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Abstract: In this study, we proposed a data-driven approach to the condition monitoring of the
marine engine. Although several unsupervised methods in the maritime industry have existed,
the common limitation was the interpretation of the anomaly; they do not explain why the model
classifies specific data instances as an anomaly. This study combines explainable AI techniques with
anomaly detection algorithm to overcome the limitation above. As an explainable AI method, this
study adopts Shapley Additive exPlanations (SHAP), which is theoretically solid and compatible
with any kind of machine learning algorithm. SHAP enables us to measure the marginal contribution
of each sensor variable to an anomaly. Thus, one can easily specify which sensor is responsible
for the specific anomaly. To illustrate our framework, the actual sensor stream obtained from the
cargo vessel collected over 10 months was analyzed. In this analysis, we performed hierarchical
clustering analysis with transformed SHAP values to interpret and group common anomaly patterns.
We showed that anomaly interpretation and segmentation using SHAP value provides more useful
interpretation compared to the case without using SHAP value.

Keywords: explainable AI; anomaly detection; isolation forest; Shapley Additive exPlanations; SHAP;
clustering; marine engine; onboard sensors

1. Introduction

Modern vessels utilize onboard sensors and data acquisition systems to collect ship
performance and navigation parameters [1]. The explosion of the sensor data enables one
to apply machine learning techniques to the data to extract knowledge through data analy-
sis [2] and even trigger interesting data-driven applications, including fuel consumption
prediction [3,4], prediction of speed loss [5], propulsion power prediction [6], weather
routing [7], development of monitoring systems [8] and enhanced inspection [9], energy
efficiency analysis [10], trim optimization [11], predictive maintenance [12], data-driven
prognostics [13].

1.1. Data-Driven Approach to Condition-Based Monitoring of Marine Engines

One of the promising data-driven approaches using vessel datasets is condition mon-
itoring of the vessel main engine. The main engine is the most critical subsystem in a
vessel because a failure of the engine may lead to severe accidents, endangering crew and
passengers onboard, posing a threat to the environment, damaging the ship itself, and
incurring a significant business loss [14]. Thus, several researchers tried to analyze the
essential sensor signals related to the main engine, such as power, speed, temperature,
and pressures for selected engine components, to detect anomalous data points that may
indicate critical information for the failure [15].

The ideal approach to data-driven condition monitoring would be to use the run-
to-failure data obtained from the actual engine failure event. If such data is available, a
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classification model can be directly applied to predict the failure from the sensor data.
However, it is hard to learn from the actual failure event because engine failure is an
extremely rare event in practice. Instead, the artificial dataset is usually adopted in the
maritime domain. For example, Kowalski et al. [16] utilized the marine engine sensor
dataset obtained from the laboratory experiment. The dataset consists of 14 faulty con-
ditions additional to normal behavior, and a machine learning model was adopted to
discern failure types. Cipollini et al. [17] utilized a computer simulation model. Several
sensor values were generated in their dataset according to the decay process of four-engine
components (gas turbine, gas turbine compressor, hull, and propeller). Simple supervised
regression models were then adopted to predict the decay coefficient given only the sensor
dataset. Utilizing the same dataset, Cipollini et al. [17] and Tan et al. [18] proposed a
classification-based approach and compared the accuracy of several competing classifica-
tion algorithms. However, generating the simulated dataset is costly because it requires
complex physical modeling of the system, which may be challenging to develop.

Unsupervised learning is another alternative when the labeled dataset is unavailable.
The unsupervised approach assumes no prior information about the failure label of the
dataset. Instead, it detects the anomalous point that shows a significant deviation from
the rest of the dataset. It is, of course, noteworthy that such an anomalous point does
not always indicate the fault or failure of the engine. However, at least, the anomalous
point may indicate the sudden change of the system, which may lead to system fault
for failure [16]. Several unsupervised anomaly detection algorithms have been proposed
in the maritime domain to monitor the anomalous behavior in the vessel main engine.
For example, Vanem and Brandsæter [19] adapted the cluster-based anomaly detection
to compare the detected anomaly ratio among the implemented clustering techniques
and draw the base contamination rate of the anomaly ratio results from all the compared
methods. Brandsæter et al. [20] proposed another way to detect anomalies using online
anomaly detection with baseline deviation modeled using the auto-associative kernel
regression that constructed the representative of the normal condition. On the other hand,
Bae et al. [21] proposed a statistical process control (SPC)-based approach. Bootstrap-
based T2 multivariate chart proposed by Phaladiganon et al. [22] is adopted to find the
threshold values of each sensor. An outlier is detected when at least one of the sensor
values falls outside the threshold. However, their approach suffers from low performance
when the dataset involves high dimensional spaces [23]. Recently, Kim et al. [24] proposed
an ensemble-based method that is scalable to high-dimensional and large-scale sensor data.

1.2. Explainable AI for Anomaly Detection

Explaining the possible cause of anomalies is necessary for conditioned monitoring
of marine engines because this additional knowledge about anomalies would provide
much insight for the user to prepare for the following action. Unfortunately, the current
methods do not explain the rationale behind the model’s prediction. Given an anomaly
found, the user cannot easily understand which sensor is most responsible for this anomaly.
Previously, Kim et al. [24] tried to explain the anomaly pattern by performing the clustering
analysis with anomalous data. However, their method could not quantify the degree of
contribution for each sensor on found anomalies.

