detection accuracy, which is higher than the self-trained framework
(accuracy of 95.58%). Another research study by Stefano Giordano et al. [23] reported the
creation of an Internet of Things application for crop protection utilizing a monitoring
and repelling system to avoid animal invasions and possible damages. In Reference [24],
Sabeenian et al. introduced a wild animals intrusion detection system, where a deep
learning-based object detection framework is trained for intrusion detection and repelling
system to protect the crop against animal attacks. Nikhil et al. [25] suggested a similar
system, in which real-time monitoring of agricultural land with crop prediction and animal
infiltration avoidance was carried out utilizing the Internet of Things and machine learning
for cutting-edge decision-making. Hung Nguyen [26] presented deep convolutional neural
network architectures for automating the wildlife monitoring system. The deep neural
network architectures are trained to recognize and identify wild animal species automati-
cally. The experiments results indicate that the trained scored 96.6% accurate in recognizing
animals and 90.4% accurate in recognizing animal species among the captured images.

IoRT-based rodent inspection is a new approach. It has not been explored yet. This
research presents the IoRT framework for rodent activity monitoring in a false ceiling
environment. The framework comprises a teleoperated false ceiling inspection robot
named Falcon, a remote computing system (local server/cloud server) for executing the
deep learning-based rodent activity detection algorithm, and an Ultra-Wideband (UWB)-
based indoor localization module for identifying the rodent activity region. This IoRT
scheme will help overcome the shortcomings in the existing false ceiling pest control and
inspection task in commercial buildings, such as food stalls, offices, shopping malls, etc.
Further, routine rodent inspection in the built environment has mitigated rat-borne diseases
and avoided infrastructure damage and electrical or fire accidents. The proposed system
was developed as per the National Environmental Agency and National Robotics Program
Singapore guidelines and tested in various real-time false ceiling testbeds in Singpore.

This manuscript is organized as follows: After providing an introduction, motivation,
and literature review in Section 1, Section 2 explains the proposed system. The experimental
setup, results, and discussion are demonstrated in Section 3, and Section 4 concludes this
research work.

2. Overview of Proposed System

Figures 2 and 3 show the overview of the proposed system and the AI-enabled IoRT
framework. The proposed system uses our in-house developed robot Falcon and a four-
layer IoRT framework for detecting rodents in a false ceiling environment.
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Figure 2. Overview of false ceiling inspection method using the Falcon robot.

Figure 3. IoRT framework for rodent inspection in a false ceiling.

2.1. IoRT Framework

A four-layer IoRT framework [27] is used for rodent inspection in a false ceiling
environment. It consists of: (1) a physical layer, (2) a network layer, (3) a processing layer,
and (4) an application layer. The details of each layer and its operation are described
as follows.

2.1.1. Physical Layer

In our work, the physical layer is represented by the Falcon robot and its sensors and
actuators. Figure 4 shows the overview of our in-house developed false ceiling inspection
robot, Falcon. The detailed specifications of Falcon are presented in Table 1. The robot
is designed to overcome the various operational constraints imposed by the false ceiling
environment. Generally, gypsum board or Plaster of Paris (POP) are two commonly found
materials to construct false ceiling panels. However, both are relatively fragile and not
robust enough to use as a typical robotic terrain. Moreover, false ceilings are usually



Sensors 2021, 21, 5326 5 of 17

congested with piping (sprinkler pipes, air duct pipe, insulation pipe for wires), electrical
wiring, suspended cables, and protruding components (top: over-hanged air-conditioning
duct pipe, structural beams; and bottom: different sizes of runners and lighting fixtures),
and these components obstruct the robot’s operation on the false ceiling. These operational
constraints were taken into account and carefully designed for our robot to adapt to the
false ceiling environment.

Figure 4. Falcon in multiple perspectives.

Table 1. Technical specifications of Falcon.

