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Abstract: Action observation (AO)-based brain-computer interface (BCI) is an important technology
in stroke rehabilitation training. It has the advantage of simultaneously inducing steady-state mo-
tion visual evoked potential (SSMVEP) and activating sensorimotor rhythm. Moreover, SSMVEP
could be utilized to perform classification. However, SSMVEP is composed of complex modulation
frequencies. Traditional canonical correlation analysis (CCA) suffers from poor recognition perfor-
mance in identifying those modulation frequencies at short stimulus duration. To address this issue,
task-related component analysis (TRCA) was utilized to deal with SSMVEP for the first time. An
interesting phenomenon was found: different modulated frequencies in SSMVEP distributed in dif-
ferent task-related components. On this basis, a multi-component TRCA method was proposed. All
the significant task-related components were utilized to construct multiple spatial filters to enhance
the detection of SSMVEP. Further, a combination of TRCA and CCA was proposed to utilize both
advantages. Results showed that the accuracies using the proposed methods were significant higher
than that using CCA at all window lengths and significantly higher than that using ensemble-TRCA
at short window lengths (≤2 s). Therefore, the proposed methods further validate the induced
modulation frequencies and will speed up the application of the AO-based BCI in rehabilitation.

Keywords: brain-computer interface (BCI); steady-state motion visual evoked potential (SSMVEP);
action observation (AO); task-related component analysis (TRCA); rehabilitation

1. Introduction

Action observation (AO), which can evoke the mirror neuron system (MNS), is an
alternative approach for stroke rehabilitation [1]. Acting via MNS, AO can subconsciously
activate the motor neurons that are responsible for producing the observed action [2]. In
addition, AO has been reported to have a positive impact on stroke patients [3].

While AO provides involuntary sensory stimulation for patients, the effect on the brain
plasticity is limited. Sensory stimulation with the user’s own volitions can further promote
brain plasticity [4]. Therefore, obtaining the user’s volitions is critical. Brain-computer
interface (BCI) is a novel method that can obtain individuals’ volitions to interact with
external environments without using regular peripheral nerves and muscles [5]. It reveals
great potentials for enhancing brain plasticity in rehabilitation, such as motor imagery
(MI)-based BCI [6].

However, recent research has shown that some patients experience full or partial loss
of MI ability following a stroke [7]. For this group of patients, Ku et al. [8] proposed a BCI-
based AO, using flickering action video, to activate MNS. Mental status and feedback were
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determined by detecting steady-state visual evoked potential (SSVEP). However, SSVEP
was induced by the flicker in the background of the video in Ku’s study. The detection
did not completely reflect the engagement in the action. In our recent study [9], a gaiting
stimulus was proposed. The results showed that observing the designed gaiting stimulus
could simultaneously induce steady-state motion visual evoked potential (SSMVEP) in the
occipital area and activate sensorimotor rhythm (SMR) in the primary sensorimotor area.
No flicker existed in the stimulus and the SSMVEP was induced by the movement of the
feet. However, the SSMVEP induced by the gaiting stimulus was composed of complex
modulation frequencies. Those frequencies were modulated between frame rate and stride
frequency. Traditional canonical correlation analysis (CCA) method suffered from poor
recognition performance in identifying those modulated frequencies, especially at short
stimulus durations. The average classification accuracy was only 34.8% at 1 s window
length in a four-class scenario in AO-based BCI [9].

SSMVEP, which can be induced by Newton’s rings, was first proposed in [10]. Then
Yan et al. [11] demonstrated that visual stimulus with periodic motion such as swing and
rotation can also induce SSMVEP. SSMVEP showed a slight difference from SSVEP, e.g.,
the SSMVEP contained fewer harmonic components. Our recent study further explored
the difference between SSVEP and SSMVEP which were induced by the stimuli containing
multi-frequencies [12]. The results showed that there were differences in the components
of the induced modulated frequencies. Furthermore, for the SSMVEP induced by the AO
stimulus (e.g., a gaiting stimulus), the main induced frequency was at the frame rate. The
sum and difference between the frame rate and twice stride frequency could also be found
as shown in [9]. However, the amplitudes of these induced frequencies varied greatly, a
fact which showed a great difference from SSVEP. In spite of this, the target identification
methods for SSMVEP were the same as SSVEP in the existing studies.