To overcome this limitation, this paper adopts explainable AI (XAI) techniques to
explain the maritime engine anomalies. The XAI methods aim to assess the feature attribu-
tions, which indicates how much each feature in a model contributed to the predictions for
each given instance. For the simple machine learning model like linear regression or logistic
regression, one can quickly evaluate the feature importance by referring to the coefficient
associated with each data feature. However, it is hard for a human to measure the feature
attribution for complex models such as random forest or artificial neural networks because
too many parameters are involved in the model. In this regard, several XAI techniques
have been proposed to evaluate feature attribution of individual predictions obtained from
the complex machine learning model during past decades. One notable breakthrough was
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Local Interpretable Model-agnostic Explanations (LIME) proposed by [25]. LIME takes
the input instance and slightly perturbs that input many times, then fits a linear model
to those perturbations and produces an explanation in terms of the linear model’s coeffi-
cients. More recent work by Lundberg et al. [26] identified the relations between LIME and
Shapely Value and combined them into unified framework called SHAP (Shapley Additive
exPlanations) values. SHAP enables anyone using complex machine learning models to
explain their model’s predictions through the lens of the input features. For more literature
review about explainable AI methods, please refer to [27].

In the literature, the SHAP value was applied to explain the anomaly detection
algorithm. For example, the authors of [28] explain the intrusion detection systems used in
the cybersecurity system of a network. In the engineering system, SHAP was also used
to explain the energy efficiency prediction of the water pumping systems [29] and the
heating systems [30]. In the medical field, SHAP was used to explain cancer prediction
from the tree-based anomaly detection model [31], and risk factors of hypoxemia during
surgery [32].

1.3. Aim of This Study

This study tries to explain the anomalous marine engine behavior with SHAP values.
As a base anomaly detector, the isolation forest developed by Liu et al. [33] is adopted.
isolation forest is an ensemble-based decision tree for anomaly detection. As with other
ensemble-based methods like the random forest, isolation forest utilized no distance or
density measures, and thus methodology was performed satisfactorily in high-dimensional
data that contains many irrelevant attributes. After the anomaly score is obtained, SHAP
was combined with the isolation forest to calculate the feature importance of individual
prediction. Thus, given an anomalous data point, anyone can easily explain which sensor
value is responsible for the anomaly. Additionally, we performed the clustering analysis
with aggregated feature importance values to investigate the common anomaly pattern. The
transformed value using SHAP was useful for the anomaly segmentation and visualization.
To validate our method, we analyzed the actual marine engine dataset collected from the
cargo vessel that operates around the Asian-Pacific Ocean.

The contribution of this paper is two-fold. First, to the author’s knowledge, this
is the first attempt to use explainable AI in anomaly detection in the maritime domain,
particularly utilizing marine engine datasets. With our framework, one can explain the
possible cause of anomalies by specifying suspicious sensors. This additional knowledge
about anomaly would provide much insight for the user to prepare for the following action.
Second, we performed much in-depth analysis using feature importance values obtained
from SHAP. We showed that the clustering method and visualization tool provided in this
study was useful for anomaly segmentation and interpretation. We also compared the
usefulness of this framework by comparing the case without SHAP value.

The remainder of this paper is organized as follows. Section 2 describes brief infor-
mation about the target vessel and dataset. After that, Section 3 explains the background
theory about models used in this study. In Section 4, we explain our procedure and discuss
the experiment result. Finally, Section 5 explains the conclusion and future direction of
the study.

2. Data Description and Exploratory Analysis
2.1. Dataset

The dataset used in this research is retrieved from a 200,000-ton bulk cargo ship
collected from its engines during 10 months of operation time from July 2019 to April
2020. During the data collection period, the vessel has operated around 30 voyages visiting
several Asian ports, including South Korea, Russia, Taiwan, Indonesia, Malaysia, Singapore,
and the Philippines. The sensor data is recorded in one second and results in a total of
22,513,800 observations. We thought that the size of the dataset is large enough for anomaly
detection analysis because the target vessel operates the same route several times during
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the data collection period. Additionally, the dataset size was larger than the previous
studies. For Cheliotis et al. [34], the data collection period was only three months. For
Brandsaeter et al. [20], the data collection period was the same (around 10 months), but
only 10 sensors were used for the analysis. The overall route is shown in Figure 1. The
detailed specification of the vessel is shown in Table 1.

Table 1. Vessel specification.

Specification

Length overall 269.36 m
Length between perpendiculars 259.00 m

Breadth 43.00 m
Depth 23.80 m

Draught 17.30 m
Deadweight 152.517 metric t
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Figure 1. Vessel routes trajectory.

The engine type of the target vessel is MAN B&W MC50, a two-stroke engine with
a moderate rpm [35]. The engine adopts variable injection timing (VIT) systems that
regulate the ignition of the fuel injection. The coolant system cools the moving compo-
nents (crankshaft, piston) with lubricant, while the stationary components (cylinder head,
jacket) are cooled with fresh water. Seawater is used to cool the coolant in a separate
heat exchanger.



Sensors 2021, 21, 5200 5 of 26

2.2. Data Features

The original data consists of 144 different sensors installed across vessel machinery
systems. In this study, the domain expert carefully chose the sensors that were related to
the main engine. The list of chosen sensors is shown in Table 2.

Table 2. Data features list.

