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Abstract: Despite technological progress, we lack a consensus on the method of conducting auto-
mated bowel sound (BS) analysis and, consequently, BS tools have not become available to doctors.
We aimed to briefly review the literature on BS recording and analysis, with an emphasis on the broad
range of analytical approaches. Scientific journals and conference materials were researched with a
specific set of terms (Scopus, MEDLINE, IEEE) to find reports on BS. The research articles identified
were analyzed in the context of main research directions at a number of centers globally. Automated
BS analysis methods were already well developed by the early 2000s. Accuracy of 90% and higher had
been achieved with various analytical approaches, including wavelet transformations, multi-layer
perceptrons, independent component analysis and autoregressive-moving-average models. Clinical
research on BS has exposed their important potential in the non-invasive diagnosis of irritable bowel
syndrome, in surgery, and for the investigation of gastrointestinal motility. The most recent advances
are linked to the application of artificial intelligence and the development of dedicated BS devices.
BS research is technologically mature, but lacks uniform methodology, an international forum for
discussion and an open platform for data exchange. A common ground is needed as a starting point.
The next key development will be the release of freely available benchmark datasets with labels
confirmed by human experts.

Keywords: bowel sound; automated analysis; intestine; motility; recording

1. Introduction

Out of nearly eight billion people currently inhabiting the Earth it is likely that almost
all emit and have heard bowel sounds (BS). Yet, very few are able to exploit these BS for
patients’ benefit. BS are an absolutely ubiquitous phenomenon and—as a highly intuitive
subject of study—have attracted attention since antiquity, leading to discoveries of altered
BS in diseases ranging from ileus to diarrhea [1]. As BS are generated by contractions of
the intestine [2], they naturally reflect its motoric activity, which is notoriously difficult to
measure directly (invasively) and assess [3].

BS can be compared to heart sounds, which have proved fundamental for clinical
medicine, as they are (1) closely linked to vital processes underlying life and health,
(2) produced frequently (albeit not rhythmically), (3) affected by a broad range of intrinsic
and extrinsic factors. BS can therefore be considered a vital sign, especially when bowel
function is lost or severely disturbed. Despite this evidence of the usefulness of BS, their
use has been hampered by a lack of effective tools, and even negative opinion largely
stemming from the limits of brief clinical auscultation [4,5].

BS are challenging to investigate because of their seemingly random nature, extremely
broad dynamic range, and potential dietary influence. As we demonstrate in this review,
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modern technologies circumvent some of these limitations. Automated identification of
bowel sounds already enables their use as a vital sign [6]. Moreover, it seems that extraction
and analysis of more complex data (patterns, variability, spectra) may uncover in more
detail the basic physiology of the gastrointestinal tract and the nature of its maladies.

Despite technological progress, practical BS solutions are not available to doctors. We
are therefore at a turning point when technological BS analysis maturity is being translated
into practice and, hopefully, will propel clinical BS research to unravel its true potential.
To facilitate this transition, we aimed to briefly review the literature on BS recording and
analysis. We show the current position of BS research and attempt to diagnose the missing
elements that currently thwart the widespread application of automated BS analysis in
clinical practice.

2. Materials and Methods

On 19 July 2018 and then on 11 March 2021 Scopus (Elsevier, Amsterdam, The Nether-
lands) was queried with the following term: TITLE(“abdominal sound*”) OR TITLE(“bowel
sound*”) OR TITLE(“intestinal sound*”) OR TITLE(“bowel noise*”) OR TITLE(“abdominal
noise*”) OR TITLE(phonoenterography) OR KEY(“abdominal sound*”) OR KEY(“bowel
sound*”) OR KEY(“intestinal sound*”) OR KEY(“bowel noise*”) OR KEY(“abdominal
noise*”) OR KEY(phonoenterography). The search yielded 218 documents. The abstracts,
if available, were reviewed. One article known to the authors and retrieved by a similar
search on MEDLINE was added to the list [7], and two other articles were identified from
other sources [8,9]. We searched MEDLINE and IEEE.