Description Specification

Dimensions (L × W × H) 0.236 × 0.156 × 0.072 m

Weight (including battery) 1.3 kg

Type of Locomotion Drive Track

Top & Bottom Ground Clear-
ance

0.011 m, 0.011 m

Operating Speed 0.1 m/s

Maximum Obstacle Height 0.055 m

Operational Duration 0.5–0.75 h

Battery 3 cells Lithium Ion

Operation Mode Teleoperation (with integrated sensors to
detect fall and stop autonomously)

Communication Mode Wi-Fi through local MQTT server

Camera Specifications (with
on-board Light source)

VGA 640 × 480, up to 30 fps, 60 degree
view angle, 20 cm-infinity focusing range

Figure 5 illustrates the overall system architecture of Falcon. It consists of the following
units: (1) a locomotion module, (2) a control unit, (3) a power distribution module, (4) a
wireless communication module, and (5) a perception sensor.
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Figure 5. System architecture of Falcon.

Locomotion Module: The locomotion system is directly linked to the overall form
factor of the Falcon. It is essential to cover all contact points of the body within the frame of
the locomotion system to overcome most of the obstacles in the false ceiling environment.
Moreover, it has to span across the entire body to overcome some sharp frames, such as
the runners. A typical wheel drive could not operate on the false ceiling as the bottom
of the Falcon’s body frame would be exposed to obstacles, resulting in the loss of the
contact point of the locomotion system with the terrain. In addition, the width, height,
and length of the locomotion system are constrained by commonly found obstacles on
the false ceiling. For instance, the current locomotion system is configured to be a track
drive of 236 (L) × 156 (W) × 72 (H) (mm × mm × mm) to access narrow spaces with
low-hanging obstacles and ground-protruding obstacles of about 55 mm height. Both
sides of the locomotion modules are integrated with hemispherical attachments to avoid
stabilizing laterally. By integrating them, the Falcon can operate regardless of the direction
in which it flips over. Driving motors are chosen with the specifications of a safety factor of
2 to operate continuously on a maximum inclined slope of 12 degrees at the rated torque.
The motors can drive the Falcon itself to flip over in the direction of driving against a wall.
The motors are chosen with over-specification as the operational terrain of the false ceiling
could impose uncertainty on Falcon.

Control Unit: The control unit of Falcon was built using a Teensy embedded comput-
ing device. The control unit processes the input signals (velocity commands from the user,
cliff sensors, IMU) and generates output signals (individual motor speeds using the inverse
kinematic model and sensor inputs, and LED lights to support the Perception System).
The robot operator sends the velocity command from the control station through the MQTT
server. The client-server of the Communication System on Falcon receives the velocity
command and transfers it to the embedded control unit. The embedded system control unit
computes the velocity commands using the inverse kinematic model to generate individual
motor speeds for the motor drivers. Falcon autonomously stops without the operator
inputting after triggering cliff sensors to detect an opening in the false ceiling. Cliff sensors
and IMU are integrated and calibrated such that the Falcon detects the opening, but it does
not falsely decide to stop while overcoming the obstacles due to the increased depth sensed
by the cliff sensor. The Power Distribution System regulates 3-cell lithium-ion battery to
generate 12V to the motor driver and 5V to Embedded System and other sensors.

Perception System: The perception system consists of a Wi-Fi camera, and, through
the dedicated router, it transmits the visual feedback to the robot operator at the control
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station. The visual feedback can be captured as images or videos by the robot operator.
This feature helps collect data of rodents, rodent droppings, gnawing marks, and any other
information indicating the presence of rodents on the false ceiling.

UWB Localization Module: The UWB-based indoor localization technique is used in
Falcon for positioning the robot on the false ceiling. In UWB-based localization, the station-
ary beacons are installed on protruding beams or sidewalls, aiming the antenna at each
other, and the mobile beacon is attached to the top of the Falcon. Typically, a minimum of
three beacons are necessary to cover the small false ceiling environment, and their count
varies according to the size of the false ceiling infrastructure. Through UWB localization,
the operator can estimate the absolute location of the Falcon inside the false ceiling. Further,
sensor fusion has been adopted to mitigate localization errors and compute an accurate
position. It fuses the wheel odometry, IMU data, and UWB localization information and
provides a better-estimated location.

