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Abstract: Frequent inspections are essential for false ceilings to maintain the service infrastructures,
such as mechanical, electrical, and plumbing, and the structure of false ceilings. Human-labor-based
conventional inspection procedures for false ceilings suffer many shortcomings, including safety
concerns. Thus, robot-aided solutions are demanded for false ceiling inspections similar to other
building maintenance services. However, less work has been conducted on developing robot-aided
solutions for false ceiling inspections. This paper proposes a novel design for a robot intended
for false ceiling inspections named Falcon. The compact size and the tracked wheel design of the
robot allow it to traverse obstacles such as runners and lighting fixtures. The robot’s ability to
autonomously follow the perimeter of a false ceiling can improve the productivity of the inspection
process since the heading of the robot often changes due to the nature of the terrain, and continuous
heading correction is an overhead for a teleoperator. Therefore, a Perimeter-Following Controller
(PFC) based on fuzzy logic was integrated into the robot. Experimental results obtained by deploying
a prototype of the robot design to a false ceiling testbed confirmed the effectiveness of the proposed
PFC in perimeter following and the robot’s features, such as the ability to traverse on runners and
fixtures in a false ceiling.

Keywords: false ceiling inspection; inspection robotics; perimeter following; building maintenance

1. Introduction

With the growth of the population and the scarcity of land, there has been a surge in
residential and corporate buildings over the past 50 years [1]. Many of these buildings have
false ceilings built into their infrastructure. A false ceiling is a finished surface constructed
by suspension from the actual ceiling surface with a gap of anywhere from a few centimeters
to several meters [2]. They are also commonly known as dropped, suspended, and T-bar
ceilings. Although it is a common contemporary fixture, false ceilings had been in use in
Japan from as early as the 1300s for ceiling aesthetics [3]. Subsequently, a false ceiling was
also used in Blackfriars Theater in 1596 for acoustic benefits [4]. Currently, false ceilings
provide a separate space for accommodating and routing pipes, Heating, Ventilation and
Air Conditioning (HVAC), and electrical wiring while allowing modular cosmetic tiling
for installation [2,5,6]. In addition to that, false ceiling panels also offer acoustic treatment,
moisture resistance, and fire safety characteristics [7]. Furthermore, they are simple to
install, inexpensive, and serve an aesthetic purpose to the room design by hiding all of the
unpleasant infrastructures to provide a homogeneous surface for the ceiling [5].

However, false ceilings come with their disadvantages, such as a weaker and less
durable ceiling that reduces the height of the room ceiling [2,6]. The false ceiling can
become unsanitary with humidity from the weather or moisture leaks in ducts and pipes,
causing mold. Possible pest infestation is a major disadvantage since it would be difficult
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to eliminate these pests, most commonly rodents. Rodents flourish in false ceilings due
to the lack of frequent accessibility by humans and the abundance of undisturbed space,
providing them the ideal hospitable environment for breeding. Pests in false ceilings
are intolerable, especially in food establishments, as they can carry the risk of spreading
pathogens [8]. Pests can contaminate water and food sources, which may later contribute to
spreading infectious diseases to humans. Moreover, performing maintenance or identifying
issues with false ceilings is difficult since the inspection process is risky and laborious in
such a confined and weak environment [9].

Robotics solutions can be seen in many building maintenance activities ranging from
residential places to public and industrial places. Primarily, these robots are used in
application domains such as floor cleaning [10], facade cleaning [11], gas pipes [12], and
wall cleaning [13] to resolve the shortcoming of human-labor-based processes. Similarly,
robotics solutions can be explored to complement the inspection process of false ceilings
where the conventional human-labor-based methods suffer many shortcomings. Robots’
compact, lightweight, and agile aspects are better suited for false ceiling inspection since
the works space is confined and unable to bear weight. The development of robots for
inspecting confined spaces can be seen in the literature [14]. For example, the work [15]
proposed a pipe inspection robot that detects defects, internal corrosion, cracks, and leakage
in pipelines. In the field of cleaning, a mobile peristaltic-based duct-cleaning robot for
flexible pipes was proposed that could bend as a snake while moving by contraction and
expansion in the axial direction with a cleaning rate of up to 98.7% [16].

In the case of robots for ceiling inspection, there has been modest development. The
Blimp robot was developed to inspect the high ceiling of a gymnasium for damage without
on-site engineers [17]. Since it is a blimp robot, it is lightweight as a balloon and can access
great heights efficiently with minimal energy loss. It is equipped with a WiFi camera
to inspect and photograph for documentation. The work [18], proposed a compact and
lightweight climbing robot that uses the hysteresis of an elastomer adhesive pad to grip
a vertical wall and move around in narrow spaces. The passive peeling adhesive pad
allows energy-efficient maneuvering on smooth vertical, concave, and convex surfaces.
Similarly, Geckobot is a climbing robot with four peeling elastomer adhesive pads that
can climb irregular terrain [19]. This robot even has an active tail to distribute weight
and balance better. Another quadruped robot called UNIclimb [20] was developed using
bio-inspired dry adhesive pads, SLS-type 3D printing, and super-hydrophobic coating that
proved to be effective even for inverted maneuvers on a horizontal ceiling. The coating
enabled it to work in wet, humid, and raining environments as well. Besides bio-inspired
adhesive pads, a magnet-based adhesive wall and ceiling climbing robot was developed to
maneuver ferromagnetic surfaces such as steel cargo containers for contraband inspection
using permanent magnetic wheels [21]. In terms of the inspection and damage assessment
methodology, a smart sensor board was developed for ceiling damage detection [22]. This
sensor board can be integrated into a wheel-type or crawler-type inspection robot and
connected to a wireless network for remote operations. A false ceiling inspection robot
must traverse inside components such as runners and wires during the inspection process.
Furthermore, the robot should be capable of accessing confined spaces and be lightweight.
However, the design of a robot specifically targeted for false ceilings inspections has not
been explored yet.

