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Abstract: Muteness at its various levels is a common disability. Most of the technological solutions
to the problem creates vocal speech through the transition from mute languages to vocal acoustic
sounds. We present a new approach for creating speech: a technology that does not require prior
knowledge of sign language. This technology is based on the most basic level of speech according
to the phonetic division into vowels and consonants. The speech itself is expected to be expressed
through sensing of the hand movements, as the movements are divided into three rotations: yaw,
pitch, and roll. The proposed algorithm converts these rotations through programming to vowels
and consonants. For the hand movement sensing, we used a depth camera and standard speakers in
order to produce the sounds. The combination of the programmed depth camera and the speakers,
together with the cognitive activity of the brain, is integrated into a unique speech interface. Using
this interface, the user can develop speech through an intuitive cognitive process in accordance with
the ongoing brain activity, similar to the natural use of the vocal cords. Based on the performance
of the presented speech interface prototype, it is substantiated that the proposed device could be a
solution for those suffering from speech disabilities.

Keywords: hand gestures recognition; muteness; speech disability; depth camera; Leap Motion
Controller; speech interface; cognitive sensing; information entropy

1. Introduction

Muteness at its various levels is a common disability [1]. This disability can be caused
due to a number of factors such as nervous system diseases, stroke, sclerosis, autism,
anatomical resections, and many more. There are a number of non-surgical supportive
and alternative communication technology solutions, such as eye control communication
(“Hawking language”), typing, handwriting, sign language using aids, etc. In most cases,
these solutions lack the flexibility to become a decent substitute for human language and
in other cases require prolonged learning of a new language (e.g., sign language). Simple
handwriting can be a good solution, but one that does not allow verbal communication
and is less suitable in cases where visual communication is irrelevant.

In recent years, a number of applications and interfaces have been developed to help
people with speech disabilities. Many of the leading methods in the field are based on
hand gesture recognition. Some studies have demonstrated the identification of general
physiological gestures to vocal speech [2,3], and other studies showed a direct simultaneous
translation from sign language to vocal speech [4–7]. In addition to sign language interpre-
tation, hand gesture recognition [8] is attracting a growing interest due to its applications
in many different fields, such as human–computer interaction, robotics, computer gaming,
and so on. 3D hand pose estimation can also be achieved via neural networks [9,10].
The Leap Motion Controller device (LMC), first introduced in 2012, has opened new op-
portunities for gesture recognition [11]. The LMC is essentially a depth camera device that
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captures the movements of the hands with high accuracy [12,13]. Its companion algorithm
enables the device (according to the manufacturer) to reach an accuracy level of ≈0.01 mm.
Previous studies have also suggested the LMC can be a useful tool for translating sign
language and hand gestures into sounds [14–16].

In this study, we propose a different approach for helping those suffering from speech
disabilities. The proposed technology is based on the LMC for hands’ gesture recognition.
Hand gestures are translated into vowels or consonants and those, in turn, are translated
into syllables, according to the phonetic division (see Section 3 for a detailed explana-
tion). This method relies on an intuitive approach to the vocal languages as words being
comprised of syllables. The gesture-phonetic mapping goes coarsely like this: Hand ges-
tures are divided according to different attitude (yaw, pitch, and roll) and position. Each
attitude–position combination is uniquely linked to a vowel–consonant pair. A dedicated
software plays this syllable in real time using speakers. There are several speech synthesis
approaches and this paper restricts itself to concatenative synthesis approach [17].

Through a process of self-learning the user can intuitively communicate his/her
desired “speech sounds” through the system, thus creating a working replacement for
his/her dysfunctional speech system. The process itself works as follows: The user is
taught the gesture–syllable map (which gesture is responsible for which syllable). Once the
user gets the gist of it, we start the self-learning process. In this process, the user tries to
create sounds and words using hand gestures and instant vocal feed-back from the system.

2. The Intuitive Cognition Speech Interface

In this section, we elaborate on the basic framework of the Intuitive Cognition Speech
Interface (ICSP). The ICSP is comprised both from Hardware (the LMC and speakers) and
software. The fusion between the two creates the speech interface.

2.1. Hardware

The LMC is a new consumer-grade sensor developed by Leap Motion (Leap Mo-
tion, http://www.ultraleap.com, accessed on 14 March 2021). It is primarily designed for
hand gesture and finger position detection in interactive software applications (mainly
gaming and 3-D CAD). Because of the current patent pending, only insufficient informa-
tion on the underlying software’s geometrical or mathematical frameworks is available.
Figure 1 shows a schematic view of the controller’s hardware setup. Differently from
other devices (such as the Microsoft Kinect [18]), the LMC is explicitly targeted to hand
gesture recognition and directly computes with high accuracy the hands’ positions and
postures. The following figure shows both the controller itself and the 3D output of two
hands simultaneously.

