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Abstract: In a channel shared by several nodes, the scheduling algorithm is a key factor to avoiding
collisions in the random access-based approach. Commonly, scheduling algorithms can be used to
enhance network performance to meet certain requirements. Therefore, in this paper we propose a
Delay-Aware Media Access Control (DAMAC) protocol for monitoring time-sensitive applications
over multi-hop in Underwater Acoustic Sensor Networks (UASNs), which relies on the random
access-based approach where each node uses Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) to determine channel status, switches nodes on and off to conserve energy, and allows
concurrent transmissions to improve the underwater communication in the UASNSs. In addition,
DAMAC does not require any handshaking packets prior to data transmission, which helps to
improve network performance in several metrics. The proposed protocol considers the long prop-
agation delay to allow concurrent transmissions, meaning nodes are scheduled to transmit their
data packets concurrently to exploit the long propagation delay between underwater nodes. The
simulation results show that DAMAC protocol outperforms Aloha, BroadcastMAC, RMAC, T,-MAC,
and OPMAC protocols under varying network loads in terms of energy efficiency, communication
overhead, and fairness of the network by up to 65%, 45%, and 726%, respectively.

Keywords: media access control protocols; quality of service; underwater acoustic sensor networks;
propagation delay; concurrent transmissions; underwater nodes

1. Introduction

In recent years, UASNs have been considered to be the most reliable solution to sup-
port several underwater applications [1,2], which are classified into monitoring, disaster
prevention, military, assisted navigation, and sports [3,4]. Each one of these categories can
be further classified into different target applications where each application has different
QoS requirements and hence requires different solutions [1,5]. Similarly, the network archi-
tecture of underwater nodes can be organized into the categories of one-dimensional (1-D),
two-dimensional (2-D), three-dimensional (3-D), and four-dimensional (4-D); and, the QoS
requirements of different underwater applications require different network architecture [6].
In supporting underwater applications, some MAC protocols waste network resources and
need further attention to meet the QoS requirements of target applications [7,8]. The oil/gas
industry is considered critical infrastructure to several countries as it helps to improve
their economic competitiveness and growth [6,9]. In the last decade, many incidents have
occurred, such as the Deepwater Horizon oil spill in the Gulf of Mexico, which resulted
in 11 people killed, 3.19 million barrels of oil entering and damaging the Gulf ecosystem,
and a cost in damages estimated by British Petroleum (BP) of about $62 billion [10-12].
This type of disaster can be avoided by implementing underwater nodes to monitor the

Sensors 2021, 21, 5229. https:/ /doi.org/10.3390/s21155229

https://www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9176-9453
https://doi.org/10.3390/s21155229
https://doi.org/10.3390/s21155229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155229
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155229?type=check_update&version=2

Sensors 2021, 21, 5229

2 0f 24

status of the oil/gas pipeline. To efficiently monitor this type of application, underwater
nodes must use the most appropriate MAC protocol approach in such a way that multiple
underwater nodes can transmit critical data to the sink node while using low energy con-
sumption per byte, low communication overhead, and ensuring that underwater nodes
have equal opportunity to reserve the shared channel (fairness of network). Therefore,
to support such a time-sensitive application, it is necessary to enhance the underwater
communication relative to the Energy Efficiency (EE), Communication Overhead Ratio
(COR) and Fairness Index (FI). Solutions that exist in Terrestrial Wireless Sensor Networks
(TWSNs) for time-sensitive applications cannot be implemented in UASNSs, due to acoustic
channel characteristics, including limited bandwidth, high path loss, multipath effects,
long and variable delay, high noise, and doppler spread [1,13-17]. Specifically, due to the
characteristics of acoustic channel, using the handshake-based approach to avoid collision
is considered expensive. Therefore, considering the long propagation delay to schedule
data transmission can be a promising strategy [18-21], which can allow concurrent trans-
missions with no collision. To achieve this goal, it is necessary to consider the amount of
data that must be transmitted to the sink.

The MAC protocol we propose here reduces collisions by considering the long propa-
gation delay without negotiation between underwater sensors. This enhances the network
performance in several metrics [18-21]. The proposed MAC protocol avoids the overhead
required by the handshake-based approach by sensing the channel status and considering
the long propagation delay of acoustic channel. This helps nodes to know when they
can transmit, thus reducing the collision rate. To achieve this, scheduling algorithms
are a critical factor to enhancing network performance [21,22]. Therefore, we propose
a scheduling algorithm to resolve the collision problem and poor network performance.
The schedule is typically a set of time slots in which we allow several nodes to transmit
their packets concurrently while other nodes must be in idle state, thus reducing Energy
Consumption (EC) [23]. Ultimately, this helps to reduce the amount of energy consumed
relative to the number of bytes received and hence extends the network lifetime. The length
of the time slot is adequate for data packets to reach the sink node plus allows for a short
guard time. The guard time here is necessary to avoid the spatio-temporal uncertainty
problem. The goal of this research was to develop the DAMAC to meet the requirements of
time-sensitive applications by minimizing Total number of Collisions (TC), thus reducing
delay [24,25]. Common network performance metrics, such as End-to-End Delay (E2ED),
Packet Delivery Ratio (PDR), Throughput (Thpt), and EC are critical, and their improve-
ment should be a strong focus of the field of UASN research. Therefore, it is necessary to
develop a MAC protocol that can enhance these metrics to improve network performance
in UASNs. To provide a complete performance analysis of a MAC protocol, it is also
critical to measure the EE, COR, and FI. Table 1 summarizes some of the common issues
encountered in the underwater environment and the requirements of UASNSs.

Table 1. Summary of UASN Issues and Requirements.

Issues Summary
The collision rate depends on the type of MAC protocol approach. Using
Collision rate [25-27] the long propagation delay to schedule data packets properly can help in
reducing the collision rate.
The communication overhead is related to how many packets are required
Communication overhead [28-30] to transmit data between intended parties. The MAC protocols that rely on

the handshake-based approach result in high COR.

Energy consumption [21-23]

Scheduling data properly and allowing concurrent transmission can
minimize energy consumption and hence extend the network lifetime.

Each MAC protocol approach has its benefits and limitations. Using the

QoS requirements [14,20,31,32] appropriate approach can help to meet the key performance metrics by

factoring the unique needs of the target application.
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The handshake-based approach is widely used to resolve collision issues, but it results
in low channel use, low network throughput, and high E2ED due to the characteristics of
acoustic channels [28-30,33]. Therefore, in this paper we propose DAMAC protocol, which
avoids the handshaking packets prior to data transmission and schedules nodes to transmit
their packets while reducing the collision rate [14,20,31,32]. Furthermore, we consider
concurrent transmissions to enhance channel use and hence increase network throughput.
Consequently, the proposed protocol can outperform well-known MAC protocols in terms
of E2ED, EC, PDR, TC, and Thpt [34]. The main contributions of this paper are as follows:

¢ Identify the most efficient MAC protocol approach for a pipeline topology over multi-
hop for time-sensitive applications relative to the EE, COR, and FL

¢ Develop an efficient MAC protocol that addresses the limitations of current MAC
protocols, which is DAMAC, a novel scheduling algorithm that exploits the long
propagation delay of acoustic channel to allow concurrent transmissions.

