
sensors

Article

Modelling and Differential Quantification of Electric
Cell-Substrate Impedance Sensing Growth Curves

Anna Ronja Dorothea Binder 1,†, Andrej-Nikolai Spiess 2,*,† and Michael W. Pfaffl 1

����������
�������

Citation: Binder, A.R.D.; Spiess,

A.-N.; Pfaffl, M.W. Modelling and

Differential Quantification of Electric

Cell-Substrate Impedance Sensing

Growth Curves. Sensors 2021, 21, 5286.

https://doi.org/10.3390/s21165286

Academic Editors: Shimshon Belkin,

Gérald Thouand and Anna Chiara De

Luca

Received: 31 May 2021

Accepted: 2 August 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Animal Physiology & Immunology, School of Life Sciences Weihenstephan, Technical University of Munich,
Weihenstephaner Berg 3, D-85354 Freising-Weihenstephan, Germany; Ronja.Binder@wzw.tum.de (A.R.D.B.);
michael.pfaffl@wzw.tum.de (M.W.P.)

2 Center for Cardiology, Genomics and System Biology, UKE, D-20246 Hamburg, Germany
* Correspondence: draspiess@gmail.com
† These authors contributed equally to this work.

Abstract: Measurement of cell surface coverage has become a common technique for the assessment
of growth behavior of cells. As an indirect measurement method, this can be accomplished by
monitoring changes in electrode impedance, which constitutes the basis of electric cell-substrate
impedance sensing (ECIS). ECIS typically yields growth curves where impedance is plotted against
time, and changes in single cell growth behavior or cell proliferation can be displayed without
significantly impacting cell physiology. To provide better comparability of ECIS curves in different
experimental settings, we developed a large toolset of R scripts for their transformation and quan-
tification. They allow importing growth curves generated by ECIS systems, edit, transform, graph
and analyze them while delivering quantitative data extracted from reference points on the curve.
Quantification is implemented through three different curve fit algorithms (smoothing spline, logistic
model, segmented regression). From the obtained models, curve reference points such as the first
derivative maximum, segmentation knots and area under the curve are then extracted. The scripts
were tested for general applicability in real-life cell culture experiments on partly anonymized cell
lines, a calibration setup with a cell dilution series of impedance versus seeded cell number and
finally IPEC-J2 cells treated with 1% and 5% ethanol.

Keywords: ECIS (impedance vs. time); IPEC-J2 (adherent cells); segmented regression; four-
parameter logistic; smoothing spline; area under the curve (AUC)

1. Introduction

A large number of external and environmental influences, including drug treatments
under laboratory conditions, exert a promoting or inhibiting effect on the overall growth of
cell populations [1–4], which is typically represented and visualized as biological growth
curves [5–10]. For the assessment of positive or negative influences on these populations,
a comparison of growth curves derived from treated and non-treated control groups
can be performed in these cases [11,12], and—if significant changes between groups are
detected—quantitative estimation of this effect can be performed.

A common feature of growth curves is the partition into five essential and chrono-
logical subregions: (1) a flat baseline, either before any growth has started or on which
growth occurs but is not detectable by the instrumental system due to the lack of sufficient
sensitivity, (2) an exponential growth phase, (3) a subsequent linear growth phase, (4) a
negative exponential transition phase (5) and finally the saturation or plateau phase in
which growth is stalled [13]. Using these curves, it is possible to assess growth behavior us-
ing certain parameters as endpoints, such as the comparison of populations at one selected
timepoint [14,15]. However, the use of single curve features for quantitation is prone to
information loss as other characteristics of the curve are ignored; therefore, using the entire
curve trajectory is more informative [8,16–18]. Along these lines, various methods have
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been established for the statistical evaluation of growth curves derived from the population
observation of plants [19], animal species [17], microbial growth [18] and cell cultures [16].