Feature Name Description

TIME_STAMP A time when the data is recorded
ME1_FO_TEMP_INLET Temperature of fuel oil

ME1_RPM Engine rotation per minute (RPM)
ME1_FO_INLET_PRESS Inlet pressure of fuel oil
ME1_FO_INLET_TEMP Inlet temperature of fuel oil
ME1_SCAV_AIR_PRESS Pressure of scavenging air
ME1_JCW_INLET_TEMP Inlet temperature of jacket cooling water
ME1_JCW_INLET_PRESS Inlet pressure of jacket cooling water

ME1_TC1_EXH_INLET_TEMP Inlet temperature of exhaust gas of turbocharger
ME1_TC1_EXH_OUTLET_TEMP Outlet temperature of exhaust gas of turbocharger

ME1_TC1_LO_INLET_PRESS Inlet pressure of lubricant oil in turbocharger
ME1_TC1_LO_OUTLET_TEMP Outlet temperature of lubricant oil in turbocharger

ME1_LO_INLET_PRESS Inlet pressure of lubricant oil
ME1_LO_INLET_TEMP Inlet temperature of lubricant oil

ME1_CYL [1~5]_PCO_OUTLET_TEMP Outlet temperature of cylinder piston cooling oil
(cylinders 1 to 5)

ME1_CYL [1~5]_CFW_OUTLET_TEMP Outlet temperature of cylinder block cooling water
(cylinders 1 to 5)

ME1_CYL [1~5]_EXH_GAS_OUTLET_TEMP Outlet temperature of exhaust gas
(cylinders 1 to 5)

3. Overall Framework and Background
3.1. Overall Framework

The whole approach for this study is depicted in Figure 2. To begin, we preprocessed
the dataset to simplify the execution of unsupervised learning models. After that, anomaly
detection was completed on the vessel instances to a certain suspicious condition. Isolation
forest was applied to the preprocessed dataset to identify the anomalous data instance
in the sensor stream as a whole. Following that, explainable AI named SHAP (Shapley
Additive exPlanations) was utilized to transform the dataset into specific instances based
on the explainability of the isolation forest model. As previously stated, SHAP was utilized
to determine the contribution of each sensor’s features to the discovered anomaly. SHAP
enables quantification of which sensor is accountable for each incident of abnormal data.
This procedure interpreted the model’s local and global explanations, respectively. Finally,
the segmentation of SHAP value on anomalous data points was performed using the
hierarchical cluster method, then segregated into multiple clusters. After identifying
clusters, we highlighted the sensors that contributed the most to the cluster.



Sensors 2021, 21, 5200 6 of 26
Sensors 2021, 21, 5200 6 of 27 
 

 

 
Figure 2. Proposed framework approach. 

3.2. Unsupervised Anomaly Detection and Isolation Forest 
Unsupervised machine learning algorithms do not learn from labeled samples but 

rather comprehend the data structure to classify it into a fixed or variable number of clas-
ses. They are based on two fundamental assumptions. First, they assume that only a very 
tiny percentage of the data is anomalous. Second, the anomalous data will exhibit statis-
tically significant differences from the normal. According to these two assumptions, data 
groups of similar instances that appear frequently are considered normal, but observa-
tions that appear infrequently and are significantly different from the majority of the in-
stances are considered an anomaly. 

In the literature, there have been several anomaly detection methods with a specific 
algorithm, such as (1) proximity-based model: local outlier factor (LOF) [36], k-nearest 
neighbors [37], histogram-based outlier score [38], rotation-based outlier detection [39]; 
(2) probabilistic: angle-based outlier detection [40], copula-based outlier detection [41]; (3) 
outlier ensembles: locally selective combination of parallel outlier ensembles [42], light-
weight on-line detector of anomalies [43] and isolation forest is the most often used unsu-
pervised anomaly detection algorithm [33]. For the literature review about anomaly de-
tection methods, refer to [44]. 

In this study, an isolation forest was used for the base anomaly detection algorithm. 
Like random forest, isolation forest consists of multiple binary decision trees (iTrees) 
trained with different subsamples drawn from original datasets. In the training phase, 
each decision tree decomposes the data space into two subtrees by the arbitrary values of 
the randomly chosen feature. The subtree also follows the same procedure until it reaches 
the stopping condition—(a) if the node contains a single observation or (b) the tree reaches 
its maximum height. Figure 3 shows the property of the isolation forest. As shown in the 
figure, a binary search tree (Figure 3b) was randomly constructed to isolate each data 
point. In Figure 3a, only one split is required to separate the anomalous point (13,13) from 
the rest of the data, whereas four splits are required to separate the normal point (6,6). As 
the figure suggests, the abnormal data instance is likely to be closer to the root node than 
the normal data instance. 

Figure 2. Proposed framework approach.

3.2. Unsupervised Anomaly Detection and Isolation Forest

Unsupervised machine learning algorithms do not learn from labeled samples but
rather comprehend the data structure to classify it into a fixed or variable number of classes.
They are based on two fundamental assumptions. First, they assume that only a very tiny
percentage of the data is anomalous. Second, the anomalous data will exhibit statistically
significant differences from the normal. According to these two assumptions, data groups
of similar instances that appear frequently are considered normal, but observations that
appear infrequently and are significantly different from the majority of the instances are
considered an anomaly.

In the literature, there have been several anomaly detection methods with a specific
algorithm, such as (1) proximity-based model: local outlier factor (LOF) [36], k-nearest
neighbors [37], histogram-based outlier score [38], rotation-based outlier detection [39];
(2) probabilistic: angle-based outlier detection [40], copula-based outlier detection [41];
(3) outlier ensembles: locally selective combination of parallel outlier ensembles [42],
lightweight on-line detector of anomalies [43] and isolation forest is the most often used
unsupervised anomaly detection algorithm [33]. For the literature review about anomaly
detection methods, refer to [44].