3. Results
3.1. 1950s–1960s

One of the earliest articles on the link between BS (Figure 1) and intestinal motility was
published in 1955 [10]. In 1958, the absence of BS in severely ill patients was described [11].
Sprung and Roisch first mentioned the recording of BS for the purpose of small intestinal
motility assessment [12,13]. Two years later, the first intestinal stimulation test with BS
analysis was performed [14]. In the early 1960s, BS were the subject of a work by Von
Ardenne et al. [15]. Five years later, apparatuses for the registration of BS were presented
by two teams [16,17]; in 1967 the term “phonoenterography” was introduced in an article
published in “The Gut” [18].

3.2. 1970s

The 1970s saw the development of new themes in BS research: computer [19] and
frequency [20] analysis, pre- and postprandial BS recording [21], and the search for the
anatomical origin of BS [22]. The first approach to computerized analysis involved a lower
threshold for sound amplitude and an upper threshold for its duration [19]. The typical
frequency of abdominal sounds was found to be either 100 or 300 Hz, although this also
included stomach rumblings.

3.3. 1980s

The 1980s brought a still better understanding of BS. It was found that in neonates, BS
rarely exceed 1500 Hz [23]. The usefulness of the phonoenterogram was proposed in the
diagnosis of acute ileus [24], kidney failure [25], and acute appendicitis [26]—all of which
produce acute abdomen with reduced peristalsis. Further studies on pre- vs. postprandial
BS were conducted in the frequency domain [27]. Phonoenterography with diurnal BS
variation analysis was found to be of use in pediatrics [28]. In a proof-of-concept study
the use of BS biofeedback with an electronic stethoscope was found to have considerable
therapeutic potential in irritable bowel syndrome [29,30].
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Figure 1. Spectrograms depicting bowel sounds recorded using a contact microphone in the right 
lower quadrant of the abdomen. (A) An individual short bowel sound is clearly discernible in the 
middle (~425 ms; indicated by the arrow at the top). The signal below 250 Hz is composed of venous 
hum and heart beats. (B) A series of over 50 bowel sounds (arrows) occurring in less than 1.5 s. 
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Five-channel BS analysis was performed using dedicated equipment (Phonoentero-
analyzer PEA-06) with purpose-built microphones [31]. Signal processing and analysis 
involved rectifying, peak detection and logarithmic transformation. Artifacts resulting 
from movements were controlled using an additional microphone and breathing analysis. 
Phonoenteroanalyzer PEA-06 was used for overnight recordings and during three differ-
ent stimulation tests. The authors stressed that the method was “objective, continuous, 
non-invasive”. 

Figure 1. Spectrograms depicting bowel sounds recorded using a contact microphone in the right
lower quadrant of the abdomen. (A) An individual short bowel sound is clearly discernible in the
middle (~425 ms; indicated by the arrow at the top). The signal below 250 Hz is composed of venous
hum and heart beats. (B) A series of over 50 bowel sounds (arrows) occurring in less than 1.5 s.

Five-channel BS analysis was performed using dedicated equipment (Phonoentero-
analyzer PEA-06) with purpose-built microphones [31]. Signal processing and analysis
involved rectifying, peak detection and logarithmic transformation. Artifacts resulting
from movements were controlled using an additional microphone and breathing analysis.
Phonoenteroanalyzer PEA-06 was used for overnight recordings and during three differ-
ent stimulation tests. The authors stressed that the method was “objective, continuous,
non-invasive”.