To improve the performance of BCI, hybrid BCI and improving algorithms are two tra-
ditional approaches. Mannan et al. showed that combining eye tracking with EEG can
highly improve the decoding accuracy of SSVEP-based BCIs [13]. For the algorithms in
SSVEP-based BCIs, power spectrum density analysis (PSDA) was used to detect target
frequency from single-channel EEG [14]. In addition, CCA was employed to improve classi-
fication accuracy by utilizing multi-channel EEGs [15]. By computing canonical correlation
between the multi-channel EEG signals and the designed reference signals, the target can
be identified by the largest similarity. Traditionally, the reference signals are constructed
from sine-cosine signals with flash frequencies. However, such designed reference signals
cannot reflect the subject-specific features [16]. Thus, individual calibration data have
been incorporated in CCA-based SSVEP detection [17,18]. In addition, considering the
harmonic components in SSVEPs, a filter bank CCA was proposed to decompose SSVEPs
into sub-band components to extract the independent information more efficiently [19].
Recently, task-related component analysis (TRCA) was employed to improve SNR of
SSVEP by removing the background EEG activities. The eigenvectors corresponding to
the largest eigenvalue were selected to construct the spatial filter [20]. In addition, an
ensemble method e-TRCA was developed for a high-speed brain speller [20]. This method
achieved the best performance among the existing CCA-based methods. However, few
studies focused on the target identification methods for the SSMVEP-based BCIs, espe-
cially for SSMVEP induced by the AO stimulus, which had great potential in BCI-based
rehabilitation. Currently, CCA is still the main identification method for SSMVEP. The
reference signals were constructed from sine-cosine signals containing all the induced
frequencies [9,11,21]. And it required manual optimization of reference signals to achieve
high identification accuracy.

In this study, TRCA was selected as the data-driven approach to construct the spatial
filter for the AO-based BCI for the first time. In addition, a multi-component task-related
component analysis (mc-TRCA) method was proposed to enhancing the target detection
accuracy of SSMVEP induced by the AO stimuli. The performance was evaluated on the
EEG data when participants gazed at the gaiting stimulus. Unlike only one significant
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eigenvector in SSVEP, multiple significant eigenvectors were found in SSMVEP, induced by
the gaiting stimulus. Thus, the proposed method automatically selected all the significant
task-related components to construct multiple spatial filters to increase the signal to noise
ratio at different modulated frequencies. Then, a combination of TRCA and CCA (CB-
mc-TRCA) was proposed to utilize both advantages. Finally, the results were compared
with traditional CCA-based method and existing e-TRCA method. The goal of this study
is to further analyze the characteristic of the SSMVEPs induced by the gaiting stimulus
and to demonstrate the enhancement of the TRCA-based methods in the detection of
those SSMVEPs.

2. Materials and Methods
2.1. Data Description

The proposed methods were evaluated on the dataset reported in our recent study [9].

2.1.1. Stimulus

The stimulus was a novel frame-based gaiting stimulus [9], i.e., a gaiting sequence
of a human as shown in Figure S1. No flicker existed in the gaiting stimulus. Our recent
study [9] illustrated that observing such gaiting stimulus could simultaneously induce
SSMVEP in the occipital area and activate SMR in the sensorimotor area.

The gaiting stimulus used in obtaining the EEG data consisted of four targets with
different stride frequencies. The target stimuli were presented on a LCD monitor (60 Hz
refresh rate) with stride frequencies f ( f1, f2, f3, and f4) of 0.536 Hz, 0.75 Hz, 0.625 Hz,
and 0.938 Hz in the left, right, up, and down position of the monitor, respectively. The
frame rates of these four stimuli F (F1, F2, F3, and F4) were 8.57 Hz, 12 Hz, 10 Hz, and
15 Hz, respectively.

2.1.2. Experiment and EEG data acquisition

The experiment consisted of four runs with each run containing 20 trials for all the
ten participants. Each trial consisted of three phases: cue phase (−2 s–0 s), stimulus phase
(0 s–6 s), and relaxation phase (6 s–10 s) as shown in Figure S2. Each trial started with
the cue phase, where four cue letters would appear on the screen. Then, the four gaiting
stimuli would replace the cue letters, appearing for 6 s. The participant engaged his or
her gaze at one target. After the stimulus phase, the detection result using CCA would
be displayed in the middle of the screen and participant could relax the gaze for 4 s. In
one run, each target was repeated five times. Since the experiment consisted of four runs,
each target frequency contained twenty instances. All EEG data and event timestamps (the
beginning and end of each trial) were recorded for subsequent processing.

Ten healthy subjects participated in the experiment. EEG signals were recorded with a
commercial research-grade EEG system (gUSBamp and Ladybird electrodes, g.tec Guger
Technologies, Austria). EEG signals were recorded with 16 channels, sampled at 1200 Hz.
The left earlobe was used as the reference and Fpz was used as ground. A notch filter from
58 Hz to 62 Hz was used to eliminate the power line interface.