2.2. Network Layer

The network layer serves as a communication link between the physical layer (robot
nodes), processing layer, and application layers. Its functions include providing control
communication between the robot and the operator and transferring the collected false
ceiling images to the processing layer. D-Link 4G/LTE mobile router was used to establish
internet communication. It uses the USIM card to connect to the Internet. Further, the mo-
dem has a built-in Wi-Fi router that works under the WPA encryption standard. Finally,
the robot captured images are transmitted to a remote server via a 4G/LTE mobile router.

2.3. Processing Layer

A local/remote server serves as the processing layer. It includes high-speed computing
devices to process high-resolution image and video frames, run the rodent activity detection
algorithm, and manage application layer requests.

2.3.1. Rodent Activity Detection Module

The Deep Neural Network (DNN)-based object detection framework is used for
rodent activity inspection in a false ceiling environment. Generally, the critical inputs to
rodent activity detection modules are gnawing, scampering, scratching, droppings, and live
detection of rodents in the false ceiling environment. However, detecting these objects in
the complex false ceiling environment needs an optimal detection algorithm because these
rodent signs are minor, and their pattern is too random. Generally, extracting key detection
features from small objects is extremely difficult in any object detection method because
there is a high likelihood that small items will become pixelated or overlap, making it
impossible to retrieve some usable data. So, inspection algorithms need a small object
detection capability.

The Faster RCNN object detection framework was used in the rodent activity detection
task, an optimal algorithm for detecting small objects from a complex background. Figure 6
shows the architecture of the Faster RCNN algorithm [28]. It comprises a ResNet 101
(Residual Neural Network) feature extractor, a Region Proposal Network (RPN), a detector,
and a classifier head. The framework performs the object detection task in two steps:
extracting the feature map and generating the region proposal in the first step, and then
identifying the object from each proposal in the second stage. The following sections go
over the specifics of each component.
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Figure 6. Faster RCNN RestNet architecture.

Feature Extractor: ResNet 101 is an image classifier algorithm used as a base network
for Faster RCNN and performs the feature extraction task. It operates in five phases.
The first stage comprises a 7 × 7 convolution kernel, a Batch Normalization (BN) function,
the ReLU function, and the max-pooling function. The remaining four phases are composed
of residual convolution and identity functions. In this case, the residual conv block is made
up of three convolution layers (1 × 1, 3 × 3, 1 × 1) with BN and ReLU, as well as a skip
connection with a convolution function of 1 × 1. Likewise, identity blocks consist of 1 × 1,
3 × 3, and 1 × 1 convolution layers and skip connections. Finally, a 1024-size feature map
is generated from the fifth stage convolution and identity layer, fed into the RPN function,
detector, and classifier head.

Region Proposal Network (RPN): RPN is a critical component of the Faster RCNN
detector framework. It generates the bounding box on the output image using the anchor
box approach. Anchor boxes are predetermined boundary boxes with a specific height and
width. It detects a variety of objects, including objects of varying sizes and overlapping ob-
jects. RPN uses the final feature map of the feature extractor as input and performs a 3 × 3
sliding window operation spatially to generate the anchor boxes and a 512-dimensional
feature map. The anchor box’s height and width are determined automatically based on
the size of the objects in the training dataset. According to the sliding window’s center
point, nine anchor boxes are formed for each sliding window region with three different
sizes. An anchor box scheme generates the total W × H × k anchors, where W and H are
the width and height of the feature extraction layer map, respectively, and k is the depth of
the feature map. On the output side, the actual position of an anchor box in the original
image is determined by decoding the feature map output back to the input image size
using the stride 16 functions. It creates a series of tiled anchor boxes. RPN computes two
things from the series of tiled anchor boxes: The first factor is the probability that an anchor
is an object. The second thing is to execute the bounding box regression to alter the anchor
position to be more appropriate for the objects or more comparable to the ground truth.
In the end, the Non-Maximum suppression (NMS) algorithm is applied to filter out the
overlapping bounding boxes from the generated proposal.