For measuring the growth and proliferation of cell populations under laboratory
conditions, different kinds of direct and indirect cell counting methods are available [20].
For this purpose, methods that can assess the confluence of cells without changing their
environment (i.e., temperature and gas composition) and without moving cells are most
desirable in order to enable observation of growth behavior that is more standardized and
repeatable. In addition to life-imaging methods [21], indirect live monitoring via impedance
measurement is important in this context [22,23]. If adherent cells are of interest, the electric
cell-substrate impedance sensing system (ECIS) poses a viable option [22] as the growth
of cell populations can be monitored in a simple and noninvasive manner [22], where the
output is given as time versus impedance curves that resemble the classic growth curve
partitions described above. While most evaluation methods for ECIS-generated growth
curves use complex mathematical models to fit frequency [24] versus impedance [25,26],
models that incorporate time usually do not directly employ impedance [25,27–29].

The aim of our project was to create R software scripts that enable a complete analysis
pipeline for ECIS curves by analyzing impedance versus time growth curves consisting of
the five subregions already mentioned. R scripts provide previously unavailable modules
in which growth curves produced with the ECIS software can be imported as Excel .xlsx
files (Microsoft, Redmond, WA, USA), combined, deleted, modified (e.g., normalized) and
compared on the basis of specific curve locations. In the ECIS analysis, a large amount
of data is created due to many timepoints being sampled. Therefore, and in order to
minimize information loss, in our approach, the complete growth trajectory is exploited
by fitting three different models to the impedance curve: a four-parameter logistic model
(log) [30–32], a segmented regression model (seg) [33] and a smoothing spline model (spl),
and the optimal fitting model for the respective cell line has to be chosen individually.
Although these fitting routines are available to some extent in base R, they are not usable
per se, as starting and smoothness parameters have to be automatically calculated and
transferred to the fitting functions.

For subsequent statistical analysis, a plethora of fit parameters and curve reference
points are extracted that allow conclusions from changes in growth behavior, e.g., of a
treatment group in comparison to a control group. Particularly noteworthy are the first
and second derivative maxima (y (impedance) and the corresponding x (time) values), the
x value at 10%, 20% or 50% of the maximum increase in impedance and the nodal points
of the segmented regression model. These selected parameters are largely found in the
existing growth model implementations such as qPCR quantification [34,35] and a range
of bioassay applications [36], but needed to be implemented anew as R does not provide
automatic reference points extraction from fitted curves.

The R scripts were developed on the basis of the ECIS growth curves generated with
porcine jejunal epithelial cells (IPEC-J2, RRID:CVCL_2246) and ECIS model 1600 (Applied
Biophysics, US, Troy). The scripts were subsequently tested on the IPEC-J2 cells treated
with ethanol in the (sub)lethal range (1% and 5% EtOH). In addition, a dilution series was
analyzed for the same cell line to correlate the seeded cell number with the results of the
script and impedance values. In order to test a greater variety of ECIS curve types and
trajectories (flat, steep, variable plateaus), four known and two unknown (anonymized)
cell lines were also interrogated.

2. Materials and Methods
2.1. Cell Culture, Information and Growing Conditions of the Used Cell Lines

IPEC-J2 cells were cultured under 5% CO2, 37 ◦C and 95% air humidity, and all ster-
ile work was performed using a lamiar flow bench (ENVAIR eco, Emmendingen). The
cells were cultured with DMEM/F12 (Gibco, Thermo Fisher Scientific, without HEPES,
with glutamine, phenol red, Schwerte), 5% FCS (Sigma, Hamburg), 100 U/mL peni-
cillin/streptomycin (Sigma, Hamburg, Germany), tested negative in PCR and DAPI stain-
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ing for Mycoplasma spp. (PCR: AppliChem, PanReac, PCR Mycoplasma Test Kit, Darmstadt;
DAPI: Pierce DAPI, Thermo Fisher Scientific, Karlsruhe, Germany) and only used in one of
the passages 1–4 after thawing.

All the experiments with other cell lines that were used for the verification of the
script and for Figure 1 were partially anonymized so that no details about the cultivation
and treatment of the cells can be given. All the experiments involving non-IPEC-J2 cells
were carried out at a different laboratory with different equipment, and the data were
handed over partially anonymized. These data were kindly provided by Ibidi (Germany,
Gräfelfing) and Applied Biophysics (US, Troy).