2.1.3. Data Preprocessing

The EEG data from six electrodes (O1, Oz, O2, PO3, POz, and PO4) distributed in
occipital area were used for the evaluation in this study. Data points (stimulus phase: 6 s)
were extracted according the recorded event. Considering the latency of 0.14 s caused
by the visual pathway [22], the EEG data from 0.14 s to τ s were extracted, where ‘τ’
represented the time window used in the investigation. Then, a band-pass filter between
4 Hz and 50 Hz was applied to the EEG data. The filter was designed as a Butterworth
infinite impulse response (IIR) filter of order four.
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2.2. Multi-Components Task-Related Component Analysis

TRCA [23] was firstly proposed to maximize the reproducibility during task periods
from near-infrared spectroscopy data. Since it had the ability to maximize inter-block
covariance and remove the task-unrelated artifacts, TRCA was successfully used as a
spatial filter to remove background EEG activities in SSVEP-based BCIs [20].

Unlike existing SSVEP-based studies that only selected the eigenvectors corresponding
to the largest eigenvalue to construct the spatial filter, the EEG response to gaiting stimuli
showed multiple task-related components (details in Section 3.1). Thus, multi-component
task-related component analysis was proposed in the current study to automatically se-
lect significant task-related components in the SSMVEP induced by the gaiting stimuli.
Moreover, TRCA was capable of maximizing the covariance of inter-trial SSVEP data, and
the traditional CCA-based method was able to maximize the covariance between sine-
cosine reference signals and SSVEP data; both TRCA-extracted features and CCA-extracted
features were combined in our study. This approach may combine the advantages of
CCA and TRCA. Figure 1 shows the diagram of the mc-TRCA method and CB-mc-TRCA
method. The mc-TRCA method contains three parts: computation of eigenvalues, choice
of significant components, and feature extraction. After computing the eigenvalues and
statistical test, the spatial filter can be constructed. The details of each part are described
as follows.

Figure 1. The diagram of the mc-TRCA and CB-mc-TRCA.

2.2.1. Computation of Eigenvalues

Based on the research reported by Tanaka et al. [20], the objective for the task-related
component extraction is given by the Rayleigh–Ritz problem.

ω = argmax
ω

ωTSω

ωTQω
(1)
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The normalization matrix Q is defined as:

Q =
Nc

∑
j1,j2=1

Cov
(
xj1(t), xj2(t)

)
(2)

where xj1(t) is the EEG data in j1-th channel and xj2(t) is the EEG data in j2-th channel. Nc
is the number of total channels. The Cov(., .) represents the cross covariance.

The symmetric matrix S =
(
Sj1 j2

)
1≤j1,j2≤Nc

is defined as:

Sj1 j2 =
Nt

∑
h1, h2 = 1
h1 6= h2

Cov
(

x(h1)
j1

(t), x(h2)
j2

(t)
)

(3)

where x(h1)
j1

(t) is the EEG signal in h1-th trial in the j1-th channel. x(h2)
j2

(t) is the EEG signal
in h2-th trial in the j2-th channel.

With the help of the Rayleigh–Ritz theorem, the eigenvector of the matrix Q−1S pro-
vides the optimal coefficient vector of the objective function in (1). Finally, utilizing the EEG
data Xi =

{
xh

j

}
(h = 1, 2, . . . , Nt, j = 1, 2, . . . , Nc) (i is the index of stimulus), eigenvalues

λ1, λ2, · · · , λNc and eigenvectors ω1, ω2, · · · , ωNc can be obtained for i-th stimulus.
Unlike previous SSVEP studies, in which the largest eigenvalue was selected, the

current study tested whether the components were significantly task-related or not and
automatically selected all the significant task-related components to construct spatial filters.

2.2.2. Chosen of Significant Components

The eigenvalues represent the task consistency among multiple trials. If the orig-
inal signals contain no task-related component, the corresponding eigenvalues will be
limited to a chance range. Thus, a non-parametric, permutation test [24] is introduced
to assess the significance level of the task-related components in this study. The null
hypothesis postulates that there is no task-related component. Instead of the actual EEG
data Xi =

{
x(h)

}
(h = 1, 2, . . . , Nt) which is segmented by event timestamps, a new dataset

χi is randomized to segmented Nt times (sampled from a uniform distribution of entire
experimental duration). This new dataset can be used to compute the null distribution of
the weight distribution.