In this study, an isolation forest was used for the base anomaly detection algorithm.
Like random forest, isolation forest consists of multiple binary decision trees (iTrees)
trained with different subsamples drawn from original datasets. In the training phase, each
decision tree decomposes the data space into two subtrees by the arbitrary values of the
randomly chosen feature. The subtree also follows the same procedure until it reaches the
stopping condition—(a) if the node contains a single observation or (b) the tree reaches
its maximum height. Figure 3 shows the property of the isolation forest. As shown in the
figure, a binary search tree (Figure 3b) was randomly constructed to isolate each data point.
In Figure 3a, only one split is required to separate the anomalous point (13,13) from the
rest of the data, whereas four splits are required to separate the normal point (6,6). As the
figure suggests, the abnormal data instance is likely to be closer to the root node than the
normal data instance.
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As the anomalous data is likely to be closer to the root node, the path length required to
reach a data instance would be a proper measure for scoring the anomaly. In the prediction
phase, isolation forest measures the degree of the anomaly by measuring the averaging
path length from the root to the instance to find the expected path length [45]. More
formally, the degree of the anomaly of a data instance d with subsample size n, S(d, n) can
be measured by the following:

S(d, n) = 2
−E(h(d))

c(n) , (1)

where h(d) is the path length of instance d, E(h(d)) is an average value for h(d) across
binary decision trees, and C(n) represents the average path length given subsample size n,
which is calculated as follows:

C(n) = 2H(n− 1)− (2(n− 1)), (2)

where H(i) is the harmonic sum, which is equivalent to the formula ln(i) + 0.5772156649.
If the anomaly score is close to 1, then d is considered as an anomaly, whereas s is smaller
than 0.5, then d is likely to be a normal value. After every data instance’s anomaly score is
measured, we can sort them in descending order to find the top anomalies. The detected
anomalies may indicate the rapid change of the system status, which shows a significant
deviation from the normal baseline.

3.3. SHAP on Anomaly Detection

This study aims to explain abnormal data by measuring the contribution of each
sensor to this anomaly. Suppose that we want to explain a single input x on a prediction
model f (x). Ideally, if we can represent the single prediction f (x) by the sum of individual
feature importance ϕi, then we can explain the prediction f (x) as the following:

f (x) = g
(
x′
)
= ϕ0 + ϕix′i , (3)

where ϕ0 is the baseline when all of the input features are missing, x′ is the binary vector
representing whether or not input dimension i is included in the input dimension. This
kind of explanation model g is called the additive feature attribution method. Thus, several
methods have been proposed to find a good approximation function, g.

SHAP proposed by [26] is a kind of additive feature attribution method. The concept
of SHAP originates from Shapley value which was initially proposed by [46]. According to
Shapely value, the amount of payoff that a player i gets given a coalition game (v, n) is:

ϕi(v) = ∑S⊆N\{i}
|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)), (4)
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where n is the total players, S is a subset of total players that describes a coalition, and v(S)
is an expected sum of the payoff of coalition S. From the above equation, v(S ∪ {i})− v(S)
is the marginal contribution of the player i given the current coalition S. Shapely value
then can be interpreted as an average of this contribution obtained over every possible
permutation of the coalition. The same concept can be applied to machine learning. Given
an input instance x for a machine learning model f, if we consider each dimension of x an
individual player, this machine learning model can be considered a coalition game whose
payoff is determined by the function f . Then, the shapely value ϕi( f , x) can be calculated
by the following:

ϕi( f , x) = ∑z′⊆x′
|z′|!(n− |z′| − 1)!

n!
(

f
(
z′
)
− f

(
z′\i

))
, (5)

where z′ is a binary vector representing the subset S of the features included in the model.
Surprisingly, Lundberg and Lee [26] show that the Shapely value in the above equa-

tion is the unique solution to the additive feature attribution model that follows desirable
properties (local accuracy, missingness, consistency). To compute the value of the function
fx(z′) which contains some missing variables of x, it uses the conditional expectation
E[ f (z)|zS] where zS is the set of the variable associated with subset S. Of course, the exact
calculation of shapely value in Equation (4) is computationally expensive because it has to
consider every permutation of input features. However, E[ f (z)|zS] can be further simpli-
fied by assuming independence and linearity assumption. In [26], the author proposed the
KernelSHAP, which approximates g that can be applied to any machine learning model.

Figure 4 illustrates how the SHAP explains the prediction from a machine learning
model consisting of four variables. ϕ0 is simply the expected value of the function E[ f (z)]
over every dataset, which forms the baseline in feature contribution. Then, by adding
each dimension one by one on the conditional term, one can measure this feature’s feature
contribution. As SHAP assumes feature independence assumption, the order that the input
feature is added is not important. Based on this result, features 1, 2, and 3 increase the
prediction from the baseline, whereas feature 4 shows a negative impact. By aggregating
Shapely values of every data instance, the global model interpretation is also possible.
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In the calculation of SHAP value, treeSHAP algorithm proposed by Lundberg [47]
was utilized because it provides a fast and exact feature attribution method by exploiting
an ensemble-based decision tree structure. Isolation forest that was chosen for the anomaly
detection algorithm for this study is compatible with treeSHAP because it also uses the
ensemble-based decision tree in the prediction [47]. Besides, treeSHAP gives specific
explainability of black-box information about the local explanation to global understanding
on tree-based model machine learning [48]. The ability to easily and precisely generate
local explanations using Shapley values across an entire dataset enables the development
of a new class of tools for comprehending the isolation forest model’s global behavior to
identify the suspicious anomaly event.