2.2. Impedance Measurement and General Experimental Settings

The electric cell-substrate impedance sensing system (ECIS) consists of an 8- or 96-well
cell culture dish with 1–40 gold electrodes embedded at the bottom of the well [22]. If gold
electrodes become covered with cell bodies, the impedance increases in a way that results
in a growth curve divided into five subregions described in the “Introduction” [13]. A
change in the impedance level can be generated in various ways: enlargement, change in
shape, migration, micromotion and division of individual cell bodies [27,37,38] and, finally,
cell–cell connections [38]. Thus, an increase in impedance and the corresponding growth
curve are always multifactorial so that a statement about the overall growth behavior
without further investigations into the individual cell line can only be made for an entire
population. At the plateau phase, it can be assumed that ~100% confluency is reached
and a homogeneous epithelial layer is formed; however, it cannot be excluded that further
changes such as cell duplications affect overall impedance.

For all experiments with IPEC-J2 cells, a single testing frequency of 15,000 Hz was
employed, while for the anonymized cells, multiple frequency testing was chosen. The
experiments were performed (ECIS model 1600, Applied Biophysics, US, Troy) on 8-well
plates with 10 gold electrodes each (8W10E PET, Ibidi, Gräfelfing, Germany). The ECIS
8-well plates were incubated with the cell culture medium for around three days to generate
a stable individual baseline that was further measured for at least 12–24 h. For all the
IPEC-J2 experiments (except for the cell dilution experiments), the cells were seeded with
the density of 10,000 cells per 400 µL medium per well with the growth area of ~0.8 cm2

(25,000 cells/mL and 12,500 cells/cm2, respectively). For the seeding procedure, the cells
were added to the end volume of the preheated (37 ◦C) cell culture medium. Inversion of the
cell–medium mixture before seeding was performed to ensure homogenous dispersion of
the cells in the wells. The 8-well plates with seeded cells were incubated for around 20 min
at room temperature (RT) to enable the cells to attach to the electrode surface. Subsequently,
the plates were fastened in the ECIS plateholder in an incubator (HERACELL VIOS 250i,
Fisher Scientific, Schwerte) at 37 ◦C, 5% CO2 and 95% humidity and the ECIS system was
started. In all the experiments except for the cell dilution experiments, on each 8-well
plate, two wells were used purely as the medium control group (mCG) without cells, and
two wells were used as the cell control group (control group, CG), where only cells with
the medium but without treatment were added. For the dilution experiments, no mCG
were performed.

2.3. IPEC-J2 Dilution Experiments and Cell Counting on ECIS Dishes

To draw better conclusions about the impedance changes of the ECIS growth curve
in relation to the type of growth behavior of the specific IPEC-J2 cell population, a cell
dilution series was performed on ECIS 8-well plates (8W10E PET, Ibidi, Gräfelfing). In
three independent experiments, 100,000, 75,000, 56,250, 42,188, 31,641, 23,731, 17,798 and
13,348 cells were seeded in duplicates (Supplemental Data 2, “Cell Counts”; n = 6). The
impedance was measured individually in every well with the ECIS system until an endpoint
was reached (Supplemental Data 2, “Curve Data”). The endpoints were set as follows: the
first one was chosen in the plateau phase so that the epithelium was formed after ~22 h
(n = 16), the second one was set at the beginning of the plateau phase (after 6 h, n = 16)
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and the third one at the point at which the first cells reached the maximum of the first
derivative, after 2.5 h (wells A1–A8) and 3.5 h (Wells B1–B8), respectively (n = 16). After
reaching the respective endpoints, the cells were washed twice with 400 µL DPBS solution
(Merck, Darmstadt) and stained with hematoxylin and eosin. Pictures of the cell covering
gold electrodes (n = 10 per well, 490,874 µm2 surface each) of the ~22 h and 6 h dilution
experiments were taken (Leica dmi8, Lasx software, Wetzlar). The cells were counted by
selecting each picture section (Incscape 1.0) with a gold electrode of the same size, marking
every cell covering the electrode. Any cells that only partially did so were counted if
they were located in the upper and left section of the electrode. Finally, the size of the
gold electrode was extrapolated for the whole well as homogenous cell distribution was
expected. Furthermore, the counted cell number was compared to results of the ECIS R
scripts and to the seeded cell number (n = 32).