The statistical significance of actual coefficients can be quantified by comparing with
the null distribution. The null hypothesis is rejected at a significance level 0.01. The
eigenvalues λ1, λ2, · · · , λNs whose statistic is greater than 99% of the null distribution
(p_value) can be regarded as being statistically significant.

Finally, Ne significant eigenvalues are selected. Then, corresponding eigenvectors are
chosen as the spatial filters. Since there are N f (N f = 4 in current study) different calibration
data corresponding to the visual stimuli, N f different spatial filters corresponding to each
eigenvalue can be integrated. Thus the final spatial filter W1, W2, · · · , WNe can be described
as follows. 

W1 =
[
ω11 ω12 · · · ω1N f

]
W2 =

[
ω21 ω22 · · · ω2N f

]
...

WNe =
[
ωNe1 ωNe2 · · · ωNeN f

] (4)

where N f is the number of stimuli.

(Xi)
TWκ (κ = 1, 2, . . . , Ne) are the significant task-related components. Through spa-

tial filtering Xtest
TWi, the test data Xtest is expected to be optimized to achieve maxi-

mum performance.
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2.2.3. Feature Extraction

The correlation coefficient is selected as the feature. The Pearson’s correlation analysis
between the single-trial test signal Xtest and average training data Xi across trials for i-th
stimulus is calculated as:

rκ = ρ
(

Xtest
TWκ ,

(
Xi
)TWκ

)
, κ = 1, 2, . . . , Ne (5)

where ρ is Pearson’s correlation analysis.
Considering the fact that the difference of the amplitude in spectrum among those

significant eigenvectors is slight, the correlation coefficient rκ_TRCA based on TRCA is
calculated as follows.

trca_ri =
1

Ne

Ne

∑
κ=1

rκ (6)

Finally, the target can be identified by the following equation.

ι = argmax
i

(trca_ri) , i = 1, 2, . . . , N f (7)

Since CCA have the ability to maximize the covariance between sine-cosine reference
signals and EEG data, a combined mc-TRCA (CB-mc-TRCA) method was proposed. It
combined CCA-based spatial filter and TRCA-based filter together. The correlation analysis
based on CCA is calculated as:

Wi_CCA = canoncorr
(

Xi, Yfi

)
, Yfi

= {sin fi, cos fi} (8)

where fi is the frame rate corresponding to the i-th stimulus.

ccari = ρ
(

Xtest
TWκCCA ,

(
Xi
)TWκCCA

)
, Wκ_CCA =

[
W1_CCA W2_CCA · · · WN f _CCA

]
(9)

The final features com_ρi are obtained by merging the correlation coefficients corre-
sponding to CCA and TRCA, which are calculated by the following equation.

com_ρi = sign(cca_ri)·(cca_ri)
2 + sign(trca_ri)·(trca_ri)

2 , i = 1, 2, . . . , N f (10)

The target could also be identified by finding the maximal coefficient com_ρi.

2.3. Ensemble Task-Related Component Analysis (e-TRCA)

Ensemble task-related component analysis (e-TRCA) [20] was first proposed in 2018
to deal with SSVEP data. It achieved better performance than existing CCA-based methods
such as extended CCA [17]. E-TRCA utilized TRCA to construct the spatial filter. Consid-
ering N f different spatial filters obtained from eigenvectors corresponding to the largest
eigenvalue in each stimulus, they should be similar to each other [25]. Thus, integrating all
spatial filters might further improve the performance, compared to TRCA. Actually, the
ensemble spatial filter is equal to W1 =

[
ω11 ω12 · · · ω1N f

]
in the current study. The target

was also identified by finding the maximal coefficient.

2.4. CCA-Based Method

CCA [15] is the most widely used method in SSVEP processing. Multi-channel EEG
data and template signals are calculated by the following formula.

ρ(x, y) =
E
[
wT

x XYTwy
]√

E
[
wT

x XXTwyE[wT
x YYTwy]]

(11)

where ρ is the to CCA correlation coefficient, X is the EEG data, and Y is the template signals.
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Our recent study [9] optimized the template signals specifically for the designed
gaiting stimulus. The template signals X is described as follows.

Y =



sin(2× π × Cb(i, 1)× t)
cos(2× π × Cb(i, 1)× t)
sin(2× π × Cb(i, 2)× t)
cos(2× π × Cb(i, 2)× t)
sin(2× π × Cb(i, 3)× t)
cos(2× π × Cb(i, 3)× t)


, i = 1, 2, 3, 4 (12)

Cb =


F1 2× F1 F1 + 2× f1

F2 F2 − 2× f2 F2 + 2× f2
F3 F3 − 2× f3 2× F3

F4 F4 − 2× f4 F4 + 2× f4

 (13)

where F1= 8.57 Hz, f1 = 0.536 Hz, F2 = 12 Hz, f2 = 0.75 Hz, F3 = 10 Hz, f3 = 0.625 Hz,
F4 = 15 Hz, f4 = 0.938 Hz.