Figure 5 illustrates an example of SHAP value calculation. Following the property of
SHAP value, the sum of each feature’s importance value should be equal to the anomaly
score. As the instance with a lower anomaly score is considered an anomaly, the feature
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with a large negative magnitude may indicate a strong contributor for the anomaly. For
example, for anomalous data Figure 5a, features 1 and 2 may be such strong contributors.
On the other hand, the SHAP value for the normal instance in Figure 5b may not be
associated with such a large negative value. It is also noteworthy that the SHAP value is
the unitless measure. This property is helpful because we can compare SHAP values across
different features without worrying about the original scale of the feature value.
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3.4. Hierarchical Clustering

This study performed a hierarchical clustering analysis on the SHAP values of ab-
normal instances to identify the typical anomaly patterns. The idea is to group similar
anomalies which have a similar distribution of SHAP values. Then, each group can be
considered an abnormal pattern, providing further insight for the human expert.

Hierarchical clustering is built based on a cluster tree (a dendrogram) representing the
data grouped by the similarity between one individual datapoint and another. As the data
grouped, groups with similar characteristics will be merged until all groups are merged as
one big cluster, which is called agglomerative strategy, or oppositely, from one big cluster
that continuously divided into several small clusters based on the heterogeneity of the
clusters, which is called divisive strategy.

In agglomerative clustering, each data point starts as its cluster. Then, the closest
pair of clusters is merged based on a distance measure given by the user. This is repeated
until all the points are merged into one root cluster [49]. As shown in Figure 6, as the
data is grouped and groups are merged, the cluster tree represented in the dendrogram
was formed.



Sensors 2021, 21, 5200 10 of 26
Sensors 2021, 21, 5200 10 of 27 
 

 

  
(a) (b) 

Figure 6. Conceptual illustration of hierarchical clustering: (a) nested clusters; (b) dendrogram. 

The average-linkage method is completed by calculating the distance between a pair 
of observations, summed up and divided by the total pairs in a cluster, resulting in the 
average inter-cluster distance. The distance is calculated as follows: 𝑑(𝑢, 𝑣)  =  ∑ ௗ(௨[௜],௩[௝])([௨]∗[௩])௜௝ , (6)

where u, v are two clusters, respectively, and i and j are the data instances belonging to 
each cluster. From the resulted clustered tree, the determination of the number of clusters 
was done using the Silhouette method proposed by Peter J. Rousseeuw [50]. This method 
evaluates the cohesion measure and separation distance between the resulting clusters by 
the silhouette coefficient. Cohesion measures how closely the data is related to each other 
in the same cluster while cluster separation measures how separated each cluster is from 
other clusters. Then the silhouette coefficient is determined by these equations below: 𝑠(𝑖)  =  ௕(௜)ି௔(௜)௠௔௫{௔(௜),௕(௜)}, (7)

where 𝑠(𝑖) is the silhouette coefficient of sample 𝑖 that is calculated by comparing the 𝑎(𝑖), as the average distance of 𝑖 to other samples in the same cluster, to 𝑏(𝑖), as the av-
erage distance of all samples of sample 𝑖 to the other cluster. From Equation (7) the value 
of the silhouette coefficient range between −1 to 1. Where the more positive value indicates 
the higher likelihood of 𝑖 to be assigned in the right cluster. Then the value of K or the 
best number of clusters is indicated by the higher Silhouette coefficient [51]. 

4. Experiment Result and Discussion 
4.1. Data Preprocessing 

Each data-driven methodology necessitates the use of a representative training da-
taset. The raw data source, on the other hand, is incomplete. It contains values that are out 
of control, missing values, redundant variables, and other erroneous data. Without care-
fully screening the raw data, the resulting model would work poorly on the new data. 
Thus, multiple preprocessing approaches were used in this analysis to enhance the da-
taset’s efficiency. 

Firstly, out-of-range values that exceeded the acceptable ranges were omitted. These 
values are often the result of sensor or contact signal failure. Since those are not relevant 
to the engine’s status, we decided to remove them from the training data collection. 

Figure 6. Conceptual illustration of hierarchical clustering: (a) nested clusters; (b) dendrogram.

The average-linkage method is completed by calculating the distance between a pair
of observations, summed up and divided by the total pairs in a cluster, resulting in the
average inter-cluster distance. The distance is calculated as follows:

d(u, v) = ∑ij
d(u[i], v[j])
([u] ∗ [v]) , (6)

where u, v are two clusters, respectively, and i and j are the data instances belonging to
each cluster. From the resulted clustered tree, the determination of the number of clusters
was done using the Silhouette method proposed by Peter J. Rousseeuw [50]. This method
evaluates the cohesion measure and separation distance between the resulting clusters by
the silhouette coefficient. Cohesion measures how closely the data is related to each other
in the same cluster while cluster separation measures how separated each cluster is from
other clusters. Then the silhouette coefficient is determined by these equations below:

s(i) =
b(i)− a(i)

max{a(i), b(i)} , (7)

where s(i) is the silhouette coefficient of sample i that is calculated by comparing the a(i),
as the average distance of i to other samples in the same cluster, to b(i), as the average
distance of all samples of sample i to the other cluster. From Equation (7) the value of the
silhouette coefficient range between −1 to 1. Where the more positive value indicates the
higher likelihood of i to be assigned in the right cluster. Then the value of K or the best
number of clusters is indicated by the higher Silhouette coefficient [51].

4. Experiment Result and Discussion
4.1. Data Preprocessing

Each data-driven methodology necessitates the use of a representative training dataset.
The raw data source, on the other hand, is incomplete. It contains values that are out of control,
missing values, redundant variables, and other erroneous data. Without carefully screening
the raw data, the resulting model would work poorly on the new data. Thus, multiple
preprocessing approaches were used in this analysis to enhance the dataset’s efficiency.

Firstly, out-of-range values that exceeded the acceptable ranges were omitted. These
values are often the result of sensor or contact signal failure. Since those are not relevant to
the engine’s status, we decided to remove them from the training data collection.