2.4. IPEC-J2 Ethanol Treatment

Different behaviors in cell attachment, cell–cell interaction and cell proliferation were
exerted by the addition of ethanol (EtOH), which is known to induce apoptosis and cell
death in cultured cells above certain concentrations. After a five-hour attachment phase
of the IPEC-J2 cells, the medium was removed and replaced by 400 µL of the treatment
solution. For treatment solutions, 1% or 5% EtOH concentrations, respectively, were chosen
depending on the existing literature [39–42]. The aim was to provoke (sub)lethal effects on
the cells to uncover differences in growth behavior using the R scripts. The experiment
was performed with four wells per run (quadruplets, two wells on each 8-well dish) and
repeated five times in different weeks for 20 replicates per treatment in total.

2.5. ECIS Data Analysis with the Developed ECIS R Scripts

All the ECIS datasets were acquired with the ECIS software (Applied Biophysics,
v1.2.186.0, US, Troy), exported as csv-documents (“selected wells/time”) and further
saved in the .xslx format. All additional statistical and nonstatistical manipulations of the
growth curves were performed with the R software (www.r-project.org, last accessed on
3 August 2021) and the following packages: readxl (.xlsx data import), segmented [33]
(segmented regression), splines (base R) and minpack.lm [43] (nonlinear regression). All the
R scripts and the “Examples” tutorial can be found in the author’s Github repository (https:
//github.com/anspiess/ECIS; last accessed on 3 August 2021) as well as in Supplemental
Data 1 and offer the functionality described in Table 1.

Table 1. Analysis functions implemented as R scripts for the manipulation and quantitation of
ECIS curves.

Function Name Brief Description

getECIS Import of raw ECIS .xlsx files into the R data frame
plotECIS Plotting of ECIS datasets in a variety of ways
cutECIS Cutting of time ranges from ECIS datasets
delECIS Deletion of specific wells from ECIS datasets
selECIS Selection of ECIS wells to form a new dataset

addECIS Combination of two or more different ECIS datasets
baseECIS Subtraction of the baseline value of each specific well
normECIS Normalization of ECIS datasets to (0, 1)

intECIS Numerical integration of the area under the curve [44]

fitECIS Calculation of different curve models and features from
ECIS datasets as described in Section 2.6

parECIS Getting all the parameters acquired by fitECIS
extECIS Removal and extension of the leading region of ECIS data
anoECIS Identification and deletion of outliers of an ECIS dataset
setECIS Setting of a start point of an experiment to zero

www.r-project.org
https://github.com/anspiess/ECIS
https://github.com/anspiess/ECIS
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2.6. Growth Curve Models, Area under the Curve (AUC) and Further Statistics

Three curve models were implemented as scripts for further calculations: an interpo-
lating cubic smoothing spline model (spl; implemented in base R), a four-parameter logistic
model [30–32] (log) and a segmented regression model [33] (seg). The logistic model, often
used for ELISA [31], qPCR [30] and growth [32], is parametrized as c + (d − c)/(1 + exp(b(x
− e)), where c indicates the lower asymptote, d the upper asymptote, b the slope and e the
point of inflection. In principle, ECIS data should be normalized with normECIS prior to
using this curve model. Segmented regression aims to estimate a new regression model
with broken-line relationships defined by the slope parameters and the number of knots
(breakpoints) where the linear relation changes. The number of knots of each segmented
relationship is defined via the npsi argument. If npsi = 3, the growth curve should be
divided into the baseline (one knot), growth (one to two knots) and plateau (one knot)
regions, where each knot separates two adjacent linear segments.