The target on which the participant focused on could also be identified by taking the
maximum CCA coefficient.

2.5. Cross-Validation

The offline analysis was done in MATLAB software. A 4-fold cross-validation scheme
was performed for the EEG data. Of the four runs’ data for each participant, a single
run was retained as the training data, and the remaining three runs were used as test
data. There was no overlapping part in both training and test subsets. Then, the cross-
validation process was repeated four times, with each four runs’ data used exactly once
as the training data. The ratio of the number of correct classification to the total number
was the accuracy. Finally, the average accuracy in different runs was used as the metric to
qualify the performance.

2.6. Statistical Analysis

The mixed effect model of analysis of variance (ANOVA) was used for statistical
analysis. Participant was used as the random factor. Data length (1, 1.5, 2, 2.5, 3) and
method (“1”: CCA, ”2”: e-TRCA, “3”: mc-TRCA, “4”: CB-mc-TRCA) were used as fixed
factors. Accuracy value was the response variable. The Bonferroni post hoc analysis was
used to assess significance. The statistical significance level was 0.05.

3. Results
3.1. Analysis of Eigenvalues and the Significant Task-Related Components

The spectrum of the averaged EEG data, and the spectrums of task-related components
and eigenvalue distributions using randomized task onsets from the EEG data of the subject
6 are illustrated in Figure 2. For the analysis of the task-related components, five blocks’
EEG data, when S6 observed the left stimulus (F1= 8.57 Hz, f1 = 0.536 Hz), were included.
Figure 2A showed the spectrum of the entire 6 s EEG data during task period from Oz
electrode. The EEG data were averaged across all the trials with the same task in the first
run. The peaks in the spectrum could be clearly identified exactly at the frame rate (F1) and
the second harmonic frame rate (2× F1),while other peaks in the frequencies (F1 ± 2× f1)
reported in [9] were not clear.

When we applied TRCA based on Equation (1) to the EEG data, six eigenvalues and
eigenvectors were obtained. Figure 2B illustrates the spectrums of task-related compo-
nents ((Xi)

TWκ). The corresponding eigenvalues were at the upper left of the subgraph
in Figure 2B. It can be clearly observed that the peaks in the spectrums with different
eigenvalues were different. The peaks, in the spectrum with eigenvalue 2.18697, were at F1
and F1 − 2× f1. The peaks, in the spectrum with eigenvalue 1.2284, were at F1 and 2× F1.
Finally, the peaks, in the spectrum with eigenvalue 1.04008, were at F1 and F1 + 2× f1.
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Figure 2C illustrates the eigenvalues’ distribution computed with randomized task on-
sets (blue bars) and original eigenvalues (asterisk). The vertical dashed line indicates the
99% confidence interval; there were three eigenvalues on the right side of the vertical
dashed line. This indicated that these three components were statically significant, i.e.,
corresponding task-related components as described before were significant.

Figure 2. Analysis of the eigenvalues and task-related components in the EEG data when S6 gazed at the left gaiting
stimulus. (A) The spectrum of the averaged EEG data. (B) The spectrums of task-related components. (C) The eigenvalue
distribution using randomized task onsets. The asterisks (*) are the eigenvalues at the upper left of sub figure in (B).

For the EEG data responding to the right stimulus, the up stimulus, and the bottom
stimulus, the spectrums of task-related components ((Xi)

TWκ) were obtained as shown in
Figure 3. The induced frequencies were also distributed in different components. For the
right stimulus target (F2 = 12 Hz, f2 = 0.75 Hz), there were three significant task-related
components, as shown in Figure 3A. The peaks at 6× f2 and F2 − 2× f2 occurred in the
spectrum of the first significant task-related component (corresponding to eigenvalue
1.46007). The peaks at F2 and F2 ± 2 × f2 occurred in the spectrum of the second sig-
nificant task-related component (corresponding to eigenvalue 1.33675). The peak at F2
occurred in the spectrum of the third significant task-related component (corresponding to
eigenvalue 0.627603).

Figure 3. The spectrums of task–related components when S6 gazing at the different gaiting stimulus. (A) Gazing at the
right gaiting stimulus. (B) Gazing at the up gaiting stimulus. (C) Gazing at the bottom gaiting stimulus.

