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Abstract: The steady-state visual evoked potential (SSVEP), which is a kind of event-related potential
in electroencephalograms (EEGs), has been applied to brain–computer interfaces (BCIs). SSVEP-
based BCIs currently perform the best in terms of information transfer rate (ITR) among various BCI
implementation methods. Canonical component analysis (CCA) or spectrum estimation, such as the
Fourier transform, and their extensions have been used to extract features of SSVEPs. However, these
signal extraction methods have a limitation in the available stimulation frequency; thus, the number
of commands is limited. In this paper, we propose a complex valued convolutional neural network
(CVCNN) to overcome the limitation of SSVEP-based BCIs. The experimental results demonstrate
that the proposed method overcomes the limitation of the stimulation frequency, and it outperforms
conventional SSVEP feature extraction methods.

Keywords: brain–computer interfaces (BCI); steady-state visual evoked potential (SSVEP); complex
valued deep neural networks

1. Introduction

The brain–computer interface (BCI) or brain–machine interface (BMI) is a direct com-
munication pathway for controlling external devices by discriminating brain signals [1,2].
BCIs have been widely researched and applied for many practical systems [3–6]. There are
various methods for acquiring brain signals for BCIs such as electroencephalography (EEG),
magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI). In
this paper, we focus on EEG-based BCI because EEG is a noninvasive and simple signal
acquisition method for BCIs [7].

There are various ways to issue commands for BCIs. For example, event-related po-
tentials (ERPs) such as P300 [8], sensorimotor rhythms (SMRs) such as µ-rhythm [9,10], the
steady-state visual evoked potential (SSVEP), and auditory or tactile evoked responses [11,12]
have been used for BCIs. A recent review of BCI technologies and applications appeared
in [13].

SSVEP is a response to periodic flicker stimulation with a frequency of 5–30 Hz that is
usually presented by an LED or LCD [14,15]. The response EEG has peak frequencies that are
the fundamental and harmonic frequencies of the flicker stimulation. An SSVEP-based BCI is
realized by assigning commands or alphabets to flickers having different frequencies [16,17].
BCIs can determine the intended commands of users by detecting the peak frequency from
observed EEGs. SSVEP-based BCIs achieve the highest information transfer rate (ITR)
among state-of-the-art BCI implementations [16–18]. There are many extensions and hybrid
BCIs for SSVEP-based BCIs. For example, [19,20] extended the SSVEP-based BCI by utilizing
the phase of the stimulus in addition to frequency information.

The command of SSVEP-based BCIs is determined by a frequency analysis of the
observed EEGs. In the early days, Fourier analysis or spectrum estimation methods
were used [21,22]. Then, canonical component analysis (CCA)-based approaches were
developed [23]. There are various extensions for CCA-based methods that determine the
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command of SSVEP-based BCIs. Multi-way CCA (mwayCCA) was developed for tensor
EEG data [24]. Phase-constrained CCA (p-CCA) was proposed for phase-modulated SSVEP
BCIs [25]. Filter bank canonical correlation analysis (FBCCA) decomposes EEGs by using a
sub-band filter bank and then applies CCA to each sub-band signal [26]. The individual
template-based CCA (IT-CCA) integrates the standard CCA and the canonical correlation
between individual templates and test data [27].

Although the SSVEP-based BCI achieves performances well among state-of-the-art
BCI implementations, it and its signal processing methods still have drawbacks to be
addressed. LCD is often used to present SSVEP stimuli, and it normally has a fixed refresh
rate of 60 Hz. Thus, the stimulus frequency is basically limited to a sub-multiple of the
refresh rate. Although an approximation method for generating a stimulus in which the
frequency is not sub-multiples of the monitor refresh rate was proposed [28], it is not an
essential solution and it requires a longer analysis time window. Another problem is due to
Fourier analysis or CCA-based feature extraction. They extract not only the stimulus flicker
frequency but also its harmonic components. Therefore, these methods cannot discriminate
two flicker frequencies when one frequency is twice (or three times) that of the other, and
these stimulus frequency pairs are not available for current SSVEP-based BCIs. These two
problems prevent an increase in the number of BCI commands and ITR.