This paper proposes a novel robot design intended for false ceiling inspections. The
proposed robot has a compact, lightweight design that allows it to move through confined
spaces. The locomotion system was designed to enable the robot’s ability to traverse
components found in typical false ceilings such as runners and cables. Furthermore, the
robot is integrated with the autonomous perimeter-following functionality to improve the
productivity of the inspection process. A comparison between the main capabilities of
the proposed robot, Falcon, and other existing robots is given in Table 1 to highlight the
advantages of the proposed design. The design requirements of a false ceiling inspection
robot are scrutinized in Section 2 considering typical inspection processes. Section 3 details
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the design of the robot. The proposed Perimeter-Following Controller (PFC) is explained
in Section 4. Section 5 discusses the experimental validation of the proposed robot design
and the PFC. Conclusions of the work are given in Section 6.

Table 1. Comparison of existing ceiling inspection robots and Falcon.

Robot
Usability
Inside
a False Ceiling

Locomotion
Method Autonomy Inspection

Sensors Payload

Blimp [17] No Aerial vehicle No Monocular
camera Limited (50 g)

Ceiling walking
robot [18] No

Walking using
elastomeric
footpads

No No Yes (100 g)

Geckobot [19] No
Walking using
elastomeric
footpads

No No Data
not available

UNIclimb [20] No
Walking using
elastomeric
footpads

No No Data
not available

Wall and ceiling
climbing robot [21] No Magnetic

wheels No No Yes

Falcon
(proposed design) Yes Wheels Perimeter

following
Monocular
camera Yes (200 g)

2. Design Requirement for a False Ceiling Inspection Robot

A scenario of a robot inside a false ceiling is depicted in Figure 1. False ceilings are
used to conceal the service lines of buildings such as mechanical, electrical, and plumbing
services to improve the appearance. These include components related to firefighting
systems, such as sprinkler water supply and smoke detectors, components of electrical
wiring, such as cables and lighting fixtures, and ducts of ventilation systems. Frequent
inspections are essential to ensure the proper functioning of these service infrastructures.
In addition to that, the maintenance issues might cause progressive damage to the ceiling
structures. For example, water leakages can cause progressive damage to the structure.
Pest and rodent infestations also damage the equipment of service infrastructures and the
ceiling structure. However, these maintenance requirements are harder to notice since the
ceiling panels conceal all the components; inspection should be conducted by deploying a
robot in a false ceiling. In this regard, the following features are essentially required for a
false ceiling inspection robot:

• The space availability is limited inside a false ceiling, and a robot often has to navigate
narrow and low-height passages. Therefore, the robot should have a compact size
that enables it to move through narrow passages;

• The surface of a false ceiling consists of runners, lighting fixtures, electrical cables,
and ducts. Therefore, the robot should have the ability to traverse these components
to cover a false ceiling during the inspections;

• False ceilings are hanged from the main structures by cables. In addition to that, the
ceiling panels are made from low-strength materials where the weight bearability has
limitations. Therefore, the robot should be lightweight;

• In the inspection process, it is necessary to move the robot along the perimeter to
observe the inside of a false ceiling correctly. However, it is not easy to move the robot
along a perimeter merely using teleoperation. The continuous heading variation of
the robot due to terrain conditions is the main reason for this difficulty. Thus, the
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ability to autonomously follow the perimeter is crucial to improve the robot-aided
inspection process of a false ceiling;

• The robot should be equipped with a vision system to provide visual feedback of the
inside environment. This vision system should be capable of working in low-light
conditions. Moreover, the robot should be equipped with an illumination source to
complement the vision system.

Figure 1. Robot-aided inspection process of a false ceiling. (a) A robot inspecting a false ceiling.
The dashed line represents a path preferred by the robot for inspection. (b) Poor lighting condition
expected in a false ceiling.

3. Robot Platform

The robot proposed in this paper is named “Falcon”. Falcon is a modular and scalable
robot designed and developed for false ceiling inspections, among other tasks. The robot
was designed on a modular basis that allows it to address complexities in the areas that
might cause hindrances to locomotion and task execution. As the interior of the false
ceilings is usually filled with various fixtures, such as runners and cables, it is important to
consider the locomotion aspects of the robot. The locomotion design of the robot utilizes a
tracked drive, which allows the robot to move in difficult terrain conditions to address the
requirement mentioned above. The material for the track was chosen to be rubber as it offers
better friction to have a good grip. There are four DC motors, two on each side, secured
inside the robot that come in contact with the treads, thus enabling them to actuate. The
3D-rendered images of the Falcon robot are illustrated in Figure 2. The robot weighs about
1.5 kg with dimensions spanning approximately 152 mm (L) × 257 mm (W) × 60 mm (H).
The dimensions of the robot are detailed in Figure 3. A front-facing monocular camera
with an LED-based illumination source is attached to the robot to facilitate the inspections.

3.1. Mechanical Design

The robot body and the wheels were 3D printed with Poly-Lactic Acid (PLA) material.
This material offers lightweight and strong features to the robot. The robot materialized
from the design after keenly considering the design arrangements inside a typical false
ceiling setup. The current robot has a tracked skid steering mechanism. The locomotion
of the robot is controlled by controlling the relative velocities of both tracks. Due to the
similar steering mechanisms of the wheeled and the tracked skid steering, a wide range of
their properties overlap.

For the ease of understanding, a simple skid steering kinematics was used in this
paper. There were certain assumptions made for the kinematic presentation, such as the
center of the mass being at the center of the robot, no difference in the speeds of the motor
drives, and the robot runs on a flat surface with all the drive wheels in contact with the
surface. The kinematic model of the robot was derived based on Figure 4.
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Figure 2. Design of the robot. (a) Isometric view; (b) bottom view; (c) front view; (d) top view;
(e) lateral view.

Figure 3. Dimensions of the robot.
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Figure 4. The locations of the ICRs as the robot makes a circular turn with angular and linear velocities.