After that, the dataset was compressed by averaging a 10 min interval because the size
of the original data with a one-minute interval is too large to train the machine learning
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model efficiently. Moreover, compared to other vehicles such as cars or aircraft, the vessel
engine typically undergoes a slow change in its status; thus, the dataset with too fine
granularity may not be practical.

After then, we excluded data gathered when the vessel was stationary since the
vessel’s engine is not operational during that time frame. According to expert opinion,
we consider areas with an average ground speed greater than 6 knots and an RPM value
greater than 70 in this report.

In the final stage, rather than using individual sensor values for each cylinder, we
used an averaged value since sensor values from five cylinders exhibit a high degree of
correlation, suggested by Figure 7. Finally, we obtained the dataset with 13,955 instances.
Figure 8 shows the distribution result after preprocessing.
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4.2. Anomaly Detection Using Isolation Forest

In this step, isolation forest was applied to the preprocessed dataset to find anomalous
data instances. Figure 8 shows the distribution of the anomaly score of every data instance.
As the histogram has a very thin tail part, it seems that the anomalous data instance is well
separated from the rest of the dataset.

We tried three different anomaly score percentiles—1, 3, and 5%—to find good
anomaly score criteria. Figure 9 also shows the different anomaly score criteria concerning
different percentiles. According to this figure, we concluded to use 1% as our decision
criteria because we found a small peak around the 1% vertical line, suggesting that 1%
percentile criteria can segment that anomaly group.
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4.3. Feature Contribution Analysis Using SHAP

In this step, the isolation forest model was explained by calculating the SHAP value
of every dataset instance obtained from the previous stage. Figure 10 compares the SHAP
value of an anomalous instance to the normal instance. Both data instances were ran-
domly drawn from two groups (normal and abnormal), respectively. According to the
result, the baseline value of the expected anomaly score considering every data instance
is 12.032. As shown in Figure 10a, the score of anomalous data instance is 7.745, which
is much lower than the baseline. The SHAP value decomposition provides an explana-
tion about which sensor is responsible for this lower anomaly score. According to this
figure, the most responsible feature was the ME1_CYL_CFW_OUTLET_TEMP followed by
ME1_JCW_INLET_TEMP, ME1_FO_INLET_TEMP, and ME1_LO_INLET_TEMP.

On the other hand, the anomaly score of the randomly drawn normal instance is
13.241, which is slightly larger than the baseline. Its SHAP value decomposition is shown
in Figure 10b. As the figure suggests, most of the SHAP values consist of small positive
values, except ME1_FO_INLET_PRESS. However, the absolute magnitude of the negative
SHAP value was small compared to the anomalous data instance.
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In addition to the SHAP value, we also compared the raw sensor value between
two data instances in Table 3. As the table suggests, the sensor variables highlighted by
the SHAP value in Figure 10a also show a large difference in actual sensor values. This
suggests that the SHAP value can explain the anomalous data instance effectively.

Table 3. Comparison of actual values between two data instances in Figure 10.

Feature Name
Anomalous Instances Normal Instances

12 September 2019
(7:10 KST)

21 October 2019
(13:50 KST)

ME1_RPM 74.279 73.644
ME1_FO_INLET_PRESS 7.473 6.901
ME1_FO_INLET_TEMP 142.913 138.045
ME1_SCAV_AIR_PRESS 1.576 1.343
ME1_JCW_INLET_TEMP 76.800 71.670
ME1_JCW_INLET_PRESS 3.727 3.646

ME1_TC1_LO_INLET_PRESS 1.973 2.048
ME1_TC1_LO_OUTLET_TEMP 68.908 57.647

ME1_LO_INLET_PRESS 2.279 2.363
ME1_LO_INLET_TEMP 54.290 45.948

ME1_CYL_PCO_OUTLET_TEMP 59.117 50.787
ME1_CYL_CFW_OUTLET_TEMP 84.867 78.983

ME1_CYL_EXH_GAS_OUTLET_TEMP 354.501 341.918

By investigating the distribution of SHAP values over the entire data instance, one
can identify the overall trend of each sensor in anomaly detection. Figure 11 shows the
global interpretation of SHAP values aggregated over entire data instances. The dot in each
feature corresponds to the SHAP values of each data instance. In this figure, the feature is
ordered by the average magnitude of the SHAP value, suggesting its distinctiveness power.
However, we need to focus on distributing the left tail part because we aim to explain the
extreme anomalous data instance. For example, this figure suggests that many extreme
anomalies are explained by the main engine turbocharger of lubricant oil outlet temperature
(ME1_TC1_LO_OUTLET_TEMP) because extreme negative values are found with this
variable. Additionally, we can find that the lower value of ME1_TC1_LO_OUTLET_TEMP
would cause the anomaly by referring to its feature value trend. On the contrary, for other
sensor variables such as ME1_FO_INLET_PRESS or rpm, anomaly also can be found at
both high- and low-value regions.

4.4. Anomalous Pattern Detection Using Hierarchical Clustering on Shapely Values

Although the analysis in the previous section enables us to explain the anomaly in both
local and global perspectives, the human user may want to explain the anomaly by finding
common patterns from the anomalies; that is, grouping the anomalies by their similarity.