3.4. 1990s

In the 1990s, research on BS analysis accelerated (Figure 1). Yoshino et al. distinguished
three types of BS with peak frequencies of 273, 632 and 612 Hz. The different types of
sound were associated with the need for surgical treatment [32]. Long-term, real-time BS
analysis using a microprocessor gave encouraging results, despite external and internal
noise [33]. The application of a computer-aided sound analysis system using 124 people in
a silent environment over 10 min periods revealed that the mean BS length was 20 ± 1 ms
in healthy people and could increase more than twofold in acute surgical pathology, such
as cholecystitis or intestinal obstruction [34]. The number of BS and their amplitude were
also affected by diseases. The system was proposed for use mainly in surgical wards, but
also for pharmacological studies and motility disorder diagnostics [35]. Other apparatus
for automated BS analysis was introduced by a Chinese group [36]. In addition, BS were
automatically analyzed in a rat model of small bowel obstruction [37] by a team which
moved on to create a signal filtering solution to remove noise from BS recordings [38].
The team used signal envelope (Hilbert transform) and amplitude thresholding with
good results [39]. Finally, in 1999, Craine et al. reported large differences in sound-to-
sound intervals between patients with irritable bowel syndrome and healthy controls
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(452 ± 35 ms vs. 1931 ± 365 ms, p = 0.0001) [40]. The cut-off value was set at 640 ms,
yielding a sensitivity of 91% and specificity of 100%. Their work remains one of the most
impressive examples of the clinical potential of BS analysis.

3.5. Thessaloniki Group

Concurrently, in 1999, Hadjileontiadis et al. of Aristotle University of Thessaloniki
in Greece applied a multiresolution analysis with hard thresholding (wavelet transform-
based stationary–nonstationary filter) to BS, which were further analyzed using higher-
order crossings [41]. The authors reported excellent results with no need for a reference
microphone. In their view, the method was ready for clinical use [42]. The team later
proposed kurtosis-based [43] and fractal dimension analysis of BS (and lung sounds),
which was robust to changes in duration and in amplitude [44,45]. Their final work focused
on wavelet-based algorithms with fractal dimension analysis [45–47]. Hadjileontiadis
argued that a wavelet transform-based stationary–nonstationary filter could be applied in
real-time due to the low computational cost. Further BS projects conducted in Thessaloniki
by Dimoulas et al. concerned Wiener filtering with discrete wavelet transform and wavelet
packets [48]. Dimoulas et al. produced a system for BS segmentation, visualization and
browsing [49]. They also proposed the use of neural networks in BS analysis [50], in order to
permit long-term BS recording and motility disorder diagnosis. The model involved time–
frequency, wavelet parameters and multi-layer perceptrons. The accuracy of recognition
was 95%. The authors also developed other solutions for long-term BS recording and
automated analysis, including a dedicated visual-assisted application [51]. The software,
intended for long-term multichannel BS recordings, was further improved in 2016, notably
offering sound localization capabilities [52].

3.6. Nancy Group

In 2001, Ranta et al. presented unsupervised denoising, segmentation and charac-
terization of BS. They optimized the algorithm by Hadjileontiadis et al. and recorded
patients [53]. In the following decade this group continued BS research to analyze the
anatomical distribution of BS and propose a source localization method [54], perform
principal component analysis of BS [55] and obtain more in vivo recordings [56]. The habil-
itation thesis of one coauthor, V. Louis-Dorr, contains details of the work and can be found
in the French open archives [57]. The work of Ranta et al. is particularly interesting in the
context of multichannel recording and spatiotemporal BS distribution [56].