¢  Compare the simulation results of the proposed MAC protocol with other MAC
protocols in terms of core metrics (e.g., EE, COR, FI).

e Identify the trade-offs of each MAC protocol approach in a pipeline topology over
multi-hop.

The rest of this paper is organized as follows. In Section 2, we discuss the different
techniques of MAC protocols. Section 3 presents articles related to the proposed MAC
protocol and highlights the design characteristics examined in each paper. In Section 4, we
describe the algorithm of our proposed MAC protocol. Section 5 provides the details of
the performance evaluation and compares the proposed MAC protocol with several other
MAC protocols. Section 6 concludes this paper and highlights some future directions.

2. Background

In this paper, we aim to enhance the performance of underwater communication by de-
signing an efficient MAC protocol that can meet the Quality of Service (QoS) requirements
of time-sensitive applications. To achieve this, we must analyze different MAC protocol
approaches, which are classified into the categories of contention-free, contention-based,
and hybrid [35-38]. Figure 1 illustrates the classification of the MAC protocol approaches.

UWSN MAC Protocols

| I
| Contention-free | | Contention-based |
]

| FDMA | |CD‘MA| [TDMA| [Random Access| |[Handshaking|

[Aloha| [csma |

Figure 1. Classification of MAC Protocol Approaches [34] @ 2021 IEEE.

In contention-free (also known as schedule-based) MAC protocols, sensor nodes
must reserve the channel to transmit packets between intended parties. The reservation
can be achieved using a distinctive code, frequency, or time. This means that a sensor
node can send packets using Code Division Multiple Access the (CDMA), Frequency
Division Multiple Access (FDMA), or Time Division Multiple Access (TDMA) technique.
For example, TDMA MAC (TMAC) protocol is considered a contention-free MAC protocol
as it allows sensor nodes to transmit packets at a reserved time slot. In contention-based
MAC protocols, sensor nodes can transmit packets using the random-access or handshaking
technique. The random-access technique can be further classified into completely random
or CSMA/CA. In the completely random approach, a sensor node can send packets at
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any time. A great example of a completely random-access approach is the Aloha protocol.
In contrast, the CSMA /CA approach checks the channel status to start transmitting packets.
If the channel is busy, backoff algorithm applied to avoid collisions between packets coming
from neighboring nodes, otherwise packets can be transmitted toward the sink node.
A great example of this type of approach is the BroadcastMAC protocol. The handshaking
approach (also known as on-demand) avoids collision by requiring nodes to exchange
multiple small control packets before starting to transmit data packets. The OPMAC
protocol is a great example of the handshaking approach. The hybrid MAC protocols
take advantage of both contention-free and contention-based approaches; one such hybrid
protocol is Reservation-based MAC (RMAC). As can be observed from the above discussion,
the contention-free approach can reduce collisions while the contention-based approach can
minimize delay. This means that a contention-free approach is more appropriate to monitor
non-time-sensitive applications while the contention-based approach is more appropriate
for monitoring time-sensitive applications. In this study, we chose to evaluate different
MAC protocol approaches to identify the most efficient for meeting the QoS requirements
of oil/gas pipeline monitoring applications. Therefore, we selected the following MAC
protocols, as each one represents a different MAC protocol approach. Figure 2 illustrates
the operations of the MAC protocols that were used in this study.
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Figure 2. Operations of MAC Protocols [34] @ 2021 IEEE.

2.1. Aloha

Aloha [39] is a contention-based random-access protocol that does not use CSMA /CA.
Instead, it allows sensor nodes to transmit packets at any time a node has data to send.
The simplicity of this protocol comes at the cost of increased numbers of collisions and
decreased network performance.

2.2. BroadcastMAC

BroadcastMAC [39] is a contention-based random-access protocol that uses CSMA /CA,
where a sensor node can transmit packets if the channel sensed is free, otherwise it backs-off.
This protocol resolves the issue of Aloha by sensing the channel prior to transmitting pack-



Sensors 2021, 21, 5229

50f24

ets, and therefore reducing the number of collisions and improving network performance.
However, hidden-terminal, spatio-temporal uncertainty, and near-far problems can still exist.

2.3. Reservation-Based MAC (RMAC)

RMAC [40] is a hybrid-based MAC protocol that uses Time Division Multiple Access
(TDMA) plus the handshaking approach to reserve a time slot. The aim of this protocol is
to minimize energy consumption while avoiding collisions. To accomplish this, each sensor
node randomly selects its own schedule, which helps to reduce the amount of energy waste
during idle and overhearing periods [20,23]. However, to achieve a more collision-free
network, this protocol allows only a single sensor node to transmit packets at any time slot
throughout the network, which increases delay.

2.4. TDMA MAC for Underwater Networks (T,,-MAC)

T,-MAC [39] is a contention-free MAC protocol that permits sensor nodes to send
packets at the beginning of a reserved time slot. In this protocol, a sensor node must
first transmit the Request-to-Send (RTS) packet to the intended receiver. Once the sensor
node receives the Clear-to-Send (CTS) packet from the intended receiver, the sensor node
then waits until the CTS packet propagates throughout the nodes within its transmission
range and then transmits data packets. Due to the long propagation delay in UASN:Ss, this
protocol may experience collisions as it allows multiple sensor nodes that are out of range
of one another to transmit packets, which can cause the hidden-terminal problem.

3. Related Work

In this paper, we classify underwater MAC protocols into contention-free (i.e., schedule-
based), contention-based (i.e., reservation-based), and hybrid. Contention-free MAC pro-
tocols reserve a shared channel for a specific node based on frequency, code, or time [34].
Contention-based MAC protocols are further classified into random access and handshaking-
based. Random-access protocols allow a node to transmit packets randomly. In contrast,
handshaking MAC protocols require that nodes exchange control packets (e.g., RTS, CTS)
prior to data transmission. Hybrid MAC protocols take advantage of contention-free to
avoid collisions while relying on contention-based to support time-sensitive applications.