The following values can then be derived from these curves using the parECIS function:
x and y values of the first and second derivative maxima (spl, log), x value for 10% increase
in impedance (spl, log), x values and slopes at 10%, 20% and 50% increase in impedance
(seg), lower and upper asymptotes of given impedance (log), point of inflection and its
slope (log) and baseline value/intercept and slope of all the segments with their nodal
points (seg). A more detailed overview can be found in Supplemental Data 1, Chapter 14.

A further and frequently used method for curve comparison is the area under the curve
(AUC). For instance, time-dependent blood plasma concentration of a drug is frequently
described using the AUC for displaying an overview of the substance and its elimination
over time [45–49]. In the ECIS case, the AUC is the integral of all impedance values Zi at
each timepoint ti. It is feasible to use the AUC in situations where reduction in growth
behavior over time is suspected but cannot be interpreted by specific timepoints like the
maximum of the first derivative. The AUC can be evaluated with the intECIS function
based on the sintegral function of the Bolstad2 package [44]. It takes a vector of x and a
corresponding set of positive y = f (x) values and evaluates the AUC according to Simpson’s
rule [50]:∫ b

a
f (x)dx ∼= h/3{ f (a) + f (b) + 2[ f (x2) + f (x4) + . . . + f (xn−2)] + 4[ f (x1) + f (x3) + . . . + f (xn−1)]}

where the approximated numeric integral of any function f (x) in the range from a to b is
given by the right-hand side formula for all f (x1) to f (xn−1) values.

3. Results
3.1. Curve Fitting and Further Statistics

Based on the growth model described above [13], the implemented three fitting mod-
els (spl, log, seg) were specifically designed to allow them to adapt to structural curve
variations. Depending on the type of the curve, one or more models can be selected accord-
ing to the chosen cell type, seeding concentration and treatments. All these experimental
parameters influence the shape of the growth curve, resulting in a variety of curve trajecto-
ries that can differ with respect to baseline length, curve smoothness, slope and plateau
length/linearity (Figure 1). It is therefore highly recommended to use the model that fits
optimally the given curve type as determined by visual criteria or goodness-of-fit measures
such as root-mean-square error (RMSE), residual variance (RV) or information criteria such
as the Akaike information criterion (AIC). Whereas the spl model adapts particularly well
to highly irregular curve situations, the log model can be taken if the curves exhibit an
approximately sigmoidal structure. For the seg model, the best results are often achieved
with 3–10 knots for ECIS growth curves with largely linear subregions, but this parameter
can be fine-tuned.
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Figure 1. Compilation of nine ECIS curves with different features and trajectories. The curves were
obtained from seven experiments involving IPEC-J2 (A), CACO2 (B,C), C2BBe1 (D,E), HUVEC (F,G),
MDCK cell lines (H) and an unknown cell line (I) under different treatment regimes. Note that the
curves vary substantially with respect to baseline length (A,B,E), curve smoothness (A,E,F), slope
(C,E,F) and plateau length and linearity (D,E,G–I). hrs = hours, Imp = impedance.

After the fitting procedure, all the x values generated with parECIS display the time-
point in hours, so they are particularly suitable if samples are to be taken at standardized
times in subsequent experiments. Of special value among the curve points extractable
from both the spl and log model are the first and the second derivative maxima as well as
the interpolated x value at 10% increase of impedance (Figure 2A,B). The first derivative
maximum indicates the point of largest impedance change on the gold electrode within
the complete time interval. Its x value can be used when searching for the timepoint after
which covering of the gold electrode becomes progressively slower or if it is assumed
that there are differences in the speed at which the gold electrode is covered, in which
case expedited coverage usually coincides with lower x values and higher slope. For the
second derivative maximum constituting the point of inflection, it can be expected that all
growth rates progressively decline from thereon. Moreover, the x value at 10% increase of
impedance enables one to analyze possible changes at an early stage of the growth curve
(transition of the baseline to the exponential phase). Finally, the log model extracts the av-
eraged baseline (lower asymptote) and plateau (upper asymptote) impedance (parameters
coef.log.c and coef.log.d), where it is important to note that the former can slip significantly
below the actual baseline level if only defined by a few datapoints. In this case, it is possible
to perform a priori normalization within (0, 1), which is automatically recognized by fitECIS.
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In contrast, the seg model can be used to not only obtain the interpolated x values for 10%,
20% and 50% increase of impedance, but also the knots (segment change points) from the
fit, where the 10% and 20% values largely represent the growth behavior at the beginning
or middle of the growth curve, and the 50% value a later change in growth behavior, for
instance, at the onset/termination of a strong treatment (Figure 2C). If the number of knots
is user-adjusted, finer division can be achieved, but care must be taken to not oversegment
the curve. All the estimated parameters are provided for all three methods simultaneously
as a sensible and compact table output (Figure 2D).
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fit (A), logistic regression (B) and segmented regression (C). Shown are those parameters that pertain
to abscissa values (time) at certain curve locations (FDM, SDM, 0.1/0.2/0.5× range, segmentation
knots), where the complete fit parameter output for the three methods is depicted in (D). hrs = hours,
Imp = impedance.