3.7. Yamanashi/Tokyo Group

In 2004, Sakata et al. used high-sensitivity accelerometers in place of microphones,
along with an independent component analysis algorithm, to automatically detect BS [58].
They then added a wavelet filter to their scheme, improving the overall results; a detection
ratio (sensitivity) of 99% with <2% false positives was achieved [59]. Sakata et al. also
showed that BS recordings are a source of patients’ stress [60] and that lifestyle changes may
influence BS more than types of food [61]. They also demonstrated that the frequency of
low and normal intensity BS did only correlate to periods of digestion [62]. In recent work
led by Sakata, a bowel sound monitoring system was employed to better understand the
relationship between motility and inflammation, indicated by interleukin-6 concentration
in the blood [63]. Together with Yamada, Sakata also described a two-step approach
to real-time BS identification under noisy conditions, for use in intensive care units [64].
Sakata’s group was successful in predicting BS occurrence using the seasonal autoregressive
integrated moving average (SARIMA) model [65], a feat that paves way for identifying new
intestinal physiology. Kodani and Sakata attempted to solve the problem of clothes rubbing
against the microphone, which produces artifacts that practically preclude any bowel sound
analysis in a moving subject. Application of a number of filters (notch, wavelet, low-pass)
was successful [66]. Although the presence of many loud artifacts is likely to decrease the
number of high-quality recordings available for analysis, considerable diagnostic value
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may be retained even with intermittent high-quality sampling. This stresses the need for
microphones specific for BS, a challenge that was also addressed by this group by joining
microphones and a vibration sensor [67].

3.8. Jeonju Group

Interesting work on BS analysis was done by Kim et al. who conducted a regression
analysis of BS shimmer and jitter. They demonstrated a strict correlation with radiographic
colon transit time in a preliminary study [68] and proposed a back-propagation neural
network model of BS [69]. Kim et al. underscored the potential of the method to non-
invasively monitor bowel motility [70]. Interestingly, Kim et al. mention recording the
ascending, transverse and descending colons. It is known that various segments of the
colon are superimposed—the abdomen is heterogeneous and therefore sound localization
constitutes a challenge [56].

3.9. Tokushima Group

In 2013, Emoto et al. made an observation that remains pertinent today: although
BS recording is non-invasive and inexpensive, there is no consensus regarding automated
analysis protocol [71]. They proposed an algorithm that was 88% sensitive and 92%
specific—a 3 dB bandwidth of “frequency peaks in the autoregressive moving average
spectrum”. The indicator selected by Emoto et al. as the most relevant was the sound-to-
sound interval. We fully concur with the Japanese team that a general agreement on the
method should be reached and that it should build on the simplest solution available to
allow for more knowledge on clinical relevance to be gathered. Emoto et al. also studied
BS with non-contact microphones [72]. The team achieved automated BS identification
through an autoregressive moving average of 91% accuracy and concluded that BS duration
reflects intestinal motility [73]. The group successfully applied unsupervised BS detection
in non-contact recordings and determined three clinically pertinent parameters: sound-
to-sound interval, which was associated with frequency (per minute), as well as the ratio
of signal to noise [74]. These achievements can be considered a successful application of
artificial intelligence-based BS detection in non-contact recordings.

3.10. Los Angeles Group

In 2014, Spiegel et al. designed a disposable, non-invasive acoustic biosensor to
monitor bowel sounds across the acoustic spectrum, including hertz ranges [8]. This
acoustic gastrointestinal surveillance system included software counting acoustic motility
events based on frequency and reporting the number of their occurrences per minute—
a metric called the ‘intestinal rate’. This setup was used in 28 postoperative patients to
successfully detect postoperative ileus [9]. The acoustic gastrointestinal surveillance system
achieved approximately 80% sensitivity and specificity, 83% area under the ROC curve,
and showed its usefulness in advancing patients’ diets. Crucially, this system has obtained
regulatory approval from the American Food and Drug Administration (FDA).