3.1. Contention-Free MAC Protocols

Sivagami and Manickam [41] proposed a Cluster-Based MAC (CBMAC), which is a
contention-free protocol that employs TDMA to schedule the transmission time of each
node by the Cluster Head (CH). This protocol aims to avoid collisions and reduce end-to-
end delay using a duty-cycle mechanism to assign the available slots to cluster members
based on their requests. Cluster members with no data to transmit can skip their slot
at which point the CH assigns a new schedule to each member. The CH can build a
conflict-free map, which allows nodes to transmit multiple packets concurrently. Although
Distributed On-demand Schedule (DOS) [42] can transmit only a single transmission
at a time, CBMAC allows multiple transmissions simultaneously within a cluster’s do-
main. The results show a significant improvement in terms of energy consumption, delay;,
and PDR compared to TDMA protocol. However, when CBMAC uses TDMA, some pack-
ets may be dropped. Hence, the source node must wait for its schedule to retransmit these
lost packets, which can increase the delay. Furthermore, although CBMAC guarantees no
collision within a cluster, collisions may exist between clusters. Thus, all types of single
channel collisions may occur between clusters. This means that CBMAC may consume
higher EC and hence shorten the network lifetime. In addition, using TDMA will increase
end-to-end delay and fail to meet the requirements of time-sensitive applications. More-
over, due to the sparse node deployment and lack of time synchronization, underwater
nodes that are farther away from the sink node may have lower opportunity to reserve the
channel compared to closer nodes. This may waste network resources and further shorten
network lifetime.
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3.2. Contention-Based MAC Protocols

To deploy Slotted Floor Acquisition Multiple Access (S-FAMA) [43] in denser net-
works, Qian et al. [44] proposed RTS Competition S-SFAMA (RC-SFAMA) to solve the low
throughput and long propagation delay when two nodes send RTS packets simultaneously.
In legacy S-FAMA, when multiple nodes concurrently send RTS packets, all nodes must
defer their transmissions, which requires all nodes to wait. This mechanism degrades
the throughput as it requires nodes to wait with no data transmission during the random
backoff period. On the other hand, RC-SFAMA requires multiple RTS packets to compete
to reserve the channel, and the winner transmits its data packets. RC-SFAMA is well-suited
for dense networks because it improves the throughput and extends the network lifetime
compared to S-FAMA. However, for a large-scale network, the throughput decreases as the
load increases, which will also increase the delay. Using the random number generator to
determine the winner may increase the delay, which is problematic in time-sensitive appli-
cations and cases where nodes with urgent data to transmit have a lower number than other
competitor nodes. Similar to S-FAMA, RC-SFAMA may result in low network throughput
and high energy consumption due to the spatio-temporal uncertainty and near-far prob-
lems. Relative to our proposed MAC protocol, the RC-SFAMA allows multiple nodes to
compete and only a single node can reserve the channel, which results in a low EE and high
COR due to the amount of control packets that must be exchanged to reserve a shared chan-
nel. Ultimately, RC-SFAMA consumes higher network resources and shortens the network
lifetime; hence, it may not meet the QoS requirements of time-sensitive applications.

The traditional handshaking MAC protocols, such as S-FAMA [43], Multi-session
FAMA (M-FAMA) [45,46], Multiple Access with Collision Avoidance Adaptive Packet Train
(MACA-APT) [28], and MACA-based Power Control (MACA-PC) [35], employ RTS/CTS
packets to reserve a channel. The RTS packet is used to request channel reservation, while
the CTS packet replies to a received RTS packet. Dou and Peng [47] proposed an On-
demand Pipelined MAC (OPMAC) protocol for time-sensitive applications. OPMAC is
a contention-based MAC protocol that employs the RTS/CTS mechanism to reserve the
channel and enable concurrent transmissions while the channel is idle. As underwater
environment changes over time, OPMAC can support different network topologies, on-
demand data traffic and on-demand path selections. This technique reduces delay by
minimizing the number of control packets that must be exchanged between the intended
parties. The proposed work changed the function of the CTS packet and added a new
control packet called Data Acknowledgment (DACK). The CTS packet is used to reply to
the previous hop and used as an RTS packet to the next relay hop. Similarly, DACK is
used to acknowledge the previous node and transmit the data packets to the next node.
The handshaking mechanism in the proposed work reduces the control packets” overhead.
Therefore, it reduces delay and energy consumption. OPMAC addresses the collisions to
data packets within the transmission range, but control packets could still collide with
ongoing data packets. In addition, hidden-terminal and exposed-terminal problems are
not addressed by OPMAC, which may severely reduce network performance. This means
that OPMAC consumes higher energy per byte and requires high COR due to exchange
of control packets. Therefore, to enhance the performance of OPMAC, it is necessary to
address all types of collisions and allow a packet train of data to be transmitted concurrently.
Moreover, further enhancement can be achieved by reducing the amount of control packets
by allowing multiple nodes that share control packets to reserve a channel and hence
reduce the COR and energy consumption.

Due to the characteristics of acoustic channel, packets can be lost and must be re-
transmitted. When packets are lost in S-FAMA [43], M-FAMA [45,46], MACA-APT [28],
MACA-PC [35], and OPMAC [47], the source must retransmit the lost packets via any
data channel as illustrated in Figure 3. This process increases the end-to-end delay. To re-
duce the time taken to retransmit lost packets, Kim and Cho [48] proposed a cooperative
Automatic Repeat Request MAC (ARQ-MAC) protocol. This protocol introduces one
control packet to define the cooperators between source and destination. Furthermore,
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to transmit packets, a node first sends RTS to the destination. Then, nodes overhearing
the RTS packet send a reply with a Request-To-Cooperate (RTC). The source selects the
best cooperators based on the shortest path. Once the source receives the CTS packet from
the destination, the source transmits data through the preferred cooperators. The great
advantage of this protocol is that if packets are lost or an incorrect packet is received, the
destination requests retransmission from the closest cooperator. Furthermore, to request
retransmission from a cooperator, the destination sends a Negative ACKnowledgment
(NACK) to the closest cooperator. If the destination fails to receive the missing packets
from that closest cooperator, it then sends NACK to the next closest cooperator, and so on,
until it receives the missing packets. This technique improves network throughput, reduces
energy consumption, and ultimately reduces the end-to-end delay. However, end-to-end
delay and network throughput would be further improved if ARQ-MAC avoided collisions
to control and data packets and allowed concurrent transmissions simultaneously. Since
ARQ-MAC allows only a single node to reserve a shared channel, this results in low EE and
high COR by consuming more energy to transmit control packets. Moreover, ARQ-MAC
must rely on the 3-D network architecture to minimize the amount of power that is required
to transmit collected data between intended parties.

O

[ [ '

R& R\ CTS DAT% DAI‘\ ACK

_— Control packets

Source

Destination

— Data packets
Figure 3. Retransmit Lost Control and Data Packets.

3.3. Hybrid MAC Protocols

An Improved Multi-Hop enabled Energy Efficient MAC (IMHEE-MAC) protocol
has been proposed by Mozumder et al. [49] to solve the issues of MHEE-MAC protocol
regarding control packet collisions in multi-hop networks. MHEE-MAC protocol uses two
phases to avoid collisions, which requires visiting the time slot several times. IMHEE-MAC
relies on a single reservation mechanism to avoid collisions and hence reduces energy
consumption. Local nodes are assigned with a random priority number such that the higher
number reserves the channel at the local network. A node with a high priority number
from a different network transmits an RTS in the next time slot. The remaining nodes are
kept in sleeping mode. The proposed work avoids local collision and hidden collision
domains, which extends the network lifetime and provides high throughput compared
to MHEE-MAC and S-FAMA [43] protocols. The network lifetime is also extended as the
IMHEE-MAC protocol avoids collisions, and some nodes are active while others are in
sleep mode. Collisions may occur if both nodes from different domains have the same
priority number and reach the destination at the same time (hidden-terminal problem).
Another issue is that as IMHEE-MAC assigns random priority numbers, it is possible
that higher critical data packets may have a lower random priority number than less
critical data packets. Hence, using IMHEE-MAC to transmit high critical data may create
high E2ED and EC. Another limitation of IMHEE-MAC is that it relies on the traditional
handshake where each node must send control packets to reserve a channel. To resolve this
issue, IMHEE-MAC can reduce the control packets by allowing fewer numbers of control
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packets to represent a group of underwater nodes. In addition, IMHEE-MAC should allow
multiple nodes to transmit packets concurrently by using the long propagation delay of
UASNS to improve the EE, COR, FI, and other key performance metrics.