3.2. IPEC-J2 Dilution Experiments and Cell Counting on ECIS Dishes

After having established the extractable curve features of the three different fitting
methods, we investigated and evaluated whether different initially seeded cell counts
would impact the time position of these curve features in a correlated manner (i.e., right
shift with decreasing cell counts). To do so, we conducted a dilution experiment with
seeded cell concentrations of 100,000, 75,000, 56,250, 42,188, 31,641, 23,731, 17,798 and
13,348 cells performed in duplicates over three endpoints (2.5 h, wells A1–A8; 3.5 h, wells
B1–B8; 6 h, ~22 h, plateau; compare Supplemental Data 2, “Curve Data”). Here, we could
clearly observe a correlation between the seeded cell count and the x value at defined
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impedance for cells that reached the plateau phase after 6 h (Figure 3A–C) and ~22 h
(Figure 3D–F) at the estimated values for x01.spline, x01.log and p02.seg. However, for
all of these three curve points and contrasting classical dilution series, the correlation
between the seeded cell counts and the reference curve points was highly nonlinear and
resembled an exponential decay model, which indeed fitted accurately the data with low
root-mean-square error (RMSE) and residual variance (RV) (see Table 2). For these two
timepoints, the AUC was inversely correlated to the reference curve points (Figure 3G,H)
and followed an exponential growth model with decreasing AUC at increasing dilutions.
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(compare Figure 2 and Supplemental Data 2) for a 6 h (upper panel) and a plateau phase (lower panel) experiment, see
insets. An exponential decay model y = (y0 − yb) × exp(−kx) + yb was fitted to the data and displayed as fitted values
(bold line), 95% confidence interval (thin line) and 95% prediction interval (dashed line). For both datasets, the area under
the curve (AUC) was calculated for the complete time scale ((G); 0–46.9 h) and for a subset ((H); 0–20 h) and fitted with
exponential growth model y = ymax/(1 + exp(a + bx)). The corresponding fitted parameters and goodness-of-fit measures
for both models are given in Table 2.

Table 2. Parameters and goodness-of-fit measures derived from fitting the exponential decay model
(spl, log, seg) and the growth model (AUC) to the data in Figure 3.