To address these problems, we propose a complex valued convolutional neural net-
work (CVCNN) for SSVEP classification. To the best of our knowledge, this paper is the
first to apply CVCNN to an SSVEP classification problem, and it proves that CVCNN over-
comes the problem of stimulus frequency limitation. The combination of feature extraction
using the discrete Fourier transform (DFT) and convolutional neural networks (CNNs) has
been applied to SSVEP classification and has shown higher ITR performance [29]. However,
the biggest advantage of CNNs is the data-driven automatic learning of optimal feature
extraction, called representation learning [30]. Feature extraction using DFT may not be
optimal for SSVEP data, and the combination of DFT and CNN cannot extract optimal
features from EEG data directly. Any DFT coefficient is represented by the complex inner
product between an input signal and the discrete Fourier basis; hence, we propose using a
complex valued neural networks for feature extraction. DFT is a fixed basis for represent-
ing an input signal; on the other hand, a complex weight vector of a neural network is a
variable parameter that is optimized with respect to an appropriate criterion represented by
a cost function or loss function. In other words, by virtue of complex valued convolutional
neural networks and representation learning, the network obtains the optimal feature
extraction including DFT. We introduce the activation function using a complex absolute
value function that is equivalent to calculating the amplitude spectrum for a fixed complex
Fourier basis [31].

We conducted an SSVEP-based BCI experiment in order to demonstrate the per-
formance of the proposed CNN and compared it with conventional methods. In our
experiment, the flicker stimulations had pair flickers in which one frequency was twice
that of the other. We also show the experimental results obtained using open SSVEP-based
BCI data. The experiments demonstrate that the proposed method can discriminate pair
commands, and it outperforms the conventional methods for SSVEP-based BCIs.

The rest of the paper is organized as follows. Section 2 explains complex valued
neural networks and their learning procedure. Section 3 describes the experimental set-
ting of our SSVEP-based BCI and the open dataset. Section 4 shows the experimental
results, comparing the proposed method with conventional methods. Section 5 concludes
the paper.

2. Method: Complex Valued Neural Networks (CVCNN)
2.1. Activation Function for CVCNN

Complex feature vectors represent periodic/cyclic data, such as oscillation and wave,
e.g., electromagnetic phenomena, electric circuits, acoustic/biomedical signals, and imag-
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ing radar, in a natural way. Complex valued neural networks (CVNN) have been used for
array signal analysis [32,33], radar image processing [34,35], and EEG analysis [36–38].

Unlike ordinary real valued neural networks (RVNNs), the activation function of
CVNNs has to be considered carefully because complex functions have a restriction in terms
of differentiability expressed by Cauchy–Riemann equations. The activation functions
of CVNNs are categorized into two groups: the split type f (z) = φ1(<(z)) + jφ1(=(z))
and the amplitude-phase type f (z) = φ2(|z|) exp(j arg z), where j =

√
−1 is an imaginary

unit, and <(z) and =(z) are real and imaginary parts of z ∈ C, respectively. For the split
type, the rectified linear unit (ReLU) function φ1(x) = max(x, 0) or the hyperbolic tangent
function φ1(x) = tanh(x) is often used. For the amplitude-phase type, φ2(x) = tanh(x)
is used [39,40]. A review of CVNN and of their applications in signal processing can be
found in [41].

Phase information in EEGs or other signals is often unnecessary because it depends
on the onset of data. Some SSVEP-based BCIs utilize absolute or relative phase information
to increase the number of commands. However, in these methods, the BCI system should
carefully synchronize EEG recording and stimulus presentation. Here, we consider dis-
crimination of the stimulus frequency; therefore, phase information should be removed.
For this purpose, the authors previously proposed the use of the complex absolute function
φ(z) = |z| for the activation function [31]. In the proposed method, we use three activation
functions: the amplitude-phase and split types, and the absolute function. The structure of
the proposed neural networks is shown in Table 1 and Figure 1. The complex version of
batch normalization proposed in [40] is used.

ComplexBN

Dropout

BN[1x10]

Dropout

Flatten ComplexDense

Abs
Softmax

Figure 1. Network structure of the proposed CNN: the first layer is the complex weighted averaging
for channels (2–4 in Table 1). The second layer is the filtering for time index (5–8 in Table 1). Then, the
data are flattened and goes through the complex dense layer with the absolute activation function.
Finally, the output is given by the softmax layer.
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Table 1. Network structure of the proposed CNN: Nch is the number of channels, and BN is
batch normalization.