The contention-free protocols can meet the requirements of non-time-sensitive applica-
tions with low throughput and low energy consumption. In contrast, the contention-based
protocols trade energy consumption for low delay high throughput, and high channel
use. Therefore, Gorma and Mitchell [50] proposed a hybrid approach called Combined
Free/Demand Assignment Multiple Access (CFDAMA) to take advantage of both protocol
types. In CFDAMA, there is a sink node at the surface level and several nodes laid on
the seabed. By default, a seabed node requests to send data using the contention-based
approach. The surface node replies to the requested packets on the First-In First-Out
(FIFO) basis. Based on individual requests, the surface node schedules each node with a
number of slots using TDMA. The surface node switches between contention-based and
contention-free contingent on the status of the reservation request table. Once all requests
have been queued, the surface node switches to contention-free approach by assigning
slots in a round-robin fashion. It takes the top address on the free assignment table fol-
lowed by the next one, and so on. CFDAMA minimizes delay while maximizing channel
use compared to contention-free and contention-based protocols. Although CFDAMA
yields better results when compared to the TDMA protocol, it may suffer from collisions
due to Triple Hidden-Terminal (THT) problems. Furthermore, as CFDAMA does not
consider collisions to control packets, this may result in high E2ED, EE, COR, and low FI to
those nodes that use the contention-based approach to reserve a data channel. Similar to
ARQ-MAC [48], CFDAMA should rely on 3-D network architecture and allow concurrent
transmission to enhance underwater communication in terms of the EE, COR, FI, and other
key performance metrics.

In response to ERCA-MAC [51] and IMHEE-MAC [49], Alfouzan et al. [30] proposed
an Efficient-Depth MAC (ED-MAC) protocol, which is a contention-based protocol that
aims to meet the requirements of energy-critical applications. Each node in the network is
assigned a time slot(s) to reserve the channel. The channel is then broken down into time
slots, and each slot is further divided into sub-slots. The proposed work also addresses
the spatio-temporal uncertainty and hidden-terminal problems to reduce collisions and
retransmissions. A random mechanism is used to select the sub-slots to avoid collisions.
Additionally, starting from higher to lower depth, each node broadcasts its beacon packet
to its one-hop neighbor. This mechanism helps one-hop neighbors to determine which
slots have been reserved to avoid collisions as well as to schedule wakeup and sleep times.
Nodes can be in sleep mode when there is no data to send to conserve energy. The results
show significant improvements in terms of energy consumption, PDR, and fairness across
the network with various traffic rates and numbers of nodes. However, as ED-MAC does
not address collisions to beacon packets, network performance can be degraded. Hence,
network resources may not be used in the most efficient manner and ultimately may
not be able to meet the QoS requirements of target application. Furthermore, similar to
the issue with IMHEE-MAC [49], ED-MAC operates based on the traditional handshake
procedure. This results in high COR and hence consumes higher EE. To further enhance
the performance of ED-MAC, its procedure should be modified in such a way that a single
control packet can serve multiple underwater nodes in reserving a channel to enhance the
EE and COR. In addition, Ed-MAC should allow multiple nodes to transmit packets to a
shared destination node simultaneously.

As observed from the discussion presented in the literature review, different target
underwater applications require different designs of MAC protocols to meet their require-
ments. Table 2 summarizes how each MAC protocol type can be designed to enhance
the performance of underwater communication. Different MAC protocols outperform on
selected metrics at the cost of other key performance metrics. Most of these MAC protocols
focus on improving energy consumption in a specific network topology by reducing the
total number of collisions, but at the cost of lower throughput, higher E2ED, higher COR,
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and higher EE. Hence, a MAC protocol may outperform several existing MAC protocols
on a specific network topology even though it will not give the same result in a different
network topology. Therefore, since different applications have different QoS requirements,
designing a MAC protocol suitable for UWSN applications must give due consideration to
these requirements [20,31,32]. However, the literature review reveals that there is no single
MAC protocol that dominates in all metrics for all underwater applications [20,31]. Since
ED-MAC and APD-TDMA rely on the TDMA and handshake-based approaches, trans-
mitting packets to intended parties results in high E2ED, EE, COR, and low Fl—because
farther nodes may not have equal opportunity to reserve the shared channel compared to
a node that is closer to the sink node. Similarly, the DAP-MAC uses the random-access
approach to transmit packets, but concurrent transmission only occurs at the beginning of
time slot. This results in high E2ED and EC, because underwater nodes must wait for the
next round to transmit collected data. Therefore, in this research we aim to design a MAC
protocol that employs the random access-based approach for monitoring applications of
the oil/gas pipeline industry in such a way that multiple nodes can transmit collected data
at any time. This can be achieved by using the long propagation delay between underwater
nodes to schedule data properly and hence improve the performance metrics relative to
the EE, COR, and FI.

Table 2. Summary of the Design Characteristics of UWSN MAC Protocols.

Propose Year Classification Required Inforr.n'tation Net:work Network Mobility Commun.ica}tion
to Reduce Collisions Architecture Topology Transmission
CBMAC [41] 2016 TDMA 1-HN 3-D C No MT
GC-MAC [26] 2019 TDMA 2-HN 3-D C No MT
UW-SEEDEX [24] 2021 TDMA 2-HN 3-D AH Yes ST
Contention-based MAC Protocols
Moflf;‘;lda'%%md' 2020 RA 1-HN 3D AH No ST
DAP-MAC [52] 2016 RA 1-HN 3-D AH Yes MT
TARS [29] 2017 RA 1-HN 3-D AH Yes ST
RC-SFAMA [44] 2015 H NWTR 2-D and 3-D AH No MT
MACA-PC [35] 2016 H NWTR and NWIZ 2-D and 3-D AH No MT
OPMAC [47] 2015 H 1-HN 3-D AH No MT
ARQ-MAC [48] 2016 H 1-HN 2-D AH No ST
ACP-CA [53] 2021 H 1-HN 3-D AH No ST
PC-MAC [54] 2017 H NWTR 3-D C Yes ST
CPOR [55] 2017 H NWTR 3-D AH No ST
Hybrid MAC Protocols
IMHEE-MAC [49] 2017 HB NWTR 3-D AH No ST
CFDAMA [50,56] 2017 HB NWTR 2-D AH No ST
ED-MAC [30] 2018 HB 1-HN 3-D AH No ST
PB-MAC [57] 2017 HB NWTR 4-D AH Yes ST
HTCC [58] 2016 HB NWTR 2-D and 3-D AH No MT
APD-TDMA [59] 2018 HB 1-HN 3-D C Yes ST

RA: Random Access, H: Handshaking, HB: Hybrid, 1-HN: 1-Hop Neighbors, 2-HN: Two-Hop Neighbors, NWTR: Nodes Within Transmis-
sion Range, NWIZ: Nodes Within Interference Zone, AH: Ad hoc, C: Cluster, ST: Single Transmission, MT: Multiple Transmissions.