Consider two frames of reference: one is the global frame {X, Y} and the other is the
robot frame {xR, yR}. As the goal was to find the relative velocities of the wheel drives of
the robots, the relation between the velocities in the global frame and the robot frame is
given in (1) by considering homogeneous transformation between the frames [23]. The
linear velocity in the local frame is given as [vx, vy, 0]T and the angular velocity as [0, 0, ωz]T .
Here, [p, q, θ̇]T is a vector representing generalized velocities.p

q
θ̇

 =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

vx
vy
ωz

 (1)

As the robot moves, its tread velocities are calculated based on the Instantaneous
Centers of Rotation (ICRs). Here, there are three ICRs, namely ICRl , ICRr, and ICRb,
which are the ICR of the left tread, the ICR of the right tread, and the ICR of the robot
body, respectively. Their coordinates are denoted as (xl , yl), (xr, yr), (xb, yb), respectively.
Considering that the treads and the robot body both have the same angular velocity ωz,
the relation among the ICR and the velocities can be given by (2)–(5). Here, r is the radius
of the wheel to which the tread is connected and vr = ωrr and vl = ωlr.

xl = (ωlr− vy)/ωz (2)

xr = (ωrr− vy)/ωz (3)

xb = −vy/ωz (4)

yb = yl = yr = vx/ωz (5)

Equations (2)–(5) help estimate the inverse functions. With respect to the robot frame
of reference, the translation speed and the rotational speed are given by (6)–(8).

vx =
vr − vl
xr − xl

× yl (6)

vy =
vr + vl

2
− vr − vl

xr − xl

(
xl + xr

2

)
(7)

ωz =
vr − vl
xr − xl

(8)

These equations hold well for the robot kinematics when the ICRs of the left and
right treads are estimated correctly. The inverse kinematics relations can be used to find
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the individual tread velocities to be issued for moving the robot per the given velocity
command. These relations are given in (9) and (10).

vr = vy + xr ×ωz (9)

vl = vy + xl ×ωz (10)

As with the presence of the track slip, the ICRs of the tracks always lie outside of the
robot. If there is an ideal slip situation, then the ICRs of the tracks lie closer to the robot.
This behavior is also dependent on the Center Of Mass (COM) concentration of the robot.
Based on the position of the COM, the positions of the ICRs will be either close to the robot
or far away because of the pressure distribution, which affects the area of contact.

3.2. Electrical Design

The electronic subsystem of the robot is depicted in Figure 5. The robot has a Micro-
controller Unit (MCU) (Arduino Mega2560, https://store.arduino.cc/usa/mega-2560-r3
accessed on 25 June 2021), which acts as the brain of the robot. It houses all the logic
required for the robot to perform the inspection tasks. It also has an ESP12-E module
(WEMOS D1 Mini, https://www.wemos.cc/en/latest/d1/d1_mini.html accessed on 25
June 2021) that functions as a slave, enabling the WiFi capability of the robot. The DC
motors, https://www.pololu.com/product/3046 accessed on 25 June 2021 (35 rpm nom-
inal speed, 60 mA no-load current, 986.41:1 gear ratio, 10 kgcm stall torque at 12 V) are
driven through two motor drivers (RoboClaw 2x7A dual-channel motor driver, https:
//www.basicmicro.com/Roboclaw-2x7A-Motor-Controller_p_55.html accessed on 25 June
2021). The MCU issues the respective motor velocity commands for the robot through
motor drivers according to the necessary control actions. For precise locomotion, it is vital
to have a feedback mechanism. Therefore, the DC motors are also equipped with encoders
(magnetic encoder with 12 counts per revolution, https://www.pololu.com/product/4761
accessed on 25 June 2021) that help in coupling the feedback mechanism to the locomo-
tion. The robot also houses an array of Infrared (IR) sensors (Sharp GP2Y0A41SK0F,
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a41sk_e.pdf ac-
cessed on 25 June 2021) to detect the closest obstacle and functionalities such as perimeter
following. The IR sensors are connected to the MCU through analog-to-digital converter
pins. The entire electronic setup was fabricated on a printed circuit board for easy mounting.
Furthermore, it was designed with the provision for the integration of auxiliary compo-
nents such as sensor and actuator modules. The robot is powered up by a lithium ion
battery pack (12 V, 3000 mAh). A step-down voltage regulator (Pololu 5 V, 5 A step-down
voltage regulator D24V50F5, https://www.pololu.com/product/2851 accessed on 25 June
2021) was also used to power up the components working on 5 V such as the MCU and
IR sensors.

The video (Supplementary Material) feed of the monocular camera (Trek Ai-Ball) is
streamed through WiFi to a remote terminal where an operator can perform real-time
inspections. In addition, as the lighting conditions in the false ceiling are insufficient, an
LED strip (NeoPixel Stick, 8 × 5050 RGB LED) is also attached to the robot, which acts as
an illumination source. The color component (RGB) and brightness of each LED of the
strip can be individually controlled through the Arduino. The brightness controllability
would help the inspection. Furthermore, different color schemes can be used to indicate
the different statuses of the robot. With the current configuration of the camera mechanism,
an operator can view an area within a distance range of about 60 cm to 70 cm with a
field of view of about 60◦ in both axes. The video stream of this camera was expected
to be primarily utilized for inspection. Furthermore, the robot was designed to install
additional sensors and actuators such as olfactory sensors and rodenticide dispensers
for complementing the inspection. In this regard, the platform was designed with the
provision to operate with an additional weight of 200 g stably. At this stage, the robot

https://store.arduino.cc/usa/mega-2560-r3
https://www.wemos.cc/en/latest/d1/d1_mini.html
https://www.pololu.com/product/3046
https://www.basicmicro.com/Roboclaw-2x7A-Motor-Controller_p_55.html
https://www.basicmicro.com/Roboclaw-2x7A-Motor-Controller_p_55.html
https://www.pololu.com/product/4761
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a41sk_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a41sk_e.pdf
https://www.pololu.com/product/2851
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has to be teleoperated for inspection, and no autonomous functionality other than the
autonomous perimeter-following ability was implemented on the robot.