3.11. Perth Group—The Noisy Guts Project

Many of the recent advances have been spearheaded by an Australian team led by
Prof. Barry Marshall. In 2018, Inderjeeth et al. performed a systematic review of BS analysis
methods and concluded that none of the 14 selected approaches were ready for clinical
application [75]. In the article that followed, they demonstrated the capability of a low-cost
system employing piezoelectric transducers as contact microphones to identify migrating
motor complexes [76]. We were already testing a prototype piezoelectric BS microphone
when the article was published and can confirm that this method is promising. However,
the Australian team has accomplished this with refined machine learning approaches that
are now freely available and which were reviewed methodologically by The Noisy Guts
team in 2019 [6]. Moreover, the group proposed a mathematical model of BS generation [77],
and a clinical application of the completed BS framework soon followed. The results of
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their proof-of-concept investigation of BS analysis for irritable bowel syndrome diagnosis
are inspiring: 87% sensitivity and specificity were achieved in an independent cohort [78].
It would seem that the Australian team is heading towards the production of a medical
device for BS recording and analysis. Overall, we consider the systematic and multifaceted
work of The Noisy Gut Project as a turning point in BS research. Inderjeeth et al. are
positive about BS analysis value generally, probably due to their two studies indicating
excellent future potential. We consider this optimism is much needed in a field that has
seen a number of proof-of-concept demonstrations but too few practical applications.

3.12. Other Recent Technological Developments

The 2000s brought about other technological developments from various groups. In
2002, a letter by a Japanese team elaborated on the theme of automated BS analysis [79].
Jeon et al. used an electronic stethoscope and WAV (wave form audio format) file analysis
to study the relationship between meal ingestion, 5-hydroxytryptamine concentration in
the blood and BS [80]. A computer phonoenterography study by a Russian team assessed
BS of healthy children in the context of fasting and the first meal of the day [81].

In 2008, a system for the recording of BS in preterm neonates was proposed [82]. The
same year, a Chinese team reported on a peripheral circuit with USB (Universal Serial Bus)
controller for real-time BS “detection, display and storage” [83]. Zhang et al. also reviewed
BS detection algorithms (in Chinese) [84]. In 2009, a device was developed that allowed
visualization of BS intensity over the abdomen in the form of a colored map [85]. It is clear
that such a device could prove valuable for pre- or post-surgical monitoring. Additionally
in 2009, Delfini et al. used five electret microphones attached to a PC to acquire signals from
five volunteers and further analyzed them in LabVIEW and MatLab [86]. In 2011, Tsai et al.
recorded BS with an electronic stethoscope placed in the right lower abdominal quadrant,
and applied LabVIEW filtering using digital infinite impulse responses to automatically
analyze the signal [87]. A more recent study using LabVIEW classified BS into absent,
hypo- and hyperactive [88].

Li et al. automatically extracted BS by assessing their energy and duration; afterwards
adaptive noise filtering was applied and characteristics were calculated [89]. Lin et al. used
a higher order statistical approach to amplify BS [90]. In 2014, Ulusar presented method-
ology for real-time and long-term BS monitoring, based on a naïve Bayesian classifier,
minimum statistics and spectral subtraction [91]. A ready-to-use portable BS monitoring
apparatus was presented by Al Mamun et al., consisting of amplifiers, converters and
signal processors, capable of demonstrating BS occurrence [92]. The system is also intended
to inform the artificial pancreas [93], a challenge more recently addressed by using Mel-
frequency capstral coefficients and wavelet entropy [94] and support vector machines [95].
Sheu et al. showed the efficiency of a higher-order-statistics fractal dimension method for
the detection of BS in different types of noise [96]. Zaborski et al. employed adjustable
grids to indicate differences between sounds recorded in patients with peritonitis and
healthy volunteers [7].

A sensor system with two microphones—called the “ZigBee” module—and a wireless
connection were prepared for real-time monitoring of BS after surgery [97,98]. Baronetto
et al. from Erlangen developed an elastane T-shirt fitted with eight microphones, of which
seven are located above the abdomen. This was used to obtain a signal in which over
3000 BS were manually annotated. Clustering revealed the presence of four main mor-
phologies of BS [99]. Using an array of microphones maximizes the available information
and may enable the tracing of space-related effects; this could potentially prove useful in
characterizing migrating motor complexes.