In this section, we discussed different MAC protocol approaches where each approach
is suitable for a specific environment, network topology, and application. The existing
MAC protocols address collision issues at the cost of higher delay. In particular, most of the
previously proposed MAC protocols rely on the handshake-based approach where a node
must go through a four-way handshake (e.g., RTS, CTS, DATA, ACK) to complete one cycle
of transmitting data packets [7]. Taking another approach, many MAC protocols enhance
the performance of underwater communication by using TDMA, slotted-TDMA, or slotted-
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Aloha to transmit packets between intended parties. Using TDMA or dividing the time
into several slots, allows nodes only to transmit packets at the beginning of time slots,
which causes excessive delay for time-sensitive applications. Due to the characteristics of
underwater acoustic channel, using these approaches is not suitable for the requirements
of time-sensitive applications as they result in high E2ED [60]. Table 3 highlights the

characteristics and limitations of different MAC protocols.

Table 3. Summary of Characteristics and Limitations of MAC Protocols.

Protocols

Characteristics

Limitations

CBMAC [41]

Use a duty-cycle mechanism to schedule data properly.

Fixed duty-cycle mechanism may result in a long delay.

GC-MAC [26]

Avoids collision by assigning a unique time and color to
each cluster.

Does not allow concurrent transmission from
different clusters.

UW-SEEDEX [24]

Avoids collisions by exchanging the seed value of a
node’s neighbor.

Requires each node to keep track of the schedule of
other nodes.

Modified-Slotted-Aloha [37]

Introduces a new backoff technique and a buffer mechanism
to minimize energy consumption.

Collisions may occur, and packets can only be sent at the
beginning of the time slot.

DAP-MAC [52]

Exploits the long propagation delay to avoid collision.

Allows multiple transmissions only at the beginning of a
time slot.

TARS [29]

Considers both environmental and non-environmental factors
to improve network performance.

Hidden-terminal, Exposed-terminal, and Near-far problems
could degrade network performance.

RC-SFAMA [44]

Introduces control packet competition to avoid collisions in
control packets.

Uses random number generator that may result in high delay
to urgent data.

MACA-PC [35]

Uses power level to alert neighbors about potential
for collision.

Nodes defer transmission even if it would not cause collisions
to their neighbors.

OPMAC [47]

Reduces the amount of control packets, which
minimizes COR.

Allows only a single node to reserve the shared channel.

ARQ-MAC [48]

Allows cooperator nodes to retransmit lost packets, which
minimizes E2ED.

A single node can only reserve the channel.

Introduces an adaptive mechanism to avoid control

Only allows a single transmission at a time, which

ACP-CA 53] packet collisions. increases E2ED.
PC-MAC [54] Avoids collision by using a node’s neighbor’s schedule. Introduces an additional control packet that increases COR.
CPOR [55] A node must send one control packet to its neighbors within Collisions could occur due to hidden terminal and

the same time slot.

spatio-temporal problems.

IMHEE-MAC [49]

Resolves control packet collisions by randomly assigning a
priority number.

Assigning random number may result in excessive delay to
transmit critical data.

Seabed nodes use the contention-based approach to reserve

Liable to experience THT problems and collisions to control

CFDAMA [50,56] the channel, which minimizes E2ED. packets may occur.
ED-MAC [30] éntroduces a random mechanism to address THT problems to Collisions could occur to beacon packets.
ata packets.
PB-MAC [57] Relies on a coordinator to schedule data properly. Introduces an additional control packet, which increases COR.
HTCC [58] Allows multiple nodes to transmit packets in All nodes are forbidden to transmit any packets during the

different directions.

backoff period.

APD-TDMA [59]

Minimizes energy consumption by avoiding collisions of
data packets.

Unknown traffic pattern can degrade network performance.

To identify the key performance metrics that should be used for evaluation, we
reviewed all the MAC protocols presented in this paper. Table 4 summarizes which
metrics are used in other research papers. This table shows which metrics researchers
must evaluate to achieve a complete analysis of their proposed MAC protocol. Due to
the unique characteristics of the underwater environment and other issues, underwater
applications focus on different performance metrics, but improving the key performance
metrics often comes at a cost to other metrics. Therefore, researchers must be aware of the
trade-offs of their proposed MAC protocols. In Table 4, we use a check mark to represent
that a research paper considered the specific performance metric for evaluation. This table
shows that there are eight common performance metrics (i.e., E2ED, EC, PDR, EE, TC, Thpt,
COR, and FI). In our earlier work [34], we evaluated the E2ED, EC, PDR, TC, and Thpt.
To provide a complete analysis, it is necessary to conduct further analysis regarding EE,
COR, and FI.
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Table 4. Summary of the Common Performance Metrics of UWSN MAC Protocols.

Propose/ Core Metrics E2ED EC PDR EE TC Thpt COR FI
Contention-free MAC Protocols
CBMAC [41] v v v
GC-MAC [26] v v v
UW-SEEDEX [24] v v v
Contention-based MAC Protocols
Modified-Slotted-Aloha [37] v v v
DAP-MAC [52] v v v
TARS [29] v v v
RC-SFAMA [44] v v
MACA-PC [35] v v
OPMAC [47] v v
ARQ-MAC [48] v v
ACP-CA [53] v v v
PC-MAC [54] v v v
CPOR [55] v v v
Hybrid MAC Protocols
IMHEE-MAC [49] v v
CFDAMA [50,56] v
ED-MAC [30] v v v v v
PB-MAC [57] v v v
HTCC [58] v v
APD-TDMA [59] v

E2ED: End-to-End Delay, EC: Energy Consumption, PDR: Packet Delivery Ratio, EE: Energy Efficiency, TC: Total
number of Collisions, Thpt: Throughput, COR: Communication Overhead Ratio, FI: Fairness Index.

4. Methods

In this research, we only consider applications that consist of non-mobile underwater
sensors under varying network loads that are designed to monitor oil/gas pipeline in
shallow water. Oil/gas exploration can exist in shallow water, deep water, and ultra-deep
water. The major difference between these three conditions are, obviously, the depth
of the water. Specifically, shallow water, deep water, and ultra-deep water denote up
to 125 m, 125-1500 m, and above 1500 m, respectively [1,61,62]. However, the majority
of global crude oil production occurs in shallow water [61,62]. Offshore oil/gas rigs
must constantly monitor the status of the pipeline to avoid disaster. These pipelines do
not move and can last for years, thus non-mobile nodes can be used to help operators
monitor the status of the underwater environment. In addition, due to the large target
area, underwater nodes must be organized in a 3-D network architecture to minimize
the power consumed in transmitting packets toward the sink node and hence reduce
the EC. Underwater modems have different capabilities; for our research, we chose an
underwater modem that is designed for shallow water applications and that consumes
lower energy to extend network lifetime. Specifically, in this study we rely on the LinkQuest
UWM1000 underwater modem. As shown in Figure 4, the network consists of several
underwater sensors organized in an ad hoc form, where the sensed information is relayed
from underwater nodes to reach the sink node at the surface level. Some assumptions
are made in this experiment, which are as follows. First, underwater sensor nodes are
operated in half-duplex mode, which means underwater nodes cannot send and receive
packets concurrently. Second, the sensor nodes are located more than one-hop from the
sink node except node one. Third, the simulation results show the network performance
from underwater sensors to the sink node at the surface level.
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Figure 4. Simulation Network Topology [34] @ 2021 IEEE.