Figure 1. The Leap Motion controller (LMC) device showing a 3-D representation of both hands.

http://www.ultraleap.com
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The controller itself reports the position, velocity, and orientation vector of each finger.
As depicted in Figure 2, the controller can detect the relative position of two (or more)
hands with high precision and in 3D. The position of each hand’s palm is reported relative
to the sensor’s center (0,0,0).

Figure 2. The LMC X-Y-X orientation.

When the right hand moves away to the right, its x value increases. When the left hand
moves away to the left, its x value decreases. The Y-axis is associated with the hand’s height
relative to the sensor (there is no negative height). The Z-axis is associated with depth.
For example, in Figure 1, when the hand approaches the screen, the Z value decreases.
The LMC also provides data for hands’ yaw, pitch and roll. Figure 3 describes the difference
between those attitudes.

Figure 3. Hand’s different attitudes.

In addition, the LMC can provide 2 more valuable pieces of information:

1. Hand Grip; it is an indication of how closed the fist is.
2. The thumb direction compared to the hand.

2.2. Software

The software was developed using Unity3D, a sophisticated game engine that allows
for a relatively simple interaction with the LMC. An important feature of Unity is the ability
to see in real time a 3D representation of the hands (as can be seen in Figure 1). Once the
exact hands’ posture is captured, the software translates it to vowels and consonant, fuses
them to a distinguished sound (syllable), and plays this sound via the speakers.

3. Sound Segmentation

Words are constructed from syllables, which, in turn, are constructed from vowels
and consonants. This division is relevant for non-tonal languages such as (almost) all
European languages, Hebrew, Arabic etc. [19]. Therefore, the basic building blocks are
those two-vowels and consonants. Let us start with vowels.
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3.1. Vowels

American English has seven vowel letters (A, E, I, O, U, Y, W), but those seven letters
do not encapsulate the richness of all vowel sounds. For example, the letter a can be sound
as /a/ (like in the word “father”) or as /æ/ (like in the word “apple”).

Those small but important distinctions were ignored in the proposed simulator. In the
final section, we suggest some methods to tackle this challenge.

Vowels are produced by different right-hand postures.

3.2. Consonants

The American English language contains 21 different consonants letters which produce
24 consonants sounds in most English accents [20]. Because of the history of the English
language, there is no neat one-to-one relationship between letter and sound. Some vowels
can be used also as consonants. For example, in the word yellow, y is a consonant, but in
the word happy, y is a vowel.

Consonants are expressed using the left hand’s posture. The combination of Left-Right
hand creates syllables. The latter can be further divided to simple and advance syllables.

3.3. Simple Syllables

We define simple syllables as syllables which contains a single vowel–consonant
combination. For example, the sound “B-ee” (as in the word “be”) and the sound “A-r” (as
in the word “are”) are simple syllables. They are simple as their sound can be produced
from a simple right-left hand posture combination. Figure 4 demonstrates it well. The right
hand posture for the sound “ee” is depicted in the left side, and the left-hand posture for
“B” is depicted in the right side image. The sound “B-ee” is simply constructed from those
two postures.

Figure 4. Hands posture for a “bee” sound.

Although simple, those syllables do contain a slight complexity: the letter order. The
combination R-A can be heard as “a-r” where the consonant follows the vowel (as in the
word “are”) or as “r-a” where the vowel follows the consonant (as in the word “era”). This
distinction is solved by the vertical position (y-axis) of the right hand. Thus, the syllable
“A-r” will be expressed almost identical to the syllable “R-a” with the right-hand vertical
position change. Figure 5 shows this difference.

3.4. Advanced Syllables

Many words cannot be broken down to a simple syllables sequence. The words Dad,
Mom, Want, Father, and Dog to name only a few, are more complex. Their complexity lies
in the additional consonant (usually at the end). For example, the word “dog” is comprised
of a single (complex) syllable with two consonants (“d” and “g”) wrapping a vowel (“o”).

These words can be expressed using the proposed system as a combination of a simple
syllable and a single consonant. For example, the word “dog” can be comprised of the
simple syllable “do” and the consonant ”g”. Although the proposed solution is not ideal
(the word dog is pronounced differently than “do-g”), the word can be easily understood.
Another important feature this method enables is the small numbers of hand postures to
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memorize. Moreover, given some knowledge about the distribution and entropy of the
English language, one can improve the system even more.

Figure 5. Hands’ posture for AR and RA sounds.

4. Entropy

Information entropy is a profound concept in the field of communication. The name
was coined by Claude Shannon in a pioneering paper [21]. In a nutshell, the entropy of a
system can be computed as

H(x) = −ΣN
i=1P(xi)log2P(xi) (1)

where N is the number of different symbols, and p(xi) is the probability (or frequency)
of i-th symbol. One can think of this equation as the average number of bits necessary to
communicate a message. This message can represent an arbitrary distribution. When the
distribution is uniform, information entropy gets its maximal value.