In 2016, Wang et al. described a wearable BS recorder with multiple channels [100].
The same year, Zhou et al. mooted the possibility of detecting BS with spectral entropy
analysis [101]. Huang et al. used time series Gaussian Hamming distance to identify BS
of one type only [102]. What warrants attention here is the care the team took to simplify
the solution, which finally yielded convincing results. Yin et al. used an artificial neural
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network for BS analysis after denoising with a least mean square approach. Domains
of both time and frequency were analyzed by creating feature vectors [103]. The same
team then experimented with Legendre fitting, obtaining positive results [104]. In 2018,
the group, based in Beijing and Shenzhen, presented a wearable BS monitoring system
making use of a support vector machine [105]. In 2018, a team from Tsinghua University
in Peking demonstrated that voice recognition neural networks can be applied to BS with
high accuracy [106]. A flexible, skin-mounted electronic device/sensor with wireless com-
munication capacity was developed at the same university, intended for BS recording [107].
The Tsinghua University group used their wireless sensor to obtain 20 clinical recordings
lasting 24 h, from which 8000 sound segments were extracted in order to train convolu-
tional neural networks. The resulting accuracy of 92% demonstrated the high potential of
practical application and the technology’s maturity [108].

In terms of analytics, Kölle et al. devised an intrinsic mode function-fractal dimension
method for filtering artifacts, including the frequency range where BS typically occur [109].
Chen and Montlouis explored individual wave components as a basic building block for
synthesizing artificial bowel sounds in the absence of large publicly available datasets, and
confirmed its utility in extracting information by comparing it with a clinical sample [110].
This work, together with new solutions from the group in Tokyo, has contributed to
differentiating between noise and BS.

Examples of various analytic techniques employed to study BS around the world are
presented in Table 1.

Table 1. Diversity of analytic techniques enabling or facilitating the identification of bowel
sounds (BS).

Group Home City Examples of BS Research Techniques

Antalya, Turkey Naïve Bayesian classifier, minimum
statistics and spectral subtraction [91]

Beijing, China
(multiple groups)

Convolutional neural networks,
Legendre fitting, support vector

machines, wavelet decomposition
[103–106]

Chengdu, China Spectral entropy analysis [101]

Jeonju, Korea Regression analysis of BS shimmer and
jitter, back-propagation neural network [68–70]

Los Angeles, CA, USA Bayesian classification,
frequency-based counting [8,9]

Nancy, France Unsupervised denoising [53–56]

Perth, Australia Neural network: logistic
regression–based machine learning [76–78]

Saloniki, Greece

Wavelet transform-based
stationary-nonstationary filter,

higher-order crossings, kurtosis-based
and fractal dimension analysis,

neural networks

[41–52]

Singapore Gaussian Hamming distance [102]
Szczecin, Poland Adjustable grids [7]

Tainan, Taiwan Higher-order-statistics
fractal dimension [96]

Tokushima, Japan Autoregressive moving average
spectrum [71–74]

Tokyo, Japan

Independent component analysis with
wavelet filtering, seasonal
autoregressive integrated

moving average

[58–67]

Trondheim, Norway Intrinsic mode
function-fractal dimension [109]
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3.13. Recent Clinical and Translational Progress

The progress of clinical research on BS has been relatively slow. A phonoenterography
study conducted on 75 surgical patients confirmed the changes to BS in peritonitis [111].
A blinded study of doctors showed that clinical auscultation may be sufficient to detect
ileus [112]. However, auscultation by qualified nurses was insufficient to guide feeding
in critically ill patients [113] or detect ileus, according to a systematic review [114]. Using
automated BS analysis, Ozawa et al. found that peristalsis is less active in Parkinson’s
disease and multiple system atrophy, two important neurological diseases with possible
gastrointestinal involvement [115].