The proposed DAMAC protocol is a delay-aware MAC protocol. To enhance channel
use, the proposed MAC protocol eliminates the handshaking packets and uses concurrent
transmission on the same time slot. To reduce the collision rate, the proposed MAC
protocol schedules data transmission based on the long propagation delay. Therefore,
anode transmits its data packets based on a pre-defined schedule. If the sink node receives
the transmitted data, it will send an acknowledgment to inform the sensor nodes that it has
received the data packets successfully. If the sensor nodes receive acknowledgment that
the transmitted data packets have been successfully received, they can then send the next
data packets on the next time slot. Otherwise, if no acknowledgment is received, the sensor
nodes will retransmit the lost data packets.

To set up the waiting time, we divide the underwater nodes into two groups. Under-
water nodes that belong to Group One will transmit their data packets while underwater
nodes that belong to Group Two are in sleep mode to avoid wasting energy. In this way;,
the long propagation delay between nodes in the different groups helps to allow concurrent
transmission and enhance network performance. At the next data transmission schedule,
underwater nodes that belong to Group Two transmit their data packets while underwater
nodes that belong to Group One are in sleep mode. This process repeats until either the
underwater nodes in both groups do not have any more packets to send or the simulation
time ends. The algorithm of the proposed MAC protocol is shown in Algorithm 1. Table 5
defines the meaning of each symbol in Algorithm 1.

Based on Algorithm 1, we can compute the time complexity to find the upper bound
and lower bound of the proposed algorithm. DAMAC protocol relies on the total number
of source nodes. As we increase the total number of source nodes, the total number of
received packets at the sink node increases as well. However, the function runs in constant
time to its input. Therefore, the upper bound of the DAMAC protocol is equal to f(n) =91
= f(n) = O(1). Similarly, the lower bound of DAMAC protocol is equal to f(n) = Q(1).
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Algorithm 1: DAMAC Protocol Process

Objective: To schedule data transmission properly, in which we address collision
issues by using the long propagation delay and allowing concurrent
transmissions while improving key factors of performance metrics.

Input: Node;, D,

Output: R,

Initialize: B, =0, Ny, =N,N =0, Ts;, =9, R, =0

while Node; € Ty, & Ty, has data to send do

Check the Dy

if Node; turns to transmit its data packets then

Sense C,

if C; is idle then

Transmit D, toward the sink node

N++

W

if Ack, is received then
| Rp++

else

Increase B,

if N =4then
| Abort connection

else

W,
Retransmit Dy,

end

end

Ise

Increase B,

if N = 4 then
| Abort connection

else

W,
Sense C;

end

end

else
| Node; Sy,

end

end

[¢]

In this paper, we aim to develop a MAC protocol that uses an efficient scheduling
algorithm where each node senses the shared channel and considers the long propagation
delay between sensor nodes for data transmission. Based on the long propagation delay;,
we can resolve the spatio-temporal problem. In this case, we can allow multiple nodes
that share a common channel to transmit packets concurrently to increase network use.
In addition, the proposed MAC protocol can avoid collisions if the propagation delay
between sensor nodes is long enough that ongoing packets do not collide with other
packets coming from other nodes.
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Table 5. DAMAC Reference Table.

Symbol Description

Node; represents the source node i where i refers to {1,2, ...n}.

B, represents backoff.

Noa represents the number of attempts.

Mn,, represents the maximum number of attempts.

Tsn represents the total number of source nodes.

D, represents the data packets.

Acky represents the acknowledgment packet.

Cs represents the carrier sense to check the channel status.

% represents the period of time a node waits for acknowledgment packet before retransmitting.

Ry represents that the sink node has received the transmitted data packets.

w represents an exponential backoff where a node waits a random amount of time to
4 avoid collision.

S represents a node to go into sleep mode.

Dys represents data transmission schedule.

5. Performance Evaluation

In this study, we focus on monitoring oil/gas underwater pipeline in shallow water.
The underwater network is deployed with 3-D network architecture, where numbers of
underwater nodes are laid at different depths and a single sink node is placed at the water’s
surface. The underwater network is broken down into onshore infrastructure and offshore
infrastructure. The offshore infrastructure consists of sensor nodes, a sink node, offshore
rigs, and a ship. In contrast, the onshore infrastructure consists of the data center, where
collected data can be monitored, as well as a refinery. The operation of the oil/gas industry
is divided into three sectors, which are: upstream, midstream, and downstream [63,64].
The main objective of the upstream sector is to search for areas where oil/gas materials
may exist and then extract them. Once the raw materials have been extracted, they must be
stored and then moved to a refinery. The midstream sector is responsible for the storage and
transport of the raw materials. After the raw materials have been processed in a refinery,
they are considered converted into a product. Turning the raw materials into a product is
the responsibility of the downstream sector. The oil/gas industry uses offshore rigs to look
for raw materials and extract them. In this study, we focus on monitoring this upstream
sector by deploying underwater sensors at different depths and a single sink node at the
surface level. Oil tankers have barrels to store raw materials and transport them to a
refinery. The refinery is the onshore infrastructure that represents the downstream sector.

Underwater applications are classified into time-sensitive and non-time-sensitive
applications. Time-sensitive applications focus on minimizing delay while non-time-
sensitive applications aim to reduce energy consumption. The oil/gas industry requires
that any potential disaster be detected with minimal delay and maximum PDR, which
makes it a time-sensitive application. In this study, we investigate which MAC protocol
technique can meet the QoS requirements of this type of application. To achieve this, we
must study different MAC protocol techniques. Therefore, we evaluate the following five
different MAC protocols: TDMA MAC for underwater networks (T,-MAC) [39], Aloha [39],
BroadcastMAC [39], Reservation-based MAC (RMAC) [40], and OPMAC [47]. Each one of
these MAC protocols relies on a different MAC protocol technique. In particular, T,-MAC
relies on TDMA, which is a contention-free MAC protocol. Aloha is a completely random
protocol, which makes it a great example of a contention-based random-access MAC
protocol. Similarly, BroadcastMAC is another example of contention-based random-access
MAC protocol, but one that uses CSMA to transmit packets between intended parties.
RMAC relies on TDMA and handshaking techniques, which makes it a great example
of a hybrid MAC protocol. OPMAC depends on only the handshaking technique and is
considered to be an accurate example of a contention-based handshake MAC protocol.
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5.1. Simulation Setup

We used Aloha, BroadcastMAC, RMAC, T,-MAC, and OPMAC protocols using the
Aqua-Sim simulator, which is built on top of the Network Simulator 2 (NS-2) [39,65].
Aqua-Sim is a well-known tool for the simulation of UWSNs. As shown in Figure 4,
the underwater network operates as an ad hoc network where each node transmits collected
data to its neighboring nodes to reach the sink node. This means that underwater nodes
send collected data to the sink node in multi-hop fashion. In this study, we assume that all
nodes are static and deployed randomly. The amount of energy consumption depends on
the energy model where each underwater modem may have different energy consumption
values for sending, receiving, and idle states. The lower the energy consumption values,
the longer the network lifetime. Therefore, we relied on the energy model of the LinkQuest
UWM1000 acoustic modem. Table 6 provides the details of all simulation parameters used
in this study:.