Detector and classifier Head: The detector and classifier head is the final component
of the Faster RCNN framework. It composes a Fast RCNN algorithm, Region of Interest
(ROI) layer, and an FC layer. The RoI pooling layer takes the RPN-generated proposals
and the shared convolutional features from the feature extractor module. For each RPN-
generated proposal, the RoI pooling layer extracts a fixed-size feature map. Next, these
fixed-size feature maps are sent to the FC layer. Finally, it uses the softmax function and a
linear regression algorithm to detect and classify the bounding box of the predicted objects
in the image. Further, NMS is applied to improve accurate object localization and eliminate
extraneous bounding boxes.



Sensors 2021, 21, 5326 9 of 17

2.4. Application Layer

Smartphones and web interfaces are used to carry out the application layer operations.
The application layer is used to control the robot from the remote and view the results of
the rodent activity detection framework.

3. Results and Discussion

This section presents the experimental method and its results. The experiment was
performed in two phases. The first phase validates the Falcon robot’s performance in
a false ceiling environment in a semi-autonomous mode. In semi-autonomous mode,
the navigation control of the robot is performed through a teleoperation mode. The operator
has the control to adjust the speed, direction control, and camera focus. During this semi-
autonomous mode, the robot automatically avoids obstacles on the false ceiling using a
sonar sensor and also pause/stop the robot autonomously when facing obstacles in the
false ceiling environment and detect falling regions. The second phase involves validating
the rodent activity detection algorithm using rodent signs (gnaw marking, scampering,
scratching, droppings) and 3D-printed rodents.

3.1. Validation of Falcon Robot Performance

The navigation capability of the Falcon robot was tested in prototype false ceiling
environments at Oceania Robotics, in Singapore, and an SUTD ROAR laboratory real false
ceiling. Figure 7 shows the prototype false ceiling test-bed at Oceania Robotics and in
SUTD’s real false ceiling environment. It consists of everyday false ceiling objects, including
frames, dividers, pipes, etc. In the ROAR laboratory, the platform was tested in real false
ceiling environments (Figure 8), which contained AC vents, electrical and communication
cables, etc.

Figure 7. False ceiling prototype test-bed.

Figure 8 shows the Falcon robot operation in a false ceiling environment. During the
inspection, the robot was controlled by 4G LTE-enabled mobile GUI interface and robot
positioning was monitored through UWB localization modules fixed in a false ceiling
environment. Figure 9 shows some of the Falcon robots collected images with rodent
activity signs collected from the SUTD false ceiling. The robot paused in each stage for a
few seconds to capture the picture of the false ceiling and forward the remote server via
D-Link 4G/LTE mobile router to execute the rodent activity detection.
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Figure 8. Falcon rodent activity inspection in a false ceiling environment.

Figure 9. False ceilings environment captured from Falcon robot.

The UWB placement and its tracking results are shown in Figures 10 and 11, where one
beacon is fixed to the robot and four to five stationary beacons are installed on protruding
beams or side walls to obtain optimal tracking and positioning results.
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Figure 10. UWB tracking results of the Falcon robot in the Oceania Robotics false ceiling testbed.

Figure 11. UWB beacon placement in the SUTD false ceilings and tracking results.

The experiment results show that the developed “Falcon” robot can move around
a complex false ceiling environment and is able to accurately capture the false ceiling
environment for rodent activity inspection. Further, the UWB localization results (Figure 11)
ensure that the Falcon robot can accurately track its position on the false ceiling.

3.2. Evaluate the Performance of Rodent Activity Detection Module

The efficiency of the rodent activity detection algorithm was evaluated in two stages:
offline and in real-time. Figure 12 shows the experimental design flow of the rodent activity
detection algorithm.

Figure 12. Experimental design flow.

The detection framework has three pre-steps: collecting the dataset (rodent, drop-
pings, and gnaw marks images), labeling the collected images, and training the detection
framework with pre-trained weights.
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3.3. Dataset Preparation and Annotations

The dataset preparation process involves collecting the gnaw marking, scampering,
scratching, droppings, and various rodents (Norway rat, roof rat, house mouse). The CNN
model was trained and tested using images with a resolution of 640 × 480. Each class of
1000 images was used in training, collected from various online sources, and in the real
environment. Then, image data augmentation (scaling, rotation, and flipping) has been
applied to the collected image to mitigate the over-fitting issue and enhance the detection
framework learning rate. After the image data augmentation, the dataset was labeled with
the “LabelImg” class annotations GUI tool.