In 2012, Ching et al. employed a commercially available electronic stethoscope to
perform six 8 s recordings, replicating/reproducing a careful clinical examination [116].
The study was performed with 71 patients and involved basic time- and frequency-domain
parameters. The auscultation was found to be insufficient for the diagnosis of intesti-
nal obstruction, but useful for determining the possible site of obstruction. Felder et al.
demonstrated weak predictive value of clinical auscultation for the diagnosis of small
bowel obstruction and similar conclusions were reached by Brum et al. [5,117]. Li et al.
reviewed the literature on the utility of BS in intensive care units and concluded that the
potential of their use was high, but reasonable practice was needed [118,119]. A random-
ized study questioned the utility of abdominal auscultation in surgery to indicate the end
of postoperative ileus; this study, however, assumed that first flatus after surgery more
accurately reflects motility than does acoustic bowel activity [120]. Another study showed
no relevance of clinically assessed BS or flatus for the tolerance of feeding reintroduced
after surgery [121]. On the other hand, Ulusar et al. presented a system that was able to
analyze BS in real time in order to facilitate early feeding after surgery [122]. Struble and
Moser stressed the variability of the sounds and their limited usefulness in diagnosing
short bowel obstruction [123].

The insufficient reliability of clinical auscultation prompted Dumas et al. to construct
a system for continuous BS monitoring in neonates; a single stethoscope was used, attached
with a hydrogel patch for over 3 h. The authors suggested that a BS vital sign is needed
and that a real-time analysis could help guide automatic feeding pumps [124]. BS recorded
with a single stethoscope were used to investigate the efficacy of exercises on bowel
motility [125,126]. Kusainov and Makukha demonstrated that a microelectromechanical
system microphone may be used in an electronic stethoscope [127]. Of interest is Liu et al.’s
demonstration that oscillating gas bubbles are the source of BS [2].

In 2018, Mohnani and Eisenfeld applied wavelet Bayesian denoising to demonstrate
the capacity for continuous bowel sound monitoring in patients with necrotizing entero-
colitis [128]. A score between 0 and 9 was used to summarize the level of BS activity. A
2018 study by Ortigoza et al. demonstrated the progress made in BS analysis up till then:
it was combined with electroencephalography and near-infrared spectroscopy in a group
of neonates to objectivize the assessment of the maturity of the neonates’ gastrointestinal
tract [129].

In 2020, Wang et al. (Beijing) successfully applied denoising and wavelet decompo-
sition to reveal anesthesia-related attenuation of intestinal acoustic activity [130]. Worth
noting, the team reported on tests of acoustic parameters [131], which may be important
for harmonizing various approaches in the future.

Overall, the timeline of BS clinical research demonstrates a struggle against technical
difficulties, examples of physiologically informative BS analyses and a growing awareness
of the limits of standard clinical auscultation.

4. Discussion

Automated BS analysis is an intuitive research subject with major potential for clinical
application. Significant progress in relevant technical capability has been made since the
1990s globally, with a surge in the past decade, as evidenced by a series of studies reporting
high accuracies (Table 2) and independently developed approaches to BS recording. The
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new frontiers are extraction of complex traits, optimization of recording protocols and
techniques, artifact filtering, development of easily accessible software and hardware,
harmonization of BS definitions, and the establishment of platforms for BS scientific debate,
along with benchmark datasets.

Table 2. Accuracy of bowel sound identification methods developed by selected groups from around
the world, demonstrating successful application of diverse approaches. However, accuracy reported
by teams based in the cities listed cannot be directly compared because of largely different recording
techniques, datasets and definitions of bowel sounds.

Group Home City Accuracy Years (Publications)

Saloniki, Greece 95% 1999–2011
Tokushima, Japan 91% 2013–2018
Antalya, Turkey 94% 2014
California, USA 83% 2014–2016
Beijing, China 92% 2018–2019