Table 6. Simulation Parameters [34] @ 2021 IEEE.

Parameters

Value

Radio propagation model

Underwater Propagation

Channel UnderwaterChannel
Routing protocol Vectorbasedforward
Number of nodes 10

Simulation area 1000 m x 125m
Simulation time 1500 s
Initial energy 10,000 Watts
Transmission power 2.0 Watts
Receiving power 0.75 Watts
Idle power 0.008 Watts
Data rate 10 Kbps
Network load 0.05-0.25 packets/s
Packet size 60 Bytes
Control packet size 5 Bytes
Type of traffic Constant Bit Rate (CBR)

5.2. Performance Metrics

We analyzed the simulation results relative to energy efficiency, communication
overhead, and fairness of the network. A brief description of these performance metrics
are given as follows:

1.  Energy Efficiency (EE) is the sum of energy consumed by all nodes divided by the
total number of received bytes at the sink node and multiplied by the Packet Size
(PS) [30,44]. EE is measured in Joules per Byte (J/B). A lower energy consumption per
received byte is always preferable to achieve higher EE. This means that as when we
spend lower energy to receive bytes, the EE is higher and hence the network lifetime
is longer. EE can be calculated using:

EC

EE[]/B] = TR, x PS

M

2. Communication Overhead Ratio (COR) can be defined as the total number of link
layer packets divided by the total number of all packets [55].

COR = Imac 100 )
Tan
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where Ty = total number of MAC layer packets; T,;; = total number of all packets
generated by all nodes in the network.

3. Fairness Index (FI) is a critical performance metric of MAC protocol to ensure fairness
among nodes that use a shared channel [30,58,66]. Fairness ensures that all nodes
transmit the same amount of data packets to the sink node. The index value of FI
affects the network survival time of UWSNSs. To evaluate fairness of the network, we
use Jain’s FI [18,30], which can be defined as follows:

2
(% £2)

where x; = throughput of node i; n = total number of nodes in the network. The range
of index value lies between 0 and 1. Zero indicates the protocol has a poor perfor-
mance. One indicates the protocol has an optimal performance. In other words, “0”
indicates that the total number of received packets is not the same from all underwater
nodes. In contrast, as the index value approaches “1,” this indicates that the total
number of received packets is almost the same from all underwater nodes.

To enhance network performance, nodes wake up and sleep in a repeating cycle. They
are awake in particular slots to transmit or receive packets and asleep during the other
time slots according to the data schedule. Every slot is reserved for a certain number
of nodes to transmit and receive packets. The length of each slot is fixed and equal to
E2ED plus a short guard time to avoid collisions at the receiver side. Each node knows
its own schedule to transmit its data packets as well as its one-hop neighbor’s schedule.
This known schedule determines when each node should wake up to transmit its own
data packets or to receive packets from neighboring nodes. This schedule helps to avoid
collisions between data packets coming from different nodes, aligns the sleep schedule to
the data schedule, and hence improves the network’s performance, in terms of E2ED, EC,
PDR, TC, and Thpt [34]. To provide a full analysis of the proposed protocol, we focused on
evaluating the impact of all MAC protocols in terms of EE, COR, and FI.

1. EE: This is an important factor for determining how efficient a MAC protocol is
in terms of energy consumption compared to the number of received data packets.
Optimally, the less energy needed to receive packets, the longer the network lifetime.
In other words, lower value of EE means that a MAC protocol is more efficient as it
consumes less energy to receive packets and vice versa.

2. COR: From Equation (2), Tjac, this is the sum of packets generated by source nodes.
The value of Ty, can determine the performance of a MAC protocol by computing
the total number of packets that must be generated by source nodes to transmit control
and data packets. To evaluate a MAC protocol in terms of efficiency, the overhead
should be kept to a minimum. Increased overhead means more packets must be gen-
erated, which results in higher E2ED and EC. Therefore, lower overhead is preferable
to meet the QoS requirements of an application. Ty;sc can be calculated using;:

Tinac = (A X St) — ((A X S¢) x n) 4)

From Equation (2), we also compute T,;;. T, refers to the total number of all packets
generated by all nodes in data link and network layers. Therefore, T; is the sum
of Tyac and the total number of routing packets in the network (T;,). T,; can be
calculated using:

Tait = Tinac + Tro 5)

From Equation (4), T}, is the sum of the total number of routing packets in the network
multiplied by the total number of links from the source nodes to the sink node.
Network topology plays a critical role in meeting an application’s QoS requirements.
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As we increase the hop length between source nodes and the sink node, the E2ED
and EC increases as well and vice versa. T, can be calculated using:

n
Tro=) TSxT;x2 (6)
i=1

where T; = total number of links from the source nodes to the sink node. The number

of links depends on the location of the source nodes.
Substituting Equations (4) and (6) into Equation (2) to compute COR:

(AxS)—((AxS) xn)

COR:(((/\XSt)—((/\XSt)Xn)+( 1TSS x T x2))

) @)

3. FI: From Equation (3), substitute x; from Equation (3):

(TR;x8)
(B TR x8) (oGt ‘8)
= n (TR;x8
(S; x 1000) nx (X, ﬁ)z

5.3. Results and Analysis

In this section, we present the performance of the DAMAC protocol under varying
network loads and compare our proposed protocol with five different MAC protocols:
T,-MAC, Aloha, BroadcastMAC, RMAC, and OPMAC. Network load plays an important
role in enhancing the performance of UASNs [67]. In particular, we compare these five
protocols in terms of EE (see Figure 5), COR (see Figure 6), and FI (see Figure 7). For the
purposes of this experiment, underwater nodes relied on a multi-hop network where data
packets are transmitted toward the sink node through relay nodes.