Figure 5. Overview of the electronic system.

4. Perimeter-Following Controller

A scenario where the Falcon robot follows a perimeter wall is represented in Figure 6.
The robot perceives the distances from the perimeter with the IR sensors in the front and
back as FR and BR, respectively. A difference between FR and BR indicates that the robot
heading is not parallel to the wall. The robot should change the angular velocity (i.e.,
ω) to correct its heading error to be parallel with the perimeter when the robot moves
with a fixed linear velocity (i.e., v). The error of the robot heading eo can be estimated as
eo = BR − FR. The controller should attempt to take actions to minimize this error during
the task of perimeter following. The Perimeter-Following Controller (PFC) of the robot was
developed using fuzzy logic. Fuzzy logic was utilized to implement the PFC due to the
following reasons:

• Fuzzy logic can be used to map the input and output space of a process using a set
of linguistic rules without the knowledge of the underlying dynamics of the process
model [24–26]. In the case of the Falcon robot, the exact dynamics of the robot are not
known due to the difficulty of modeling the slippage of the robot when traversing on
bumps such as runners and cables;

• Range sensor information inside a confined space, such as inside a false ceiling, is not
accurate [27,28]. Thus, the proposed robot often encounters sensor inaccuracies where
the decisions have to be made while coping with the sensor uncertainties. Fuzzy logic
is effective for decision making based on such inaccurate sensor measurements [29,30];

• The environment inside a false ceiling is uncertain due to the inclusion of cluttered
objects such as cable trunks, air ducts, and runners. Fuzzy logic has been proven to be
effective in navigating such uncertain environments [31,32];
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• Expert knowledge can easily be modeled using fuzzy logic [33,34]. Thus, the knowl-
edge of a robot operator could be utilized for modeling the required decision-making
behavior of this scenario.

Figure 6. Robot sensing a perimeter wall. The front range and bottom range are given as FR and BR,
respectively. The angular velocity and linear velocities are given as w and v, respectively.

The inputs of the PFC are the error in the orientation of the robot (eo) and the change
of error in the orientation (ėo). The output of the fuzzy logic system is the angular velocity
of the robot (ω). The input and output membership functions of the fuzzy logic system
are shown in Figure 7. Triangular and trapezoidal fuzzy sets were defined for the mem-
bership functions to reduce the computational resources required for the inferencing [35].
Furthermore, this facilitates the simplicity and the efficiency of the developed system imple-
mentation. The fuzzy set ranges were defined such that they evenly covered the universe
of discourse of the input and output spaces. The universe of discourse of the inputs and
the outputs were experimentally determined considering the probable variations of the
inputs and the feasible range of controlling the output. However, the universe of discourse
of the inputs was extended from −∞ to +∞ to cope with any input value that might be
caused due to noises. The number of fuzzy rules required for a fuzzy logic controller
depends on the number of input and output membership functions. Although there is no
exact limit to the number of fuzzy sets for a given membership function, Wu et al. [36]
emphasized that membership functions should be limited to seven for efficiency and the
proper representation of expert knowledge. Considering the above details, five fuzzy sets
were used for the input and output membership functions, which covered the input and
output spaces with a sensitivity sufficient for the controller.

µeo (eo) and µėo (ėo) correspond to the fuzzified inputs of the system. The linguistic
rules defined based on expert knowledge are given in Table 2. These rules illustrate the
decision making of control actions and the policy of the fuzzy logic system. The rules
were defined in a way that mapped the input space toward the output space. Minimum
and maximum operators were used as the t-norm and t-conorm of the fuzzy logic system,
respectively. Hence, the firing strength of the ith rule, Γi, can be defined as in (11).

Γi = min{µeoi
(eo), µėoi

(ėo)} (11)
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Input 𝑒𝑜 (cm)

𝜇𝑒𝑜

Output,ω (rad/s)

𝜇𝜔

(a)

(c)

NH                 N             Z            P                PH

R              LR                  M                   LL              L

Input ሶ𝑒𝑜 (cm/cycle)
(b)

𝐵𝑅

𝐹𝑅

𝑣
𝜔

NH                 N             Z            P                PH
𝜇 ሶ𝑒𝑜

−∞ − 10             − 5                0                  5                  10              + ∞

−∞ − 5            − 2.5              0                 2.5                5          + ∞

− 0.46                 − 0.23                       0                          0.23                0.46

0

0

Figure 7. (a,b) represent the input membership functions. The range of these membership functions
extends from −∞ to +∞. (c) represents the output membership function of the fuzzy logic system.
The fuzzy labels are defined as NH: Negative High, N: Negative, Z: Zero, P: Positive, PH: Positive
High, R: Right, LR: Little Right, M: Medium, LL: Little Left, and L: Left.

Table 2. Rule base of the fuzzy logic system.

ėo\eo NH N Z P PH

NH R R R LR M

N R R LR M LL

Z R LR M LL L

P LR M LL L L

PH M LL L L L

The output fuzzy consequent of the ith rule can be obtained as in (12) by applying the
Mamdani implication method. Here, µω′i

is the fuzzy consequent resulting from clipping
the output fuzzy set by the corresponding firing strength. For the fuzzy aggregation
operator, the maximum was used as in (13) to combine the fuzzy consequents into a single
set where N is the number of rules in the rule base. The crisp output to control the robot’s
reference angular velocity, ω∗, for effective perimeter following can be obtained as in (14)
considering the center of area defuzzification method.