Cut, 6 h Cut, Plateau

Spl Log Seg AUC Spl Log Seg AUC

Y0 42.86 43.71 42.87 21.26 18.38 19.28

Yb 39.65 40.93 40.98 14.64 15.8 16.15

k 0.000063 0.000035 0.000031 0.000083 0.000033 0.000052

Ymax 3.89 2.04

a 0.471 2.56

b 0.00008 0.00014

RMSE 0.089 0.11 0.075 0.1 0.096 0.097 0.099 0.056

RV 0.0097 0.015 0.0068 0.013 0.011 0.012 0.012 0.0037

R2 0.967 0.964 0.966 0.96 0.984 0.969 0.967 0.99

AIC −24.11 −17.26 −29.71 −20.07 −21.5 −21.33 −20.74 −39.18
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Contrasting this, the results from the 2.5 h/3.5 h experiment did not provide sufficient
curve points to be amenable to the analysis with the three fitting methods (Figure S1A).
Here, we chose to exploit the maximum achieved impedance as the criterion, which, with
respect to the seeded cell counts, could be modeled best with a quadratic model (Figure S1B)
as based on Akaike weights [51] comparing linear, quadratic and logistic models (Figure
S1C). For the comparison of seeded cells versus impedance, the ECIS growth curve of
dish A was cut after 2.5 h so that a time span of a 2.5 h growth phase could be used for
both dishes (wells A1–A8, wells B1–B8) as shown in Figure 4A. Finally, it is important to
note that the maximum impedance could not be modeled well with the actual number of
cells microscopically counted on the electrodes, i.e., at timepoints 2.5 h (dish A) and 3.5 h
(dish B). When trying to investigate the association between electrode cell coverage and
exerted impedance, it became apparent that the plateau phase value can be constant even at
different densities of attached cells, reinforcing the observation that both are not connected
in a linear fashion (Figure 4A–D; counted cells in Supplemental Data 2, “Cell Counts”).
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Figure 4. ECIS growth curve in relation to the IPEC-J2 density on the gold electrodes. The growth
curve (A) was microscopically investigated at three different timepoints, 2.5 h (B), 6 h (C) and
22 h (D), with regard to cell density and interaction. Note that although (C,D) are in the plateau
phase, the micrographs indicate significantly different cell density without impacting the impedance.
hrs = hours, Imp = impedance.

3.3. Ethanol Treatment of IPEC-J2 Cells

In the last step, we validated our models using ethanol-treated IPEC-J2 cells as it
became apparent in the course of processing the corresponding ECIS data that a deviation
in growth behavior was detectable, particularly at an early timepoint (Figure 5A). In all
three models (spl, log, seg), the cells treated with 5% ethanol reached the x01.spline, x01.log
and p02.seg points on the time axis significantly later when compared to the control cells
(Figure 5B–D; p < 0.001). However, and as expected [39,42], no effect was evident at the
treatment with 1% EtOH. Similar to the results described in Section 3.2, the AUC correlated
inversely with all of the three curve reference points by being significantly smaller at 5%
EtOH (Figure 5E; p < 0.0001).
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Figure 5. Reference points for the ethanol treatment experiment on IPEC-J2 cells. The cells were untreated (control) or
treated with 1% or 5% ethanol (EtOH) (typical data shown in (A)) in an experimental setup of five independent experiments
of four replicates each. Using the three location indices “Time at 10% spline” (x01.spline; (B)), “Time at 10% logistic fit”
(x01.log; (C)) and “Time at 20% segmented regression” (p02.seg; (D)) on (0, 1)-normalized data (inset), a clear right shift of
the impedance curve at 5% ethanol is evident. (E) The area under the curve (AUC) estimates of the complete time scale for
all 20 replicates. A Welch (unequal variance) t-test, Bonferroni-corrected for multiple testing, was used to obtain p-values for
the two group comparisons, control/1% EtOH and control/5% EtOH.

4. Discussion

In this work, we developed and tested a set of R scripts that are useful for scientists
working with ECIS growth curves, in which the data can be imported, processed, fitted to
different curve models, plotted and quantified for later evaluation. These scripts facilitate
the fitting of ECIS curves and subsequent reference points extraction for quantitation,
which can be quite cumbersome when the researcher is not proficient in curve fitting.

We demonstrated in a real-life cell culture experiment on IPEC-J2 dilution and ethanol
treatment data that defined curve reference points obtained from three implemented fitting
methods correlate well and are nonlinear with the amount of initially seeded cells, but less
so with the counted number actually residing on the electrode surface. These observations
let us conclude that ECIS impedance for this frequency is primarily defined by epithelial
closure (confluence) on the gold electrode and not the absolute cell number per se [24].
Hence, conclusions about cell numbers should therefore always be made by taking into
account the cell line and the number of seeded cells; however, it is possible that cell
lines with fewer changes in their individual morphology may show a stronger correlation
between impedance and the counted cell number. Here, the shape of the cell, migration
and similar parameters also influence the impedance level [27,37,38]. Furthermore, the
frequency should always be taken into account when interpreting ECIS growth curve
evaluations, where frequencies below 10,000 Hz are usually more suitable for characterizing
cell–cell interactions and higher frequencies enable the actual coverage of the gold electrode
to be monitored, which is likely the case here as the data were generated with the impedance
of 15,000 Hz [38].
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With the performed ethanol treatment experiment, we were able to show that differ-
ences in growth behavior between treated and non-treated groups can be resolved with
our R scripts, and that based on this, practical timepoints for additional experiments can be
chosen. Our established analysis pipeline can be used for diverse applications, for exam-
ple, to quantitate the effect of any chemical, toxicological or pharmacological compound.
Together with the appropriate measurement frequency, it offers the possibility to conduct
large-scale quantification of cell junction and/or adherence-disrupting agonists [52].