What is the entropy of the English alphabet? Assuming 27 letters (26 letters plus
a “space” character) and a uniform distribution among all letters, the entropy is ≈4.75.
It means that on average it would take 4.75 bits to communicate a single letter (for 32
uniform symbols, the entropy H(x) = 5 bits as 25 = 32). This is also called the “zero-order”
model of English. However, the English alphabet is not distributed uniformly. For example,
the probability of the letter “e” is 100 bigger than the probability of the letter ‘z’. In fact,
Shannon himself found that when taking those different probabilities into account, the
entropy decreases to H(x) = 4.219.

The above figure (4.219 bits) is also called the “first-order” model of English. The as-
sumption of independence (zero memory) is also incorrect. Some letters follow other letters
frequently; others not at all (e.g., “u” must follow “q”). One can compute the likelihood
of digrams (two-letter combinations), trigrams, etc. Adding digrams to the computation
gives a second-order model; adding trigrams gives a third-order model. Table 1 shows the
most frequent digrams and trigrams in the English language [22].
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Table 1. Most frequent digrams and trigrams in the English language.

Digrams Trigrams

EN ENT
RE ION
ER AND
NT ING
TH IVE
ON TIO
IN FOR
TR OUR
AN THI
OR ONE

A “third-order model” yields 2.77 bits per symbol. The actual entropy is the “limit”
of this process of taking higher and higher order models. The entropy figure is important
because this paper strives to construct an alternative speech system. A key aspect in such
system is to ease the pronunciation of frequent sounds (“ent”). Those frequent sound are
found using entropy.

Some of the trigrams in the table are merely sounds (“ive”, “ent”) but some of them are
also words (“and”, “for”, “our”). It is important to bear in mind that third-order sequences
were calculated for written English, thus, the pronunciation (or sound) of these trigrams
can be completely different, based on the context. For example, the trigram ION sounds
different in the word “onion” and in the word “celebration” and the trigram IVE sounds
different in the word “five” and in the word “effective”.

5. Experiments and Results

In order to properly communicate words and phrases using the system, one must
practice it thoroughly. However, this demand can be relaxed with a moderate escalation.
Another important thing to bear in mind is that this paper aims solely to present a proof of
concept. Past research confirms that alternative forms of communications (e.g., switching
the entire visual field upside down) can become, with practice, intuitive. In order to
evaluate the performance of the proposed device, a comparison was made through signal
processing speech analysis between synthetic words created by the device and spoken
words [23–25].

5.1. Phase 1

Phase 1 is devoted to simple words. Such words are fabricated only from unique
combinations of a single vowel and a single consonant.

5.1.1. The Word “Banana”

For example, the word “Banana” can be divided into the following syllabus sounds:
“Ba-Na-Na”, as explained in Section 3.3. The participant is informed regrading which
hands posture produces which sound and then he/she is instructed to convey simple
words using the system. The conveyed word is then recorded and compared vs a normal
pronunciation of the word. The left upper graph in Figure 6 shows the representation
of the word “Banana” as a function of time as created using our framework. The right
upper graph, demonstrates the same word as created using the human mouth. One can
see that the duration of the ICSP word (2[sec]) is relatively long compared to that spoken
by the mouth (1.2[sec]) [26]. The smoothing between the three syllables demonstrates the
continuity of the spoken word compared to the three separated parts of the signal. Sound
can also be represented as a frequency spectrum of an audio signal as it varies with time,
this is called a spectrogram [27,28]. A spectrogram of sound is created from a time signal
using the Fast Fourier Transform (FFT). The lower two images in the figure represent the
word’s spectrogram. Dark blue corresponds to low amplitudes and the brighter colors
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up through orange correspond to progressively stronger or louder amplitudes. Each
sound is divided into short time frames of 20 ms (2000-point windows) with a 512-point
overlap between successive frames. Implementing Fourier transforms on these consecutive
frames can help us obtain a good approximation of frequencies across the time domain.
A Hamming window is applied to each frame to significantly reduce the spectral leakage
before conducting FFT. The squared-difference mean between the two signals is very low
(≈0.0001), which indicates high correlation, thus, the meaning of the ICSP word can be
grasped easily.

Figure 6. A representation of the word “Banana” created using the ICSP (left graph) and the human
mouth (right graph). Top graphs represents the audio signals in the time domain. Down graphs are
the frequency spectrum of the audio signals as it varies with time.