µω′i
(ω) = min{Γi, µωi (ω)} (12)

µω′(ω) = max{µω′1
(ω), µω′2

(ω), ..., µω′i
(ω), ..., µω′N

(ω)} (13)

ω∗ =
∫

ωµω′(ω)dω∫
µω′(ω)dω

(14)
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5. Experimental Validation
5.1. Experimental Setup

A prototype of the proposed robot was developed. The experiments were conducted
in two phases. The robot’s ability to traverse the components inside a false ceiling, such as
runners, cables, and lighting fixtures, was tested in the first phase since it is an essential de-
sign consideration for a false ceiling inspection robot. In the second phase, the performance
and behavior of the proposed PFC were evaluated considering a set of heterogeneous test
cases. All the experiments were conducted on a mock setup of a false ceiling constructed
per the specifications of typical false ceilings. The linear velocity of the robot (i.e., v) was
configured to 0.06 m/s for the experiment. The time step of the control loop was 64 ms.

5.2. Verification of the Obstacle Traversing Ability of the Robot

The ability to traverse components inside a false ceiling, such as runners, cables,
conduits, and lighting fixtures, was one of the essential design features expected from the
proposed robot design. Therefore, the robot’s ability to traverse these sorts of obstacles
was evaluated considering typical false ceiling structures. In this regard, the robot was
moved on the objects multiple times. Sequences of snapshots taken during sample test
cases are given in Figure 8. According to the experimental observations, the robot was
able to traverse through the objects as expected in the design process. These observations
validated that the proposed robot design enables it to traverse common objects in a false
ceiling, and thus, it would be helpful for the inspection process.

5.3. Performance and Behavior of the PFC

Seven heterogeneous test cases were considered to verify the performance and the
behavior of the proposed PFC. The arrangement of those seven test cases is shown in
Figure 9. The inputs and the output of the PFC (i.e., eo, ėo, and ω) were logged for all
the cases. The observed variations of these parameters during the test cases are given in
Figure 10. Furthermore, the robot’s movement was recorded through an external camera,
and a sequence of snapshots of the robot for each corresponding test case is given in
Figure 11. The variation of the robot’s heading with respect to the perimeter wall (i.e., eo)
was crucial for assessing the performance. Thus, the Root Mean Square (RMS) of eo was
used to quantitatively analyze the overall performance of the PFC in a test case. Here, the
RMS of eo was used instead of the mean since positive and negative values of eo nullify the
overall error. The RMS of eo, RMSeo , was calculated as in (15), where T is the duration of a
test case. RMSeo observed for each case are given in Table 3.

RMSeo =
1
T

T

∑
t=0

e2
o(t) (15)

In Test Case a, the robot was initially placed without a heading error with the perimeter
wall as shown in Figure 9a, and the Perimeter-Following Function (PFF) was enabled. The
variation of the inputs of the PFC (i.e., eo and ėo) and the output, ω, is given in Figure 10a.
According to the observed variation, the robot was able to keep the error lower most of
the time. This lower error variation indicated that the robot was successful in following
the perimeter. This observation can be further confirmed from the actual robot movement
shown as snapshots in Figure 11a. A few occasional sudden elevations of eo could be
observed. These elevations of eo were mainly due to the sudden changes of the robot
heading when traversing the runners. The highest error was recorded when the robot
passed a supporting structure fixed to the perimeter wall, which triggered a sudden change
of the range sensors. However, the proposed PFC could cope with these sudden changes
and follow the perimeter with a lower RMSeo (RMSeo was 2.8 cm, given in Table 3).
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Figure 8. Sequence of snapshots taken when the robot traverses different components of a false
ceiling. (a) Moving across a runner; (b) moving on a lighting fixture; and (c) crossing a conduit.

Figure 9. The arrangements of the test cases used in the second phase of the experiment. (a) The
robot was placed with no heading error with the perimeter wall. (b) The robot was placed with an
inward heading error. (c) The robot was placed with an outward heading error. (d) A segment with
more objects to be traverse. (e) A segment with an inward slanting perimeter. (f) A segment with an
outward slanting perimeter. (g) A segment with an inward and outward slanted perimeter.



Sensors 2021, 21, 5281 13 of 18

𝑒𝑜

ሶ𝑒𝑜

𝜔

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

(a) (b)
t(s) t(s)

(c) (d)
t(s) t(s)

(e) (f)
t(s) t(s)

(g)
t(s)

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

𝑒𝑜

ሶ𝑒𝑜

𝜔

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

𝜔
(r
ad
/s
)

(b)
t(s)

(d)
t(s)

(f)
t(s)

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

𝑒 𝑜
cm

ሶ𝑒 𝑜
(c
m
/c
yc
le
)

Figure 10. Variation of the inputs and output of the PFC corresponding to the test cases explained in Figure 9. It should be
noted that the Y-axis corresponding to ω is on right side of each plot. The corresponding test cases are indicated by the
subfigures as follows: (a) The robot was placed with no heading error with the perimeter wall. (b) The robot was placed
with an inward heading error. (c) The robot was placed with an outward heading error. (d) A segment with more objects to
be traverse. (e) A segment with an inward slanting perimeter. (f) A segment with an outward slanting perimeter. (g) A
segment with an inward and outward slanted perimeter.

Table 3. Root mean square of eo (RMSeo ) for the test cases.

Case RMSeo (cm)

(a) 2.8
(b) 3.5
(c) 5.2
(d) 1.4
(e) 13.0
(f) 17.2
(g) 6.6
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Figure 11. Snapshot sequences of the robot’s movements during the test cases explained in Figure 9.
The snapshots displayed here for a test case are evenly distributed within the duration of the case.
(a) The robot was placed with no heading error with the perimeter wall. (b) The robot was placed
with an inward heading error. (c) The robot was placed with an outward heading error. (d) A segment
with more objects to be traverse. (e) A segment with an inward slanting perimeter. (f) A segment
with an outward slanting perimeter. (g) A segment with an inward and outward slanted perimeter.

In Test Case b, the robot was initially placed with a heading error toward the perimeter,
as shown in Figure 9b. The variation of eo indicated that the root had a higher positive
error at the start, and it tended to zero within the next few seconds due to the PFC action
of commanding a positive angular rotation (see Figure 10b). After correcting the initial
error, the robot was moved almost similar to the first case, where a few sudden rises of eo
could be observed when the robot was passing the runners. The observed movements of
the robot also confirmed that the PFC was capable of successfully following the perimeter
(see Figure 11b). RMSeo was 3.5 cm, indicating a lower overall eo. Similarly, in Case c, the
robot was placed with an initial heading error outward of the perimeter. The performance
and behavior of the PFC were almost similar to Case b, the only difference being the sign
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of the initial error. Moreover, the proposed PFC was capable of coping with initial heading
errors, either inward or outward, and successfully following a perimeter.