In Figure 5, the EE of Aloha [39], BroadcastMAC [39], RMAC [40], T,-MAC [39],
OPMAC [47], and DAMAC protocols is inversely proportionate to the network load. This
means that as we increase the network load, lower energy consumption per byte and hence
researchers are recommended to use higher network load to improve EE. Aloha, Broad-
castMAC, and DAMAC protocols offer much higher EE compared to RMAC, T,-MAC,
and OPMAC protocols, due to their higher PDR. Moreover, the DAMAC protocol offers
better EE compared to the Aloha, BroadcastMAC, and OPMAC protocols due to its be-
ing schedule-based. In particular, the DAMAC protocol achieves higher EE by 29-33%,
12-14%, and 59-65% compared to Aloha, BroadcastMAC, and OPMAC protocols, respec-
tively. This means that DAMAC consumes lower energy per byte and hence can better
extend network lifetime in comparison with the Aloha, BroadcastMAC, and OPMAC
protocols. In contrast, the DAMAC protocol offers lower EE by 1160-1612% and 220-608%
compared to the RMAC and T,-MAC protocols, respectively. The main reason for this
is that DAMAC protocol receives a much higher number of bytes compared to both the
RMAC and T,-MAC protocols. This means that DAMAC consumes a higher amount of
energy per byte relative to the RMAC and T,-MAC protocols at the cost of increased PDR.
Based on the above results, the DAMAC protocol provides higher EE as compared to Aloha,
BroadcastMAC, and OPMAC while resulting in lower EE when compared to the RMAC
and T,,-MAC protocols. This means that DAMAC protocol outperforms contention-based
MAC protocols, but that contention-free and hybrid MAC protocols can offer the highest
EE but one that comes at the cost of low PDR.
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Figure 5. Energy Efficiency.

We show in Figure 6 that the communication overhead of the Aloha [39], Broadcast-
MAC [39], OPMAC [47], and DAMAC protocols remains the same regardless of network
load. In contrast, the communication overhead of RMAC [40] and T,,-MAC [39] protocols
is indirectly proportionate to the network load. This indicates that the network load either
does not impact the COR or reduces COR as network load increases and thus researchers
are strongly encouraged, when transmitting large number of packets, to use a high network
load. The proposed MAC protocol requires fewer MAC packets to communicate between
intended parties compared to the BroadcastMAC, RMAC, T,-MAC, and OPMAC protocols
by about 14%, 4-30% (except at the highest network load), 42-45%, and 14-15%, respec-
tively. The proposed MAC protocol achieves lower communication overhead compared
to BroadcastMAC due to concurrent transmissions. DAMAC allows multiple packets to
be transmitted from several nodes and hence fewer MAC packets are transmitted. RMAC
and T,-MAC protocols result in high communication overhead as they both use con-
trol packets (e.g., RTS and CTS) to reduce collisions prior to data packet transmission.
This indicates that the proposed MAC protocol can reduce the COR as compared to the
BroadcastMAC, RMAC, T,-MAC, and OPMAC protocols and hence requires lower energy
consumption. Since underwater nodes are operated with limited battery, lower energy
consumption is always preferable to extend the network lifetime. As the network load
increases, the RMAC protocol will require less communication overhead, but at the cost
of higher E2ED. Moreover, OPMAC requires less packet overhead compared to T,,-MAC
protocol as it reduces the number of control packets to reserve a channel. This means that
using the OPMAC protocol can extend the network lifetime as compared to the T,-MAC
protocol. The communication overhead of Aloha requires fewer packets compared to the
proposed MAC protocol by about 9%, as this protocol transmits packets whenever the
channel is available. Although Aloha achieves the lowest communication overhead, it
results in high end-to-end delay, energy consumption, and total number of collisions, while
achieving lower PDR and throughput compared to the proposed MAC protocol. To meet
the QoS requirements of oil/gas pipeline monitoring applications, the results of this paper
show that the proposed DAMAC protocol is the most appropriate protocol to support such
time-sensitive applications.
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Figure 6. Communication Overhead Ratio.

In Figure 7, we observe that the fairness of the network of the Aloha [39], Broadcast-
MAC [39], T,-MAC [39], and DAMAC protocols is constant to the network load. This
means that underwater nodes will have the same opportunity to access the channel and
transmit collected data regardless of the network load. In these types of protocols, it is
highly recommended to use a high network load to achieve lower COR and EE. In contrast,
the fairness of the network of RMAC [40] protocol is inversely proportionate to the network
load. This means that when using the RMAC protocol, some underwater nodes will have
less opportunity than other nodes as the network load increases. Consequently; it is likely
that an underwater node would not be able to transmit critical data during a disaster due
to the operation of the RMAC protocol, which could hence increase the severity of total
loss. Therefore, it is critical that a MAC protocol share network resources more efficiently
to alert operators with minimal delay in case of incidents of disaster. The fairness of the
network of OPMAC [47] protocol varies based on the given network load. Aloha, Broad-
castMAC, and DAMAC protocols offer much higher fairness of the network compared to
the RMAC, T,,-MAC, and OPMAC protocols. This indicates that the Aloha, BroadcastMAC,
and DAMAC protocols share network resources more fairly among the nodes compared
to the RMAC and T,-MAC protocols. This is because of the competition to access the
channel by exchanging control packets, which lowers the fairness. DAMAC protocol
achieves the highest fairness of the network compared to other MAC protocols due to
the schedule-based algorithm. This means that the DAMAC protocol can support oil/gas
pipeline monitoring applications more efficiently in comparison to other well-known MAC
protocols. In particular, DAMAC protocol outperforms Aloha, BroadcastMAC, RMAC,
T,-MAC, and OPMAC protocols by about 12%, 3%, 307-726%, 429-430%, and 103-120%,
respectively. Based on the above results, the Aloha, BroadcastMAC, and DAMAC protocols
are more appropriate to support time-sensitive applications than the RMAC, T;,-MAC,
and OPMAC protocols.
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Figure 7. Fairness Index.

6. Conclusions

In this paper, we developed a DAMAC protocol for a delay-sensitive application
in UASNs. The proposed MAC protocol relies on a scheduling-based mechanism that
allows concurrent transmission to enhance poor performance in the UASN setting. This
study reveals that the random-access-based approach is considered the most appropriate
MAC protocol to support a pipeline topology over multi-hop in terms of EE, COR, and FL
The DAMAC protocol addresses the limitations of existing MAC protocols by using an
efficient scheduling algorithm that enhances underwater communication. Moreover, we
analyzed each MAC protocol approach to highlight the trade-offs that exist with each.
In particular, the Aloha, BroadcastMAC, and DAMAC protocols are considered more
suitable to meet the QoS requirements of time-sensitive oil/gas pipeline monitoring ap-
plications. Although the T;,-MAC and RMAC protocols offer higher energy efficiency,
as compared to the Aloha, BroadcastMAC, OPMAC, and DAMAC protocols, they both
receive a much lower number of bytes. This means that the T;,-MAC and RMAC protocols
cannot achieve maximum PDR and hence are not suitable for monitoring time-sensitive
applications. In short, the proposed MAC protocol exhibits significant enhancements
compared to other MAC protocols in terms of EE, COR, and fairness of the network, which
makes it the most suitable one for time-sensitive monitoring applications. This study can
also serve as a guide on how to meet the QoS requirements of target applications. Since
this research focused on a static underwater large-scale network, further investigation is
needed to evaluate the developed DAMAC protocol in a mobile network and/or a small-
sale network. Furthermore, to expand the scope of this research, the developed DAMAC
protocol should be evaluated in the targeting of different underwater applications.
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