3.4. Hardware Details

The Tensorflow GPU version 1.9.0 was used to train the detection framework in the
transfer learning scheme. The detection framework was trained on an Nvidia GeForce GTX
1080 Ti-powered workstation. The same hardware serves as a remote server and executes
the rodent activity detection task.

3.5. Training and Hyper Parameter Tuning

In our work, the detection framework was trained using a transfer learning scheme
where a pre-trained ResNet 101 algorithm trained on the COCO image dataset was used as
a feature extraction module. The framework was trained by Stochastic Gradient Descent
(SGD) algorithm and uses the following hyperparameter as optimizer momentum 0.8,
initial learning rate: 1 × 10−2, final learning rate: 1 × 10−5, the total number of iterations
70,000, batch size: 5, weight decay was 0.005; decay steps: 10,000. In the RPN training
phase, 128 images are randomly selected from the training image database for each iteration
and follow the 1:1 ratio of positive (object) to negative (background).

Further, the loss for each prediction is estimated in the training phase as the sum of the
location loss Llocation and confidence loss Lcon f idence (Equation (1)), where confidence loss
indicates the prediction error of object class and confidence level. The squared difference
between the prediction’s coordinates is referred to as the location loss. To balance the two
losses and their impact on the gross loss, a parameter alpha (α) is used. Further, the Root
Mean Squared (RMS) gradient descent algorithm was applied to mitigate these losses in
the training phase.

L =
1
N
(Lcon f idence + αLlocation). (1)

3.6. Dataset Evaluation

The K-fold (K = 10) cross-validation method is applied to the collected dataset to
evaluate the training dataset quality. In this method, the dataset is split up into K subsets
and K−1 subsets for training, with one subset remaining for performance evaluation.
In the training phase, loss and accuracy were estimated for each K-split. In the end, K-fold
cross-validation ensures that the images reported are accurate and not biased toward one
dataset split over another.

3.7. Offline and Real Time Test

The offline test used rodent sign images (gnaw, scampering, scratching, droppings)
and three rodent classes: Norway rats, roof rats, and house mice. One hundred images are
used in the offline test for each class. The test images are gathered from various online
sources that are not utilized for training the detection framework. Figures 13–15 show
the experimental results of the offline test. Here, rodent droppings are detected as a gray
rectangle box, gnaw marks, scampering, scratching are marked as a yellow rectangle
box, and rodent detection is marked as a red, blue, and green rectangle box, respectively.
The experimental results show that the algorithm correctly detected gnawing, scampering,
scratching, droppings, and three rodent classes, with an average detection confidence level
of more than 90%.
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Figure 13. Offline rodent detection test results.

Figure 14. Rodent dropping detection results.

Figure 15. Gnaw marks detection results.

Furthermore, the algorithm’s detection efficiency was estimated using standard perfor-
mance measures (statistical measures), such as accuracy, precision, recall, and Fmeasure [28,29].
Table 2 shows the statistical measures for the offline experimental results. The statistical mea-
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sures experimental results indicate that the algorithm detected the droppings at an average of
89% accuracy, gnaw marks at 92% accuracy, and rodent class at 94 to 96% classification accuracy.

Table 2. Statistical measures for rodent activity detection framework.

Class Precision Recall F1 Accuracy

Norway rat 94.58 94.39 94.18 94.57

Roof rat 94.67 94.58 94.26 94.89

House Mouse 95.10 95.05 95.18 94.94

Gnaw markings 92.76 92.54 92.89 92.98

Droppings 89.87 87.23 89.12 89.58

3.8. Evaluate with Prototype Testbed

The real-time rodent activity inspection was evaluated on a prototype testbed, as shown
in the Figure 7. For experimental purposes, manually-created gnaw marks, 3D printed
rodents, and rodent droppings are placed in various places in a false ceiling testbed. First,
the robot was teleoperated in the prototype testbed to identify the rodent signs. Then,
the environment was captured with a high-resolution vision system and transferred to the
local server to execute the rodent activity detection task.