For further experiments with other cell lines and treatments than the ones conducted
in this work, it has to be ensured that the best-performing fitting method and appropriate
curve feature is selected to optimally model cell-specific differences in growth behavior.
Here, it must be noted that in the context of an ECIS experiment, a change in impedance is
a multifactorial mixture of cellular and physical effects as the behavior of a cell population
in toto is considered. For instance, there appear to be several explanations for the level of
the plateau phase, where the passage number of cells can come into role when displaying
time against resistance, possibly from a limitation in “barrier-forming capabilities” [38].
We found a difference in the impedance value at the plateau phase level at different cell
seeding densities and, although considerately subtler, in EtOH-treated and non-treated
cells. We assumed that for our ECIS data, the maximum impedance level must be present at
complete coverage of the gold electrode; however, as we were unable to find a correlation
between the counted cell numbers and the impedance values in the plateau phase, we
conclude that the level of plateau phase impedance is not dependent on the number of cells
present at 100% confluence. While this parameter should not affect the statistics for, e.g., x
values of the maximum of the first derivative, we chose to use normalized data (normECIS)
for calculations of the AUC to ensure comparability between different final impedances
values. Importantly, when presenting ECIS impedance data as the AUC, it must be decided
up to which timepoint it is calculated; for instance, it should be decided to select the time
at which the last growth curve reaches the plateau phase or where each individual curve
reaches its individual entry into the plateau phase. In addition, calculation of the AUC up
to a further and previously determined timepoint can also be considered when a change in
growth behavior is expected only until the maximum of the first derivative. However, in
this case, caution is advised if IC50 is to be determined on the basis of the AUC [53].

5. Conclusions

With our newly developed toolset of R scripts, we can improve the evaluation and
quantitation of growth curves generated with ECIS hardware and make them fully compa-
rable between different experiments. Various applications are conceivable in the context
of cell research, especially with regard to the investigation of cell growth behavior, cell
proliferation, cell differentiation and determination of sampling or treatment times. Al-
though the evaluation of ECIS growth curves alone by means of our supplied scripts is
possible, further conclusions can be drawn for other impedance measurement methods in
experimental questions relating to cell growth.

In addition, it can be assumed that the selected evaluation methods can also be
transferred to the evaluation of other types of growth curves (for example, the growth of
bacterial or algae populations) as long as the evaluated populations show similar growth
behavior to the cell one and some key points are similar (for example, a similar number of
measurement points and similar growth curve progression). Further research and adaption
of the R package is needed to pursue this point.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21165286/s1, Figure S1. Use of the maximum impedance max(Imp) as a criterion when
a complete curve trajectory is not available. In this 2.5 h scenario, the maximum impedance of the
baselined data at 15 kHz (A) was regressed against the number of seeded cells (B). AIC values and
the derived Akaike weights indicate that a quadratic model outperforms a linear and logistic model
(C). Supplemental Data 1. Overview of the 15 ECIS-related functions that are implemented as R
scripts downloadable at https://github.com/anspiess/ECIS (accessed on 3 August 2021). For each
function, an overview of its theoretical background, functionality and use of function arguments is
provided together with graphical examples. Supplemental Data 2. Raw curve data (“Curve Data”)
and cell counts (“Cell Counts”) used for the analysis and creation of Figures 2–5 in this work.
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