A situation with many obstacles to be traversed by the robot was considered for Test
Case d (shown in Figure 9d). Here, a few cables were placed over the surface of the false
ceiling. This sort of cable lying on the surface can often be found in a false ceiling. The
robot was initially placed parallel to the perimeter and commanded to follow the perimeter,
similar to Case a. However, the addition of the cables created more obstacles to be traversed
by the robot. According to the observed variation of e0 (see Figure 10d), the proposed PFC
was capable of maintaining a lower eo during the course of movement (RMSeo = 1.4 cm).
The perimeter-following ability of this case was also confirmed by the recorded movement
of the robot (see Figure 11d). These results validated the ability of the PFC to correctly
follow the perimeter wall while moving on rugged terrain.

In Cases e and f, the performance and behavior of the PFC in situations of inward
and outward perimeter segments were evaluated (shown in Figure 9e,f, respectively).
When the robot initially encountered the slanted segment, a sudden increase of eo could
be observed for both cases. This elevated eo was sustained until both sensors of the robot
encountered a slanted segment (around 5.5 s–8.5 s in Case e and 5.5 s–8 s in Case f). After
that, the robot was capable of maintaining a lower eo. Due to the longer sustaining of a
higher eo, the values of RMSeo observed for the two cases were comparatively higher than
the other test cases (13.0 cm and 17.2 cm for Cases e and f, respectively). However, the
robot successfully followed the perimeter, as confirmed by the recorded movement of the
robot given in Figure 11e,f. A similar sort of behavior could be observed in Case g, where
a combination of the inward and outward slanted perimeter was presented. Here, the
elevation of eo was lower compared to Cases e and f since the slanted perimeter segment
was smoothly connected to the perimeter without a sudden change. Thus, a lower RMSeo

was observed in this case (RMSeo = 6.6 cm). Thus, these observations confirmed the ability
of the proposed PFC to effectively cope with slanted perimeters even with subsequent
direction changes.

Overall, the robot with the proposed PFC was capable of effectively following the
perimeter wall of a false ceiling in all the considered test cases. The test cases consisted
of heterogeneous scenarios that a false ceiling inspection robot could often encounter.
Furthermore, the experiments were conducted in a testbed designed per the standard
specifications of a false ceiling. Therefore, it can be concluded that the proposed PFC
is very adequate for a false ceiling inspection robot to establish the perimeter-following
functionality essential for the inspection process.

The model-free controlling ability of the fuzzy logic was exploited in designing the
proposed PFC due to the difficulty of modeling the dynamics of the required behavior. In
the event of model-free controlling of the fuzzy logic, it is not possible to provide theoretical
proof to guarantee stability. Thus, an analysis to guarantee stability was not conducted in
this work. Nevertheless, the behavior of the proposed controller was evaluated considering
a set of diverse test cases that covered most of the probable scenarios. The experimental
outcomes of these test cases validated that the controller was stable and had the ability
to provide the expected behavior. Therefore, it is justifiable to consider that the proposed
controller has the capability to generate expected behavior even though a theoretical
analysis was not provided. Furthermore, the perimeter following ability was proposed to
complement the effort of a human operator in the inspection since the perimeter following
solely through teleoperation causes an unnecessary overhead for the operator. A human
operator should always be engaged with the inspection process since the robot is not fully
autonomous. In other words, the system is a human-in-the-loop system at the present
stage. The operator can use the real-time visual feedback of the robot for inspection, as well
as override any control action of the robot. Therefore, the operator can take precautionary
actions to ensure the robot’s safety in the case of system instability.
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6. Conclusions

Frequent inspections are required for false ceilings to identify progressive structural
defects, as well as pest infestations. The current inspection process of false ceilings heavily
depends on human labor. However, the inspection of false ceilings is difficult for humans
due to the unfavorable conditions such as the confined space, low lighting conditions, and
possible danger. Robots have the potential to aid false ceiling inspections. However, very
little work has attempted to design robots for false ceiling inspections.

A false ceiling inspection robot should be capable of moving through narrow spaces
and traversing the components of a false ceiling, such as runners and lighting fixtures. This
paper proposed a novel design for a false ceiling inspection robot capable of accessing
confined spaces while traversing components such as runners typically found in false
ceilings. Continuous teleoperation is difficult for this sort of robot since the robot heading
direction often changes due to traversing objects. Therefore, the perimeter-following ability
is an essential feature for a robot designed for false ceiling inspection. The robot was
deployed with a Perimeter-Following Control (PFC) to realize this requirement. The PFC
was developed using fuzzy logic.

A prototype of the robot design was developed, and experiments were conducted in
a mock setup of a false ceiling. The first phase of the experiments confirmed the robot’s
ability to effectively traverse common objects found in a typical false ceiling. The perfor-
mance and behavior of the proposed PFC were evaluated in the second phase considering
heterogeneous test cases faced by a false ceiling inspection robot. The experimental results
confirmed that the proposed PFC effectively established the perimeter-following ability in
the false ceiling inspection robot. Moreover, the results validated the usability of the pro-
posed robot design and the PFC to improve the false ceiling inspection process. Currently,
the robot is not equipped with a localization method and a fully autonomous inspection
method. These are the main limitations of the robot at the present stage. The exploration of
the localization within the false ceiling and the development of a vision-based autonomous
inspection frame are proposed for future work. Furthermore, explorations to develop
optimal path planning methods for the robot are proposed for future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21165281/s1, Video S1.