The experiment was performed with different lighting conditions, rodents with oc-
clusion, and various angles of the rodent’s position. Figure 16 shows the rodent activity
detection results in the prototype testbed, and its statistical measures are given in Table 2.
The experimental results indicate that the algorithm detects and localizes the rodent signs
with 89% accuracy, droppings and 3D printed rodents with an accuracy of 93% confident
level, and processes 5 FPS from live video streams.

Figure 16. False ceiling testbed detection result.

3.9. Experimental Comparisons

Faster RCNN ResNet 101 is compared with YOLOv3 and other Faster RCNN vari-
ants, including Faster RCNN Inception and Faster RCNN VGG16. Here, VGG16 (Visual
Geometry Group 16) [30–32], and the Inception v2 [33] algorithms are employed as feature



Sensors 2021, 21, 5326 15 of 17

extractors with Faster RCNN. Likewise, the YOLOv3 module makes use of Darknet-19 as a
feature extractor [34–36]. The object detection algorithms are trained on the same image
dataset and the same number of epochs. The standard performance measures and the
processing time of each algorithm were used in the evaluation. The experimental results of
three object detection frameworks are reported in Table 3.

Table 3. Comparison analysis.

Algorithm Precision Recall F1 Accuracy Frames per Second

Faster RCNN VGG16 91.22 90.17 88.22 89.59 6

Faster RCNN Inception v2 93.02 92.58 93.04 92.65 3

YOLOv3 83.46 83.22 81.55 89.33 40

Faster RCNN ResNet 101 93.39 92.78 93.12 93.39 5

The comparison (Table 3) findings show that the Faster RCNN 101 framework outper-
forms the Faster RCNN VGG16, Faster RCNN Inception v2, and YOLOv3 algorithms in
terms of accuracy. In YOLOv3, the miss detection ratio of rodent droppings and rodent’s
occlusion was higher than Faster RCNN ResNet 101. Furthermore, for each model, the in-
ference time of each algorithm was estimated. The inference time of each algorithm is
given in Table 3. Here, the inference time was calculated by the time taken by the algorithm
for executing one image. It is observed that the YOLOv3 framework takes less execution
time compared to the Faster RCNN variant. However, the proposed Faster RCNN ResNet
101 ensures the best detection accuracy. Therefore, we can conclude that the proposed
Faster RCNN ResNet 101 technique may provide an effective framework for rodent activity
tracking in real-time scenarios. The study also found that YOLOv3 has the lowest process-
ing time compared to the Faster RCNN variant. On the other hand, Faster RCNN ResNet
101 achieved the highest detection accuracy than YOLOv3, and the other two Faster RCNN
variants include VGG16 and Inception v2. Accurate rodent activity detection is a critical
goal in our work. As a result, the Faster RCNN ResNet 101 framework is a better algorithm
for rodent activity detection on the false ceiling.

4. Conclusions

The rodent activity detection framework in the false ceiling was proposed using the
IoRT framework and the in-house developed robot named Falcon. A faster RCNN ResNet
101 object detection framework automatically identified rodent activity in a complex
false ceiling environment. The efficiency of rodent activity detection algorithms was
tested offline using rodent images, droppings, and gnawing marks, and in real-time
with manually-created rodent signs and 3D printed rodents. The performance of the
rodent activity detection algorithm was evaluated with standard performance metrics,
both offline and in real-time. The experimental results indicate that the rodent activity
detection algorithm identifies rodent and rodent marks at an average of approximately 92%.
In contrast with other object detection frameworks, including Faster RCNN VGG16, Faster
RCNN Inception, and YOLO, the proposed scheme achieved better detection accuracy.
The experimental results showed that the trained model had a detection accuracy of 93%
and a processing speed of 5 frames per second. The overall experimental results proved
that the proposed system is more suitable for automating the rodent activity monitoring
task and helping to enhance the inspection service.
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