Layer Filters Size Activation

1 Input
2 ComplexConv2D 10 (Nch, 1)
3 ComplexBN tanh(|z|) exp(j arg(z))
4 Dropout
5 ComplexConv2D 10 (1,10)
6 Flatten
7 BN ReLU(<(z)) + jReLU(=(z))
8 Dropout
9 ComplexDense |z|

10 Softmax

2.2. Forward and Backward Propagation

Let W (l) be the weight matrix and o(l) be the output vector of the lth layer of the
network. Then, the forward propagation of an L layer CVCNN is calculated by the
following equations:

u(l) =W (l)o(l−1) (1)

o(l) =φ(l)(u(l)), l = 2, . . . , L, (2)

where φ(l) is the element-wise activation function of the lth layer and o(1) denotes the
complex valued input vector of the network.

The set of weight matricesW = {W (l)}l=1,...,L is optimized to minimize a loss function
by back-propagation (BP) for CVCNNs. Square-error loss, logistic loss, or softmax loss is
often used for classification problems. Let En(W) be the loss function for the nth input
training sample. Each weight matrix is iteratively updated by

W (l) ←W (l) − η∇W (l)En l = 2, . . . , L, (3)

where η > 0 is the learning rate.

2.2.1. Split-Type Activation Function

Suppose that we use a split-type activation function. Let u(l)
r be the rth element of u(l),

i.e., u(l) = [u(l)
1 , u(l)

2 , . . . , u(l)
m ]>, w(l)

rp is the (r, p) element of W (l), and

δ
(l)
r =

∂E

∂<[u(l)
r ]

+ j
∂E

∂=[u(l)
r ]

. (4)

Then, applying the chain rule for real and imaginary parts independently, we have

∂E

∂w(l)
rp

=
∂E

∂<[w(l)
rp ]

+ j
∂E

∂=[w(l)
rp ]

= δ
(l)
r o(l−1)

p , l = 2, . . . , L, (5)

where z denotes the complex conjugate of z and o(l−1)
p is the pth element of ol−1. For

simplification purposes, we omit the subscript of the training index, n. Then, δ
(l)
r is

calculated by the chain rule:

<[δ(l)r ] =<
[
∑
q

δ
(l+1)
q w(l+1)

qr

]
∂<[φ(l)(u(l)

r )]

∂<[u(l)
r ]

(6)
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=[δ(l)r ] ==
[
∑
q

δ
(l+1)
q w(l+1)

qr

]
∂=[φ(l)(u(l)

r )]

∂=[u(l)
r ]

. (7)

2.2.2. Amplitude-Phase Type

In the case of the amplitude-phase type activation function f (z) = tanh(|z|) exp(j arg z),
the absolute value and phase of the entries of W (l) are independently updated by the
following rule [42,43]:

|w(l)
rp | ←|w

(l)
rp | − ηδ|w(l)

rp |, arg w(l)
rp ← arg w(l)

rp − ηδ arg w(l)
rp , (8)

δ|w(l)
rp | =

(
1− |(o(l)r )2|

)(
|o(l)r | − |d

(l)
r | cos

(
arg o(l)r − arg d(l)r

))
|o(l−1)

p | cos θ
(l)
rp

− |o(l)r ||d
(l)
r | sin

(
arg o(l)r − arg d(l)r

) ol−1
p

u(l)
r

sin θ
(l)
rp , (9)

δ arg w(l)
rp =

(
1− |(o(l)r )2|

)(
|o(l)r | − |d

(l)
r | cos

(
arg o(l)r − arg d(l)r

))
|o(l−1)

p | sin θ
(l)
rp

+ |o(l)r ||d
(l)
r | sin

(
arg o(l)r − arg d(l)r

) ol−1
p

u(l)
r

cos θ
(l)
rp , (10)

where θ
(l)
rp = arg o(l)r − arg o(l)p − arg w(l)

rp , and d(l−1) = φ(l)
(

d(l)W (l)
)

.