For the up stimulus target (F3 = 10 Hz, f3 = 0.625 Hz), there were two significant
task-related components as shown in Figure 3B. In addition, the peaks at F3 and F3 ± 2× f3
occurred in the spectrum of the first significant task-related component (corresponding to
eigenvalue 2.1327). The peaks at F3, 6× f3, and F3 ± 2× f3 occurred in the spectrum of the
second significant task-related component (corresponding to eigenvalue 1.47808).

For the bottom stimulus target (F4 = 15 Hz, f4 = 0.938 Hz), there were two significant
task-related components, as shown in Figure 3C. The peaks at F4 and F4 − 2× f4 occurred
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in the spectrum of the first significant task-related component (corresponding to eigenvalue
1.28576). The peaks at F4, 6× f4, and F4 ± 2× f4 occurred in the spectrum of the second
significant task-related component (corresponding to eigenvalue 1.17062).

In addition, Table 1 shows the distribution of features, i.e., modulated frequencies,
induced by the gaiting stimuli in the significant task-related components in all participants.
The number “1”, “2”, and “3” in the table represented the task-related component corre-
sponding to the largest eigenvalue, the second largest eigenvalue, and the third largest
eigenvalue, respectively. “-” represented that there was no peak at this frequency in the
spectrums of all the significant task related components. In addition, the order of the
numbers corresponded with the amplitude of the peaks at the modulated frequencies. First
order meant higher amplitude. The result showed that the modulated frequencies occurred
in different task-related components instead of in the component corresponding to the
largest eigenvalue. Moreover, the amplitude of the peak at the modulated frequency in “1”
was not always larger than that in “2”, e.g., F2 in S3, F1 in S4, F3 in S5, and so on.

Table 1. The distribution of the modulated frequencies induced by the gaiting stimuli in the significant task-related
components among all participants.

Targets Features S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Left target

F1 1,2 1 1 2,1 1,2 1,2,3 1,2,3 1,2 1,3 3,1
2× F1 1,2 1 1 - 1 2 2 - 1 -

F1 + 2× f1 - 1 1 2 - 3 2,3 2 2 2
F1 − 2× f1 2 1 2,3 1 - 1 1,2,3 1,2 3 3

Right target

F2 1,2 1 2,1 1 1 2 1,2 1 2,1 1
6× f2 1,2 1 1,2 2,1 1 1 2 1 - 1,2

F2 + 2× f2 1 1 2 1 1,2 2 2 1 - -
F2 − 2× f2 1 1 2,1 1 1,2 2,1 1 1 - 1

Up target

F3 1,2 1 2,1 1 2,1 2,1 1 1 2,1 2
6× f3 2 - 1 2 1 2 2,1 1 1 1

F3 + 2× f3 1,2 1 - 1 1 2,1 2 1 1 2
F3 − 2× f3 1,2 1 2,1 1 2 2,1 2,1,3 - 1 1

Bottom target

F4 2,1 1 1,2 - 2,3 1,2 1,2,3 2,1 1,2 1
6× f4 1,2 2,1 2,1 3 1 2 1,2 1,2 2 -

F4 + 2× f4 1 1 1 1 - 2 - - 1 -
F4 − 2× f4 2,1 1,2 2,1 2 2 1,2 1,3,2 1 2,1 -

Note: “1”, “2”, “3” represented the task-related component corresponding to the largest eigenvalue, the second largest eigenvalue, and
the third largest eigenvalue, respectively. “-” represented there was no peak at this frequency in the spectrums of all the significant task
related components.

3.2. Target Identification Performance

Figure 4 shows the averaged classification accuracy across all the participants with
different data lengths from 1 s to 3 s with an interval of 0.5 s. The comparison of the four
methods indicated that the proposed mc-TRCA and CB-mc-TRCA methods outperformed
the CCA-based method and e-TRCA method, especially at short data length. In addition,
the CB-mc-TRCA achieved the highest performance regardless of data length. It is worth
noting that the average accuracy with 1 s data length increased from 34.8% to 68.5%.
Further, with the increase of the data length, the accuracy increased using all the methods.
According to the ANOVA analysis, both the factor data length (F (4771) = 185.08, p < 0.001)
and method (F (15,771) = 82.85, p < 0.001) had significant effects on accuracy. The post
hoc comparison revealed that the accuracies using mc-TRCA and CB-mc-TRCA methods
were significantly higher than the accuracies using CCA-based method within the data
lengths 1 s, 1.5 s, 2 s, 2.5 s, and 3 s (all p < 0.001). In addition, the accuracies using mc-TRCA
were significantly higher than the accuracies using e-TRCA with data lengths 1 s, 1.5 s, and
2 s (p < 0.001, p < 0.001, p = 0.007). The accuracies using CB-mc-TRCA were significantly
higher than the accuracies using e-TRCA with data lengths 1 s, 1.5 s, 2 s, and 2.5 s (p < 0.001,
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p < 0.001, p < 0.001, p = 0.047). Even though the average accuracy using CB-mc-TRCA was
higher than that using mc-TRCA, there was no significant difference regardless of data
length (all p > 0.1).