5.1.2. The Word “Daddy”

A sound output of the word “Daddy” can be depicted in Figure 7. The lower two
images in the figure represent the word’s frequency domain. Again, the figure shows
similar results to Figure 6. As in the previous word, the obtained squared-difference
mean is low (≈0.003). However, this figure demonstrates roughly the same duration for
both words. The signal spectrogram graphs show that the two produced words contain
mainly frequencies of up to 4 kHz, so that 99.9% of the signal energy is concentrated in
this frequency range. The high correlation between the two demonstrates the preservation
of the spectral signature of the produced word. Note that the words generated through
the ICSP depends on the user level of skill, as the ability to speak through the device is an
acquired skill over time. In addition, in order to get better continuity in the words spoken
through the ICSP, a real-time adaptive filter can be applied for use. Another important
thing to remember is that the spectral comparison serves only as a mathematical aid. The
foremost goal is to create speech that can be understood by lay persons, thus, a statistical
evaluation is also offered later on in Section 5.3.

5.2. Phase 2

In the second phase we introduce more complex words. Again, first the participant in
informed regarding the correct posture for each sound and then instructed to convey words.

5.2.1. The Word “Thing”

As was shown before (Section 4), although the trigram “ING” is not a simple syllable, it
is quite common in the English language, thus, a dedicated posture was uniquely assigned
to it. The word “thing” is comprised from the sounds “thi” and “ing” in conjunction. Again,
one can see the inevitable break between the two sounds on the upper left in Figure 8. The
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duration is ≈0.1 s and 99.5% of the signal energy is concentrated between frequency ranges
up to 5 kHz.

Figure 7. A representation of the word “Daddy” in time domain and frequency spectrogram, created
using the ICSP (left column) and the human mouth (right column).

Figure 8. A representation of the word “Thing” in time domain and frequency spectrogram, created
using the ICSP (left column) and the human mouth (right column).

5.2.2. The Word “Event”

The word “event”, as opposed to the word “thing”, is a two-syllable word (e-vent);
thus, the break between the two syllables is quite similar on both words (top left and top
right in Figure 9). One can find that the spectral components of those two words are with a
very high match. It is indeed reflected in the ability to recognize those two words with a
high degree of accuracy, as shown in the next section.
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Figure 9. A representation of the word ”Event” in time domain and frequency spectrogram, created
using the ICSP (left column) and the human mouth (right column).

5.3. Statistic Analysis

A mandatory part of any communication protocol is the receiver’s ability to under-
stand the transmitted message. Up until this point we have focused on how to efficiently
generate words using the ICSP. In this subsection, we focus on the other end of the rope:
are these synthetically generated words and phrases understandable? We have generated
eight different words and a one single sentence, played them to 45 mature subjects, all
in the age range of 20 to 40, and checked what did the subjects hear. The subjects’ native
language is not English but Hebrew. The words are listed below.

• Want
• Thing
• Pizza

• Happy
• Event
• Banana

• Carrot
• Apple
• You are Happy

Table 2 shows the comprehension rate of each word/phrase. The first column represent
the generated word/phrase. The second column represent the accuracy rate, i.e., the
percentage of subjects who understood the correct word. For example, 53% of the subjects
understood the word “want” (first word in the column). It means that 24 out of 45 subjects
got this word. The two right columns represent the second best most common word and
the overall accuracy of the two most common guesses. In other words, if one did not get
the correct phrase, what was the second most probable phrase? In the above example, this
word is “won’t” which is extremely similar to the correct word. 68% of the subjects heard
the word “want” or “won’t”. The average accuracy (first and second guesses) score for the
entire set is ≈78.5%.

Table 2. Comprehension accuracy rate table.

Comprehension Accuracy Rate

Word/Phrase Acc [%] 2nd Best Guess Overall Acc [%]

Want 53 Won’t 68
Thing 24 Thinking 72
Pizza 71 Pisa 75

Happy 100 - 100
Event 82 You and 86

Banana 88 - 88
Carrot 48 Carrots 59
Apple 62 Appeal 66

You are happy 93 - 93
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Although the overall accuracy rate is not perfect for some of the words (“thing”(72%),
“carrot”(59%)), they can be understood from the context. Conclusions cannot be deduced
from a single example but we tend to believe that the high accuracy rate for the last phrase
(“you are happy”) is also connected to this very point. This phenomenon is similar to
automatic transcript algorithms (speech to text) that correct words backwards according to
their context (just from the context, one can easily distinguish “want” from “won’t”).

6. Conclusions and Future Work

An intuitive cognition-based approach for playing vocal sounds through hands ges-
tures recognition, using depth camera detection, is presented in this paper. The proposed
device is capable of creating suitable vowels and consonants, consistently with a pre-
determined hand rotation movements. For smooth playback of the sounds and for a
convenient user interface, the vocal entropy distribution and efficient software algorithmic
were implemented. The prototype performances, served as a proof-of-concept, indicates
that the proposed device has high potential as a solution for people with speech disabilities,
while future research might show this method can bypass the traditional speech regions in
the human brain. Future work might includes the aid of machine learning methods for
classification and filtering [29,30].
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