To do this, we performed hierarchical clustering to SHAP values of anomalous data
instances. The clustering result is shown in Figure 12. As the figure shows, each instance
is ordered with similarity to other instances. The dendrogram on the vertical line defines
the hierarchical relationship between different sets of data. The height of the dendrogram
represents the distance between two subgroups. On the top level of the dendrogram, every
data instance belongs to one big cluster. The cluster is further subdivided into sub-clusters
until it is decomposed into an individual data instance. In a hierarchical clustering model,
cutting a dendrogram at a certain height level results in a set of clusters. Figure 12 illustrates
the resulting clusters with the specified threshold. As shown in this figure, the specified
vertical line results in a total of five clusters. We also plotted the heatmap of anomalous
data to examine the pattern within each cluster further. The feature with a dark color
indicates a strong contributor to the anomaly. The figure suggests that anomalous sensors
are different across clusters.
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Following that, the authors compared three experimental methodologies to demon-
strate the superior performance of the proposed framework, using hierarchical clustering.
Unfortunately, the hierarchical clustering algorithm does not recommend the optimal num-
ber of clusters. In this study, a silhouette score was determined to find the optimal cluster
number. The result is shown in Figure 13. As the figure shows, the cluster number with the
largest silhouette value for actual value, standardized value, and SHAP values were five,
three, and five, respectively. Moreover, all results of hierarchical clustering analysis was
illustrated in Figure 14 compared to actual value, standardized value, and SHAP value.
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The result of hierarchical clustering of actual values is shown in Figure 14a. It is
evident that the distribution of each variable was completely dispersed throughout all
clusters, as the range of each sensor was on a different scale. The result of the hierarchical
clustering of standardized values is given in Figure 14b. This result prompted us to segment
the dataset according to the quartile distribution; as a result, the information from this
cluster was grouping certain conditions within the same range. For example, regions
with a low standardized feature average were clustered together, and vice versa. This
standardized clustering method cannot be used to label anomalies, as anomaly conditions
can occur in contradictory situations (i.e., some features on high values and some features
on low values, however in the same cluster). Following these findings, it was decided
that the actual and standardized values clustered did not provide detailed information
about what attributes significantly contributed to the anomaly; this fact reinforced the
assumption that commonly used approaches were not interpretable.

Furthermore, Figure 14c illustrates this framework, which was initiated using SHAP
value transformation. SHAP value provides direct information about which features
contribute the most to an anomaly’s contribution to its cluster. For instance, cluster 3 demon-
strated two features marked as “ME1_JCW_INLET_TEMP” and “ME1_CYL_CFW_OUTLET
_TEMP” that were chosen to be less than −0.5. The lower the SHAP value, the greater
the prospective feature contributes to the anomaly situation in this study. Additionally,
SHAP values have the same scale distribution across the whole dataset, demonstrating
that SHAP’s reliability can outperform all other commonly used approaches. In summary,
the detailed advantages that explain the conclusion of SHAP value transformation was
overcoming all methods in Table 4.

In detail about explainable suspicious conditions, Table 5 also summarizes the clusters’
anomalous characteristics. To strengthen the explanation of these anomaly conditions,
we invited two experts in marine technology and thus, the interpretation of the results
of our study can be further confirmed by them. The exact anomaly condition occurred
most frequently when multiple features or sensors were in the same cluster condition as
explained in the specific Table 5.

Table 4. Comparison of framework performance based on the dataset.

Parameters Actual Value Dataset
(a)

Standardized Dataset
(b)

SHAP Value Dataset
(c)

Feature importance χ χ X
Instance scoring χ χ X

Detect anomaly on the same
subquartile χ X X

Detect anomaly on
contradictory quartile region χ χ X

Heatmap result segmentation X X X

Anomalies found in cluster 2 indicate high engine revolutions per minute (RPM) and
an abnormally high outlet turbocharger lubricant oil temperature. A potential explanation
for this phenomenon is that the engine’s acceleration caused all of the related parameters
to change [52]. Besides that, cluster 3 indicates that the vessel’s high performance was
continuously utilized, as seen by the high-temperature rate of various sensor components.
On the other hand, an explanation for the anomalous parameters in cluster 5 appears to be
engine overcooling, in which the engine’s normal operating temperature cannot be reached.
Since engine overcooling can be just as damaging as engine overheating, this area warrants
further investigation [53]. Additionally, based on the range of Maximum Continuity
Rating (MCR) values converted from vessel engine rotation to percentage of power output,
the vessel’s condition was “slow ahead” with a risk of failure during deceleration and
acceleration especially when the engine was started. This is due to excessive cooling of
the inlet temperature and high turbo-charge pressure. Cluster 1 is nearly identical to



Sensors 2021, 21, 5200 20 of 26

cluster 4, suggesting that this anomaly occurred as the vessel decelerated prior to reaching
the port. This may be proven by the engine’s low rotational speed and intake of fuel oil
temperature. However, another component, such as the turbocharger, was operating at
a high temperature in cluster 1, whereas in cluster 4, the turbocharger operated at high
pressure. According to this study, cluster 1 was explained by deceleration at an unusual
temperature rate, while cluster 4 was described by deceleration at an uncommon pressure
rate. One possible explanation for this phenomenon is because a marine engine’s intake
airflow is erratic [54].

Table 5. Explanation of each cluster obtained from Figure 14.