Figure 4. The comparison of accuracy among the four different algorithms with different data lengths.

Chiang et al. recently proposed a statistically optimized spatial filtering in decoding
SSVEP based on TRCA. Utilizing Chiang’s method, the average identification accuracy
achieved 61.13% ± 19.54%, 68.63% ± 21.39%, 74.46% ± 22.54%, 78.13% ± 22.44%, and
80.71% ± 20.92% with data lengths 1 s, 1.5 s, 2 s, 2.5 s, and 3 s, respectively. The accuracies
were higher than the accuracies using CCA and e-TRCA methods but lower than the
identification accuracy using the proposed mc-TRCA and CB-mc-TRCA methods.

To further compare the relative target identification performance of the gaiting stimu-
lus using different methods, the confusion matrices of the sum of the 4-fold cross-validation
results with 1 s EEG data length averaged from all the subjects were calculated as shown
in Figure 5. The values in the green background (diagonal entries) were the number of
correct classifications, and the values in the red background (off-diagonal entries) were the
number of misclassifications. Target 4 resulted in the fewest correct classifications using
CCA-based method as shown in Figure 5A, which was in line with our previous study
in [9]. No such difference was found for the classification using the TRCA-based method.
Comparing the diagonal entries, the correct classification number in each target using the
proposed mc-TRCA method was higher than that using CCA-based method and e-TRCA
method. This indicated that the improvement of the performance was contributed to all
the targets instead of one target.

In addition, TRCA was utilized to generate a spatial filter to enhance the detection
of SSMVEP in this study. To test the influence of different spatial filters, the extracted
features, after spatial filters were applied, were visualized using a t-stochastic neighborhood
embedding (t-SNE) [26] technique, as illustrated in Figure 6. Each point in the figure
belonged to 1 s data length of a single trial and was colored based on the target label. It
could be observed that the features were randomly distributed everywhere after applying
CCA-based spatial filter as shown in Figure 6A. The data points became more clustered
when an e-TRCA-based spatial filter was used, compared with the CCA-based spatial
filter. However, there was still a certain number of features mixed together. When the
proposed TRCA-based spatial filters (mc-TRCA and CB-mc-TRCA) was used, as shown
in Figure 6C,D, it led to better clustering and class separation. Only a few data points
clustered in the wrong category.
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Figure 5. The classification confusion matrices average from all the subjects. (A) CCA-based method;
(B) e-TRCA method; (C) mc-TRCA method; (D) CB-mc-TRCA method.

Figure 6. Feature visualization using t-SNE. (A) The correlation coefficient after utilizing CCA-
based spatial filter; (B) the correlation coefficient after utilizing e-TRCA-based spatial filter; (C) the
correlation coefficient after utilizing mc-TRCA-based spatial filter; (D) the correlation coefficient after
utilizing CB-mc-TRCA-based spatial filter.

Furthermore, the eigenvalues and task-related components in the EEG data when S6
gazed at the left flicker stimulus and checkerboard stimulus, as we demonstrated in our
previous study [9], were also illustrated. As shown in Figures 7 and 8, only one significant
task-related component was found. Moreover the features, i.e., fundamental frequency
and its second harmonic frequency, mainly occurred in the task-related component corre-
sponding to the largest eigenvalue. This might be the reason why previous studies only
selected the largest eigenvalue to construct the spatial filter.
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Figure 7. Analysis of the eigenvalues and task-related components in the EEG data when S6 gazed at the flicker stimulus.
(A) The spectrum of the averaged EEG data; (B) the spectrums of task-related components; (C) the eigenvalue distribution
using randomized task onsets.

Figure 8. Analysis of the eigenvalues and task-related components in the EEG data when S6 gazing at the checkerboard
stimulus. (A) the spectrum of the averaged EEG data; (B) the spectrums of task-related components; (C) the eigenvalue
distribution using randomized task onsets.

4. Discussion

The results indicate that (1) the proposed TRCA-based methods are capable of auto-
matically detecting several significant task-related components from the EEG data induced
by the gaiting stimulus, and (2) provide a significant advantage with short duration of
stimulation (≤2 s). Furthermore, CB-mc-TRCA showed a slightly better performance.