2.2.3. Absolute Activation Function

Since the output of the absolute activation function φ(z) = |z| is real-valued, the layers
after the absolute activation function are treated as ordinary RVNNs. Suppose that the
activation function of the lth layer is the absolute function; then, the chain rule is given by
Equations (6) and (7).

3. Experimental Setting and Dataset

We used two datasets: (i) our original SSVEP dataset (original dataset) and (ii) an
open SSVEP benchmark dataset (open dataset) [44]. The original dataset was designed to
demonstrate the distinctiveness of harmonic stimulus flicker frequencies. The stimulus
flicker frequencies were 6.0, 6.5, 7.0 7.5, and 8.0 Hz, and their second harmonics were 12, 13,
14, 15, and 16 Hz. With CCA-based methods, it is difficult to classify these harmonic pairs.

3.1. Original Dataset

We used a refresh rate of 60 Hz, a 27-inch LCD monitor, and Psychtoolbox-3 for
stimulus presentation [45]. For EEG recording, we used the MATLAB data acquisition
toolbox, g.tec active EEG (g.GAMMAcap2, g.GAMMAbox, and g.LADYbird), a TEAC
BA1008 amplifier, and a Contec AI-1664 LAX-USB A/D converter. The sampling frequency
was 512 Hz. A reference electrode was placed on the right earlobe, and the ground electrode
was placed on FPz. We used nine electrodes for recording: O1, O2, Oz, P3, P4, Pz, PO3,
PO4, and POz.

Five healthy subjects (four males and one female, 26.8 ± 7.43 y.o.) voluntarily partici-
pated in the experiment. The experiment procedure was approved by the ethics committee
of the University of Electro-Communications, and it was conducted in accordance with the
approved research procedure and with the relevant guidelines and regulations. Informed
consent was obtained from all the subjects.

Figure 2 depicts the stimuli presentation setting of our experiment. The distance from
the eyes of the subject to the monitor was 70–80 cm. The target queue was randomly
displayed for two seconds, and flicker stimuli were then presented for five seconds. The
stimuli were given with a white and black box. One trial consisted of ten randomly
ordered target stimuli, and ten trials were conducted for each subject. The subjects took a
rest between trials as needed. The subjects were asked not to blink during the stimulus
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presentation. Due to the latency of the SSVEP, we extracted EEG from 0.14 s after the start
of stimulation. The length of the EEG data for one target was five seconds. We rearranged
the data and generated data 1000 ms and 500 ms in length with no overlaps. For each
subject, the number of pieces of data were 500 and 1200 for data of 1000 ms and 500 ms in
length, respectively. We applied band-pass filtering from 4 Hz to 45 Hz. The classification
accuracy and ITR were evaluated using ten-fold cross validation.

1 2 3 4 5
6 7 8 9 A

33
33

18

15

176

188

600600

340

Figure 2. Stimulus presentation: unit, mm; 1: 6.0 Hz, 2: 6.5 Hz, 3: 7.0 Hz, 4: 7.5 Hz, 5: 8.0 Hz, 6:
15 Hz, 7: 16 Hz, 8: 12 Hz, 9: 13 Hz, and A: 14 Hz.

3.2. Open Dataset

The open dataset consisted of ten subjects’ SSVEP data [44]. There were twelve targets
(9.25, 9.75, ..., 14.25, and 14.75 Hz). Four-class phase modulation was also used (0π, 0.5π,
1.0π, and 1.5π). There were 15 trials for each target, and 1 trial lasted four seconds.

To utilize the phase modulation, we generated training and test data as follows:
(i) applied band-pass filtering; (ii) extracted the data with offset toff from the onset of
the stimulus for each trial, with the data length being 500 ms or 1000 ms; (iii) generated
training/test data by five-fold cross-validation, i.e., for each target, 12 trials for training data
and 3 trials for test data; and (iv) calculated classification accuracy and ITR and averaged
them for several offset values t. For the 500 ms data, we used toff ∈ {0, 500, . . . , 3500}, and
for the 1000 ms data, we used toff ∈ {0, 1000, . . . , 3000}.

3.3. Methods for Comparison

We compared the proposed method with (i) CCA [23], (ii) combined CCA [44], and
(iii) CCNN [29].