Clusters Anomalous Features Description Vessel Status

Cluster 1

ME1_CYL_CFW_OUTLET_TEMP Intermediate to a low temperature of
cylinder block cooling water (Deceleration; suspicious

temperature rate)
Docking to the port

MCR 55–57%
Deceleration/acceleration

ME1_FO_INLET_TEMP Low inlet temperature of fuel oil
ME1_RPM Low engine rotation per minute (RPM)

ME1_TC1_LO_OUTLET_TEMP Extreme high outlet turbocharger
temperature of lubricant oil

ME1_FO_INLET_PRESS Extreme low inlet pressure of fuel oil

Cluster 2

ME1_RPM High engine rotation per minute (RPM) (Overly high performance)
High cruise speed

(>10 knots)
MCR > 60%

ME1_TC1_LO_OUTLET_TEMP
Extreme high outlet turbocharger

Temperature of lubricant oil

Cluster 3

ME1_JCW_INLET_TEMP High inlet temperature of jacket
cooling water

(High performance
constantly)

Cruise speed
MCR 58%

ME1_CYL_CFW_OUTLET_TEMP High temperature of cylinder block
cooling water

ME1_LO_INLET_TEMP High inlet temperature of lubricant oil

Cluster 4

ME1_CYL_CFW_OUTLET_TEMP Intermediate to a low temperature of
cylinder block cooling water (Deceleration; suspicious

pressure rate)
Docking to the port or

Slow ahead
MCR 54–58%

Deceleration/acceleration

ME1_FO_INLET_TEMP Extreme low inlet temperature of fuel oil

ME1_TC1_LO_INLET_PRESS Intermediate to high outlet turbocharger
pressure of lubricant oil

ME1_LO_INLET_PRESS Intermediate to high inlet pressure of
lubricant oil

ME1_RPM Low engine rotation per minute (RPM)

Cluster 5

ME1_TC1_LO_INLET_PRESS High turbocharger inlet pressure of
lubricant oil (Overcooling engine)

Slow ahead
MCR 55–60%

Possibility engine start

ME1_LO_INLET_PRESS Intermediate to high inlet pressure of
lubricant oil

ME1_LO_INLET_TEMP Low to extreme low inlet temperature of
lubricant oil

4.5. Discussion

In this section, we performed multiple studies to determine the possible causes of the
anomalous data point.

To begin, we examined the anomalous data point’s position on the vessel’s speed vs.
engine rotation graph, as illustrated in Figure 15. Generally, there is a strong correlation
between the engine’s rotation per minute and the vessel’s ground speed. This graph
demonstrates that cluster 2 has a different distribution than the dataset, being separated
only by high-velocity conditions; additionally, it demonstrates that when a vessel performs
at high speed overground with a high engine rotation, an anomaly point is labeled as
“overly high performance” vessel speed occurs. This condition happens mostly within the
MCR percentage above 60%.
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Furthermore, to illustrate the behavior of the vessel temperature, Figure 16 depicts the
temperature of the vessel’s cylinder block cooling water vs. engine rotation, which explains
why cluster 3 has a relatively high-temperature degree at 58% of MCR within the engine
rotation range of about 73–75 rpm. Additionally, the consistent condition of high vessel
performance is described since cluster 3 distributions occurred rather frequently under
identical behavior conditions. This means that when vessels perform at a high level and
generate a lot of heat, an anomaly point labeled “High performance constantly” occurred.

On the other hand, Figure 17 explained the vessel pressure behavior by analyzing
lubricant oil pressure vs. engine rotation. This analysis revealed that cluster 1 and cluster 4
had a similar MCR distribution of about 54–58%, which represents vessel velocity decelera-
tion, with a wide range of pressure ranging from 2.2 to 3.0 bar, which was relatively high
and, more specifically, for cluster 1, a range of pressure ranging from 2.3 to 2.5 bar. Besides,
this explains why the anomaly point of cluster 4 was labeled as “Deceleration; suspicious
pressure rate,” which occurred when the engine rotation reduced, but the lubricating oil
remained relatively high in pressure. Following all of these findings implies that our
anomalous data points might have several causes and necessitates further investigation.

Additionally, as the results using explainable AI frameworks, in detailed investigation,
and interpretation outcome, each suspicious condition was technically examined based on
the literature review and expert judgments analysis.
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Additionally, we analyzed the anomalous data point and the time series of (a) rotation
per minute (rpm) and (b) speed over ground, as shown in Figure 18. As shown in the figure,
the majority of data points in clusters 1, 3, 4, and 5 involved a rapid vessel speed shift.
This indicates that the anomaly could be related to acceleration or deceleration, which may
result in engine damage.

Finally, as seen in Figure 19, we plotted the anomaly along the vessel’s route. The thin
blue line depicts the ships over 10-month navigation direction. As shown in the figure,
except for a few instances, the majority of anomalies occurred in adjacent lands. This may
be because the vessel is typically pushed at a low speed in coastal waters to avoid collisions,
and the engine is run in a different pattern than normal due to regular speed changes. As
a result, data collected in coastal waters may be considered anomalous. We believe that
this information will aid in the potential identification of the source of engine anomalies
encountered during ship service.
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5. Conclusions

In this study, we proposed a data-driven approach to the condition monitoring of
the marine engine. Although several unsupervised methods have existed, the common
limitation was the interpretation of the anomaly; they do not explain why the model
classifies specific data instances as an anomaly. This study combines explainable AI
techniques with anomaly detection algorithm to overcome the limitation above. This study
adopts Shapely Additive exPlanation (SHAP), which is theoretically solid and compatible
with isolation forest. SHAP enables us to measure the marginal contribution of each sensor
variable to an anomaly. Thus, one can easily specify which sensor is responsible for the
specific anomaly. Additionally, we proposed to use the hierarchical clustering method on
SHAP values to find the typical patterns from anomalies. We validated our method using
the dataset obtained from the actual cargo vessel. The results proved that the detected and
clustered anomalies could be investigated further to their contribution value to the final
decision of anomaly detection.

One of the possible future research directions is to apply our method to the labeled
dataset. For example, the same procedure can be applied to explain the classification model
that learns the simulated run-to-failure data generated by the artificial simulator. SHAP
can also explain the prediction by specifying some of the engine sensors responsible for a
fault prediction. The interpretation obtained from the simulation model could then further
be utilized in the actual operating environment.
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