EEG induced by the flicker stimulus containing dual frequencies revealed the un-
derlying nonlinearity [27–29]. A similar phenomenon occurred in the EEG induced by
the motion stimulus with dual frequencies [21]. Even though the frequencies induced by
different stimuli with dual frequencies are not the same, all the induced frequencies are
among m× F ± n× f . For the AO stimulus, our recent study reported the underlying
nonlinearity response for the first time [9]. The main SSMVEP frequencies induced by the
gaiting stimulus were at the frame rate, the sum and difference between the frame rate and
twice stride frequency. However, the mechanism of inducing the modulated frequencies
is still unknown. In the current study, the frequencies induced by the gaiting stimulus
were further explored. The results in Section 3.1 revealed that the modulated frequencies
occurred in the significant task-related components. These results indicated that the SS-
MVEP induced by the gaiting stimulus indeed appeared consistently and robustly in every
task block and further proved the validity of the modulated frequencies induced by the
gaiting stimulus.

Beyond our expectation, several significant task-related components were obtained
and the modulated frequencies distributed in different task-related components. Even
though the characteristic of the distribution had not been obtained, the result still indicated
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that the induced frequencies in the EEG data were not simply linear superposition or
completely coupled together.

To our best knowledge, this is the first study applying TRCA to analysis the EEG data
induced by AO stimulus. The results revealed that applying TRCA was able to construct
the spatial filters (eigenvectors). The peaks at the different modulated frequencies were
clearer after applying different spatial filters corresponding to different eigenvalues. When
only the spatial filter corresponding to the largest eigenvalue is utilized, not all the induced
modulated frequencies were selected as the features for classification. This might be the
reason that utilizing all the significant task-related components could improve the detection
performance compared with only utilizing the task-related component with the largest
eigenvalue. Finally, the designed spatial filter could lead to a better cluster for the exacted
features as shown in Figure 6.

In view of the above, we speculate that the proposed mc-TRCA approach was feasible
for detecting SSMVEP induced by other AO stimuli and enhancing the detection performance.

Furthermore, not only the stimulus frequency but also modulated frequencies were
induced by the stimulus with multi-frequencies. Thus, the template signals utilizing CCA
were difficult to manually select and optimize [12,21]. Yet mc-TRCA is a data-driven
approach, so that there is no need to select optimal template signals. Moreover, the
requirement for the size of the training data is not strict. Just as described in the current
study, only twenty trials (eighty trials in total) were used as the training data and a good
detection performance was achieved.

The gaiting stimulus was designed for BCI-based rehabilitation. It was the first AO
stimulus that depended on the characteristics induced by movement, instead of flicker [8],
for classification. It guaranteed that the identified characteristics and the activation of
the motor cortex came from the same source (i.e., the movement in the gaiting stimulus).
Enhancing the detection performance might improve the effect of rehabilitation training.
The results in the current study showed that the proposed TRCA-based method improved
the identification accuracy, especially in short task duration, which might be more beneficial
for BCI-based rehabilitation. increasing the task duration increases, the participants might
be more likely to feel tired and the EEG data might be more likely to mix with noise.

Currently, our approach focuses on offline detection of SSMVEP induced by gaiting
stimulus. However, for practical applications, online detection performance needs to be
assessed. One run of data is utilized as the training data and the significant task-related
components could be automatically selected, hence making the proposed TRCA-based
approach a suitable candidate for online AO-based BCIs. Thus, future work will be
conducted to: 1) develop a real-time closed-loop AO-based BCI rehabilitation training
system using the proposed TRCA-based approach, 2) collect and analyze the stroke patients’
EEG data when they gaze at the designed AO stimulus.

5. Conclusions

We conclude that (1) different modulated frequencies induced by the gaiting stimulus
are distributed in different significant task-related components; (2) the proposed TRCA-
based approaches are a suitable candidate for detecting SSMVEP induced by AO stimulus
and can provide improved performance. In particular, we further demonstrate that the
gaiting stimulus could induce modulation frequencies, and these frequencies could be
utilized to perform classification. Moreover, the accuracies using the proposed methods
were significant higher than that using CCA at all window lengths and significantly higher
than those using ensemble-TRCA at short window lengths (≤2 s). This is especially true
for the average accuracy with 1 s data length, which increased from 34.8% to 68.5%.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21165269/s1, Figure S1: Generation of the gaiting stimulus, Figure S2: Illustration of the
experiment protocol.
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