Author Contributions: Conceptualization, M.A.V.J.M., S.M.B.P.S. and M.R.E.; methodology, M.A.V.J.M.
and S.M.B.P.S.; software, M.A.V.J.M.; investigation, M.A.V.J.M., K.G.S.A. and S.G.A.P.; resources,
R.Y.W.W.; writing—original draft preparation, M.A.V.J.M., K.G.S.A., S.G.A.P. and S.M.B.P.S.; writing—
review and editing, M.R.E.; visualization, M.A.V.J.M.; supervision, M.R.E.; funding acquisition,
M.R.E. All authors read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Robotics Programme under its Robotics
Enabling Capabilities and Technologies (Funding Agency Project No. 192 25 00051), the National
Robotics Programme under its Robot Domain Specific (Funding Agency Project No. 192 22 00058),
and the National Robotics Programme under its Robotics Domain Specific (Funding Agency Project
No. 192 22 00108), administered by the Agency for Science, Technology and Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahtta, R.; Mahendra, A.; Seto, K.C. Building up or spreading out? Typologies of urban growth across 478 cities of 1 million+.

Environ. Res. Lett. 2019, 14, 124077. [CrossRef]
2. Cha, S.H.; Koo, C.; Kim, T.W.; Hong, T. Spatial perception of ceiling height and type variation in immersive virtual environments.

Build. Environ. 2019, 163, 106285. [CrossRef]

https://www.mdpi.com/article/10.3390/s21165281/s1
https://www.mdpi.com/article/10.3390/s21165281/s1
http://doi.org/10.1088/1748-9326/ab59bf
http://dx.doi.org/10.1016/j.buildenv.2019.106285


Sensors 2021, 21, 5281 17 of 18

3. Interview with Curator Matthew Welch—The Art of Asia—Japanese Audience Hall. 2020. Available online: http://www.artsmia.
org/art-of-asia/architecture/japanese-audience-hall-interview.cfm (accessed on 20 May 2021).

4. Smith, B.R. The Acoustic World of Early Modern England: Attending to the O-Factor; University of Chicago Press: Chicago, IL,
USA, 1999

5. Hu, Z.Z.; Tian, P.L.; Li, S.W.; Zhang, J.P. BIM-based integrated delivery technologies for intelligent MEP management in the
operation and maintenance phase. Adv. Eng. Softw. 2018, 115, 1–16. [CrossRef]

6. Types of False Ceilings and Its Applications. 2017. Available online: https://theconstructor.org/building/types-false-ceilings-
applications/13602/ (accessed on 20 May 2021).

7. Michael, M.; Sankar, V.; Paul, A.; Joy, A.; Fainusa, V.; Raju, C.I. Comparative study on the effect of false ceiling materials on the
room temperature. In Green Buildings and Sustainable Engineering; Springer: Berlin, Germany, 2019; pp. 179–187.

8. Guidelines on Prevention of Rat and Cockroach Infestations at Food Establishments; A Public Health Document, Singapore Food Agency:
Singapore, 2019.

9. Min, J.; Kim, Y.; Lee, S.; Jang, T.W.; Kim, I.; Song, J. The fourth industrial revolution and its impact on occupational health and
safety, worker’s compensation and labor conditions. Saf. Health Work 2019, 10, 400–408. [CrossRef] [PubMed]

10. Samarakoon, S.B.P.; Muthugala, M.V.J.; Le, A.V.; Elara, M.R. HTetro-infi: A reconfigurable floor cleaning robot with infinite
morphologies. IEEE Access 2020, 8, 69816–69828. [CrossRef]

11. Chae, H.; Park, G.; Lee, J.; Kim, K.; Kim, T.; Kim, H.S.; Seo, T.T. Facade cleaning robot with manipulating and sensing devices
equipped on a gondola. IEEE/ASME Trans. Mechatron. 2021. [CrossRef]

12. Koh, K.H.; Farhan, M.; Yeung, K.P.C.; Tang, D.C.H.; Lau, M.P.Y.; Cheung, P.K.; Lai, K.W.C. Teleoperated service robotic system for
on-site surface rust removal and protection of high-rise exterior gas pipes. Autom. Constr. 2021, 125, 103609. [CrossRef]

13. Muthugala, M.A.V.J.; Vega-Heredia, M.; Mohan, R.E.; Vishaal, S.R. Design and Control of a Wall Cleaning Robot with Adhesion-
Awareness. Symmetry 2020, 12, 122. [CrossRef]

14. Agnisarman, S.; Lopes, S.; Madathil, K.C.; Piratla, K.; Gramopadhye, A. A survey of automation-enabled human-in-the-loop
systems for infrastructure visual inspection. Autom. Constr. 2019, 97, 52–76. [CrossRef]

15. Yahya, N.; Ashrafi, N.; Humod, A. Development and Adaptability of In-Pipe Inspection Robots. IOSR J. Mech. Civ. Eng. 2014,
11, 01–08. [CrossRef]

16. Ito, F.; Kawaguchi, T.; Kamata, M.; Yamada, Y.; Nakamura, T. Proposal of a Peristaltic Motion Type Duct Cleaning Robot for
Traveling in a Flexible Pipe. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), The Venetian Macao, Macau, 3–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6614–6621.

17. Nitta, Y.; Inai, S.; Matsumura, K.; Ishida, M.; Onai, T.; Nishitani, A. The Visual Inspection Methodology for Ceiling Utilizing the
Blimp. Procedia Eng. 2017, 188, 256–262. [CrossRef]

18. Unver, O.; Sitti, M. A miniature ceiling walking robot with flat tacky elastomeric footpads. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2276–2281. [CrossRef]

19. Unver, O.; Uneri, A.; Aydemir, A.; Sitti, M. Geckobot: A gecko inspired climbing robot using elastomer adhesives. In Proceedings
of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; IEEE:
Piscataway, NJ, USA, 2006; pp. 2329–2335.