Perth, Australia 87% 2018–2020
Trondheim, Norway 75% 2019

Apart from technical aspects, further challenges in BS research need to be addressed
by clinicians. First, the search for a relationship between the motoric activity of the gut
and intestinal sounds needs to be described in more detail. Preliminary data suggests that
antroduodenal and colonic manometry may contribute to this issue. Other motility studies
and devices, such as oro-anal transit, wireless motility capsules, and even electrogastrog-
raphy, might be helpful as well. These clinical methods may, however, prove insufficient
to elucidate the origin of BS. Experimental studies will be needed to address this issue by
generating models to describe relationships between luminal contents (gas, liquids, solids),
contractions (strength, duration, propagation, distance), the intestine (orientation/shape,
diameter, elasticity, surface irregularities), and the abdominal cavity (dimensions, pressure
and its changes during respiration). It is likely that subtypes of BS exist because of differ-
ences in such properties. Physiology research on the influence of vagal tone, foodstuffs,
inflammation and similar topics will also be important. There is a surprising lack of such
experimental and physiologic studies. Firm establishment of mechanistic foundation for
clinical BS research appears necessary.

Second, we need to determine BS reference values across different age groups, genders,
dietary patterns, nutritional statuses, lifestyles and ethnicities. These studies will need
to have not only cross-sectional, but also cohort design. It is possible that other factors,
yet unknown, will show consistent relationships with BS parameters. These may involve
medication, e.g., opioids or iron that cause constipation, as well as laxatives. Any future
clinical application will probably very much depend on such knowledge.

Third, observational studies of patients with various diseases involving hypo- and
hypermotility need to be conducted. Typical examples include irritable bowel syndrome—
which was recently linked to previously overlooked food sensitization—and post-operative
ileus. BS in diabetes have also been explored, but to inform the artificial pancreas algo-
rithms; it is noteworthy that BS in diabetes may be disturbed because of diabetes-related
disorders of small intestinal motility. Such problems could be encountered in sclero-
derma. An obvious candidate for BS characterization is chronic constipation, along with
Hirschsprung’s disease. Other gastroenterological conditions include pancreatitis and
cystic fibrosis, as well as enteral/parenteral feeding and infectious diarrhea. BS could
also be explored in obesity (gastrointestinal hormones), cardiovascular disease, oncology
(treatment toxicity), neurology (Parkinson’s disease, multiple sclerosis), nephrology, inten-
sive care, thyroid diseases, and psychiatry. The possibilities are numerous, and they will
likely be fully researched in the decade after clinicians receive a fully operational, reliable
system that automatically provides quantitative data. Due to the non-invasive nature of
the measurements it is possible that pediatric research will progress as quickly as that into
adults, not always the case previously.
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Fourth, the relationships between markers of intestinal homeostasis or function and
BS need to be studied. Examples include fecal calprotectin, zonulin, chromatographic
assessment of intestinal permeability, digestion and absorption of specific foodstuffs. A
number of omics could be integrated into BS research, and methods could be adapted to
better study animal models of gastrointestinal diseases.

The areas of research into BS continue to develop and broaden. However, the BS
community first needs to bring into final fruition the very extensive work of several
dedicated teams and dozens of individual researchers striving in this field to date.

5. Conclusions

Multiple diverse methods have proved to be efficacious in automated BS identification.
Nevertheless, further progress is being hampered by a lack of standard methodology for
use in a clinical setting. This could be resolved by providing clinicians with easily accessible
equipment and analysis tools, linked to an international forum for discussion, and an open
platform for data exchange. In accord with the intuition of Emoto and Huang, we propose
that a simple solution be temporarily accepted as an international common ground and
starting point, namely the occurrence of BS.

In our opinion, the issue of greatest immediate importance in automated BS research is
the availability of a benchmark dataset containing high-quality recordings of bowel sounds
with labels confirmed by human experts. Such a dataset could be used to compare different
signal processing and classification methods. Our team is currently collecting such data
and we plan to make our dataset freely available. Ideally, a bowel-sound centered platform
would enable the sharing of other datasets, as well as comparison of different sensors and
hardware systems for data collection.

We also call for the organization of a virtual meeting dedicated to BS, which could be
undertaken by one of the teams with an excellent track record.
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