For the CCA and combined CCA, we used the fundamental and second harmonics of
the stimulus flicker frequency for the reference signal. We implemented them using Python
3.6.8, Numpy 1.19.1, and Scikit-learn 0.23.1.

For the CCNN, we used the same network structure as in [29], and we applied DFT
with zero-padding; then, a complex spectrum from 3 Hz to 35 Hz was input to the network
in a similar manner as [29]. The frequency resolution was set to 0.293 Hz. For the CCNN
and CVCNN (proposed), the network parameters were fixed or determined by the grid
search listed in Table 2 and implemented by using TensorFlow 1.14.0 and Keras 2.2.4 in
addition to the software above.
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Table 2. Parameter setting of neural networks.

Parameter Original Dataset Open Dataset

No. of epochs 250 250
Mini-batch size 30 32

Dropout rate {0.25, 0.3, . . . , 0.5} {0.25, 0.3, . . . , 0.6}
Learning rate {0.0005, 0.001, 0.005, 0.01} {0.001, 0.005, 0.01}

L2 regularization {1e− 4, 1e− 31e− 2} {1e− 4, 1e− 31e− 2}

4. Results

The classification performance of the SSVEP-based BCI was evaluated in terms of
the classification accuracy and ITR by using the cross validation for each subject. ITR I
(bit/min) was obtained by the following equation:

I =
60
T

(
log2 M + P log2 P + (1− P) log2

(
1− P
M− 1

))
, (11)

where T (s) is the time to output the command, P is the mean classification accuracy, and
M is the number of targets [2]. We assumed that the latency of the subject’s attention to the
target stimulus was 0.5 s and obtained the ITR.

4.1. Original Dataset

We excluded subject 2 from the analysis because the recorded EEG data were inap-
propriate because some electrodes were not set up properly. Figures 3 and 4 show the
classification accuracies and ITR. The proposed method exhibited the best classification
accuracy and ITR for all data lengths. Since the stimulus flicker frequencies included
harmonic pairs, the CCA-based methods performed worse than the CNN-based methods.
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Figure 3. Classification accuracy and ITR for the original dataset with a data length of 1000 ms.
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Figure 4. Classification accuracy and ITR for the original dataset with a data length of 500 ms.

To show the classification performance for the harmonic pairs, we show the misclassi-
fication rate for another target harmonic pair in Figure 5 for the 1000 ms data length. For
example, the bar of 12 Hz represents the misclassification rate at which the 12 Hz target was
misclassified as the 6 Hz target. The figure shows that the CCA-based methods showed
higher misclassification rates than the CNN-based methods.

Figure 5. Misclassification rate for another target of harmonic pair.

4.2. Open Dataset

Figures 6 and 7 show the classification accuracy and ITR for the open dataset. Al-
though the dataset did not have harmonic flicker frequency stimuli, the proposed method
exhibited the best classification accuracy and ITR for the 500 ms data length. For the
1000 ms dataset, the proposed method showed almost comparable results with the state-
of-the-art method, the combined CCA, because the accuracy rates saturated to 100% for
some subjects.
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Figure 6. Classification accuracy and ITR for the open dataset with a data length of 1000 ms.
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Figure 7. Classification accuracy and ITR for teh open dataset with a data length of 500 ms.
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5. Conclusions

We proposed a complex valued convolutional neural network (CVCNN) structure and
absolute activation function for the classification of the SSVEP-based BCI. The SSVEP-based
BCI is often realized by an LCD display; however, it has a limitation of the stimulation
frequency due to the refresh rate. Moreover, the conventional CCA-based SSVEP classi-
fication methods (e.g., [23,27]) have the disadvantage that it is difficult to discriminate
harmonic frequency stimuli (e.g., 6 Hz and 12 Hz). This problem hinders performance
improvement of the SSVEP-based BCI in terms of the number of available commands and
ITR. The proposed method overcomes this problem and outperforms state-of-the-art SSVEP
classification methods by using feature extraction in the frequency domain of complex
valued networks and the representation learning of convolutional neural networks.

Our original data are based on a small number of participants (five subjects and
four available data); therefore, further investigation is needed. Future work includes
extending the proposed method for phase modulation of SSVEP applications and self-
paced BCI applications.
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