20. Ko, H.; Yi, H.; Jeong, H.E. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D
printing (UNIclimb). Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 273–280. [CrossRef]

21. Zhang, Y.; Dodd, T.; Atallah, K.; Lyne, I. Design and optimization of magnetic wheel for wall and ceiling climbing robot. In
Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; IEEE:
Piscataway, NJ, USA, 2010; pp. 1393–1398.

22. Nitta, Y.; Iwasaki, A.; Nishitani, A.; Wakatabe, M.; Inai, S.; Ohdomari, I.; Tsutsumi, H. Development of the damage assessment
methodology for ceiling elements. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012.
Int. Soc. Opt. Photonics 2012, 8345, 83453T.

23. Kelly, A. Mobile Robotics: Mathematics, Models, and Methods; Cambridge University Press: Cambridge, UK, 2013.
24. Muthugala, M.A.V.J.; Vega-Heredia, M.; Vengadesh, A.; Sriharsha, G.; Elara, M.R. Design of an Adhesion-Aware Façade Cleaning

Robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian
Macao, Macau, 4–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1441–1447.

25. Samarakoon, S.M.B.P.; Muthugala, M.A.V.J.; Elara, M.R. Toward obstacle-specific morphology for a reconfigurable tiling robot. J.
Ambient. Intell. Humaniz. Comput. 2021, 1–13. [CrossRef]

26. Ma, Z.; Huang, P.; Kuang, Z. Fuzzy approximate learning-based sliding mode control for deploying tethered space robot. IEEE
Trans. Fuzzy Syst. 2020. [CrossRef]

27. Liu, G.; Hao, W.; Yan, S.; Sun, Z.; Qiang, W. A Fusion Algorithm for Building Maps in Confined Environments for Mobile Robots.
In Proceedings of the Multiconference on Computational Engineering in Systems Applications, Beijing, China, 4–6 October 2006;
IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 960–964.

28. Singh, R.; Nagla, K.S. Comparative analysis of range sensors for the robust autonomous navigation—A review. Sens. Rev. 2019,
40, 17–41. [CrossRef]

29. Ibarra, L.; Webb, C. Advantages of fuzzy control while dealing with complex/unknown model dynamics: A quadcopter example.
New Appl. Artif. Intell. 2016, 31, 93–121. [CrossRef]

http://www.artsmia.org/art-of-asia/architecture/japanese-audience-hall-interview.cfm
http://www.artsmia.org/art-of-asia/architecture/japanese-audience-hall-interview.cfm
http://dx.doi.org/10.1016/j.advengsoft.2017.08.007
https://theconstructor.org/building/types-false-ceilings-applications/13602/
https://theconstructor.org/building/types-false-ceilings-applications/13602/
http://dx.doi.org/10.1016/j.shaw.2019.09.005
http://www.ncbi.nlm.nih.gov/pubmed/31890322
http://dx.doi.org/10.1109/ACCESS.2020.2986838
http://dx.doi.org/10.1109/TMECH.2021.3077634
http://dx.doi.org/10.1016/j.autcon.2021.103609
http://dx.doi.org/10.3390/sym12010122
http://dx.doi.org/10.1016/j.autcon.2018.10.019
http://dx.doi.org/10.9790/1684-11470108
http://dx.doi.org/10.1016/j.proeng.2017.04.482
http://dx.doi.org/10.1109/ROBOT.2009.5152303
http://dx.doi.org/10.1007/s40684-017-0033-y
http://dx.doi.org/10.1007/s12652-021-03342-2
http://dx.doi.org/10.1109/TFUZZ.2020.3006583
http://dx.doi.org/10.1108/SR-01-2019-0029
http://dx.doi.org/10.5772/62530


Sensors 2021, 21, 5281 18 of 18

30. Phan, K.B.; Ha, H.T.; Hoang, S.V. Eliminating the Effect of Uncertainties of Cutting Forces by Fuzzy Controller for Robots in
Milling Process. Appl. Sci. 2020, 10, 1685. [CrossRef]

31. Muthugala, M.; Samarakoon, S.; Mohan Rayguru, M.; Ramalingam, B.; Elara, M.R. Wall-Following Behavior for a Disinfection
Robot Using Type 1 and Type 2 Fuzzy Logic Systems. Sensors 2020, 20, 4445. [CrossRef]

32. Faisal, M.; Algabri, M.; Abdelkader, B.M.; Dhahri, H.; Al Rahhal, M.M. Human expertise in mobile robot navigation. IEEE Access
2017, 6, 1694–1705. [CrossRef]

33. Muthugala, M.A.V.J.; Jayasekara, A.G.B.P. Enhancing user satisfaction by adapting Robot’s perception of uncertain information
based on environment and user feedback. IEEE Access 2017, 5, 26435–26447. [CrossRef]

34. Muthugala, M.A.V.J.; Samarakoon, S.M.B.P.; Elara, M.R. Tradeoff between area coverage and energy usage of a self-reconfigurable
floor cleaning robot based on user preference. IEEE Access 2020, 8, 76267–76275. [CrossRef]

35. Zangeneh, M.; Aghajari, E.; Forouzanfar, M. A survey: Fuzzify parameters and membership function in electrical applications.
Int. J. Dyn. Control. 2020, 8, 1040–1051. [CrossRef]

36. Wu, D.; Mendel, J.M. Designing practical interval type-2 fuzzy logic systems made simple. In Proceedings of the 2014 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 800–807.

http://dx.doi.org/10.3390/app10051685
http://dx.doi.org/10.3390/s20164445
http://dx.doi.org/10.1109/ACCESS.2017.2780082
http://dx.doi.org/10.1109/ACCESS.2017.2777823
http://dx.doi.org/10.1109/ACCESS.2020.2988977
http://dx.doi.org/10.1007/s40435-020-00622-1

	Introduction
	Design Requirement for a False Ceiling Inspection Robot
	Robot Platform
	Mechanical Design
	Electrical Design

	Perimeter-Following Controller
	Experimental Validation
	Experimental Setup
	Verification of the Obstacle Traversing Ability of the Robot
	Performance and Behavior of the PFC

	Conclusions
	References

