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Abstract: Landslide inventories could provide fundamental data for analyzing the causative factors
and deformation mechanisms of landslide events. Considering that it is still hard to detect landslides
automatically from remote sensing images, endeavors have been carried out to explore the potential
of DCNNs on landslide detection, and obtained better performance than shallow machine learning
methods. However, there is often confusion as to which structure, layer number, and sample size are
better for a project. To fill this gap, this study conducted a comparative test on typical models for
landside detection in the Wenchuan earthquake area, where about 200,000 secondary landslides were
available. Multiple structures and layer numbers, including VGG16, VGG19, ResNet50, ResNet101,
DenseNet120, DenseNet201, UNet−, UNet+, and ResUNet were investigated with different sample
numbers (100, 1000, and 10,000). Results indicate that VGG models have the highest precision (about
0.9) but the lowest recall (below 0.76); ResNet models display the lowest precision (below 0.86) and a
high recall (about 0.85); DenseNet models obtain moderate precision (below 0.88) and recall (about
0.8); while UNet+ also achieves moderate precision (0.8) and recall (0.84). Generally, a larger sample
set can lead to better performance for VGG, ResNet, and DenseNet, and deeper layers could improve
the detection results for ResNet and DenseNet. This study provides valuable clues for designing
models’ type, layers, and sample set, based on tests with a large number of samples.

Keywords: landslide detection; deep learning; Wenchuan earthquake; ResNet; DenseNet; U-Net

1. Introduction

In recent years, geological disasters (collapses, landslides, debris flows, etc.) have
remarkably increased, influenced by global climate change, seismic activity, and accelerated
urbanization processes. According to the national geological disaster report of China,
409,004 geological disasters (including 293,104 landslides) occurred from 2000 to 2020,
resulting in 12,222 deaths or missing persons, and USD 12.3 billion in economic losses [1].
Landslide inventories could provide fundamental data for investigating the causative
factors and deformation mechanisms of landslides [2–4]. Remote sensing has been widely
used in landslide detection and monitoring as well as hazard mapping [5,6], as it can
monitor earth surface changes over a large area quickly and cost effective, compared to
field investigations [7,8]. Although delineating landslides manually from images has been
broadly accepted and employed in practice, it lacks objectivity and efficiency [9–11].

Recently, many endeavors have been made for mapping landslides semi-automatically
or automatically, including threshold segmentation [12,13], change detection [14–16], un-
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supervised and supervised classification [17,18], object-oriented analysis, and machine
learning algorithms [6]. In addition, some novel data sources—such as differential inter-
ferometric synthetic aperture radar (DInSAR), hyperspectral images, light detection and
ranging (LiDAR), and unmanned aerial vehicles (UAVs)—have been adopted for finding
more spatial, temporal, and spectral characteristics of landslides [19–21]. However, several
facts impose great challenges in landslide detection [6]. First, the spectral, spatial, and
temporal characteristics of landslides are often similar to bare slopes, ranks, etc. Second,
there may be huge differences between landslides in different geo-environments. Third,
landslide elements (such as main scarps, tongues, bodies, etc.) are often characterized by
different spectral, spatial, and temporal appearances. Thus far, it is still hard to identify
landslides accurately and automatically from complex image scenes.

Recently, deep learning has achieved great success in computer vision, image process-
ing, and other fields [22,23]. Deep convolutional neural networks (DCNNs) have great
advantages in understanding complex scene semantics by mining multilevel (low to high)
image features independently [24,25]. Recently, several tests on landslide detection with
deep learning models have been carried out to explore the potential of DCNNs to identify
landslides in complex scenes [26,27]. The authors of [28] found that a DCNN model with
small window size achieved better mIoU (78.26%) than typical machine learning algo-
rithms (e.g., random forests, support vector machines, and artificial neural networks). In
a study in Cameron Highlands, Malaysia, the authors of [29] discovered that a residual
network (ResNet) with feature-level fusion achieved a higher F1 score and mIoU than a
one-layer CNN with two deeper counterparts, or a ResNet with layer stacking. In [30], an
attention-boosted CNN model was tested, and achieved a high F1 score (96.62%). In [31], a
modified U-Net model with ResNet34 blocks was tested, and obtained a better performance
than conventional methods, for detecting landslides at a regional scale from Earth obser-
vation satellite images. In [32], LandsNet—a cascaded DCNN network—was proposed
for landslide detection, and achieved a high F1 score (86.89). In [33], an object-oriented
change detection technique based on a trained CNN was presented for landslide detection,
and displayed high speed and accuracy (80%). In [34], a Mask R-CNN with pixel-based
segmentation was proposed, and obtained good precision (1.00), recall (0.93), and F1 score
(0.97).

Although many deep learning models have been proposed and compared with tradi-
tional machine learning algorithms, the comprehensive comparative assessment on them is
lacking, which often makes decision-makers confused as to which structure, layer number,
and sample size of DCNN are suitable for landslide detection. With this in mind, we
conducted a comparative test of typical deep learning models in the Wenchuan earth-
quake area, where 197,482 seismic secondary landslides were available for model training
and validation. In the experiment, multiple structures and layer numbers—including
VGG16, VGG19, ResNet50, ResNet101, DenseNet120, DenseNet201, UNet−, UNet+, and
ResUNet—were investigated with three sample sets (S100, S1000, and S10000).

2. Materials and Methods
2.1. Study Area

The Wenchuan earthquake area is located at the conjunction of Sichuan basin and
the Tibetan plateau (Figure 1), covering Wenchuan, Maoxian, Beichuan, and eight other
counties, covering an area of about 15,000 km2. In this area, the Longmenshan Fault Zone—
consisting of the Maowen Fault, the Yingxiu–Beichuan Fault, and the Dujiangyan–Anxian
fault—is widely known as a seismic belt [35]. Mountains higher than 3000 m dominate in
the western part of the area, while low hills and plains occupy the eastern part. The region
has a temperate monsoon climate, which is characterized by uneven sunlight, heat, and
water distribution. In the area, slope failure occurs easily due to plate activity, steep slopes,
loose soil, and extreme precipitation.
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remobilizations in the subsequent monsoon periods [37,38].  

2.2. Data and Samples 
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ygons, 10,000 patches where landslides were clear and not covered were selected as the 
original sample set, and named S10000. The spatial distribution of original samples was 
similar to that of the landslides in Figure 1. Furthermore, two smaller sample sets—
namely, S100 and S1000, whose sample numbers were 100 and 1000, respectively—were 
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Figure 1. The study area with landslides caused by the 2008 Wenchuan earthquake and fault ruptures.
Tests on the blue “target area” as examples of landslide detection.

Post-earthquake field survey and remote sensing image interpretation showed that
197,481 secondary landslides were triggered by the Wenchuan earthquake [36]. These
landslides are distributed over a great area (about 110,000 km2), with elevation from 800 m
to 4500 m. After the 2008 earthquake, the area exhibited debris flows, reactivations, and
remobilizations in the subsequent monsoon periods [37,38].

2.2. Data and Samples

The landslide inventory used in this study was interactively interpreted from high-
resolution images (SPOT, QuickBird, etc.) after the earthquake [35]. A total of 197,482
landslide polygons with location, area, and elevation were available in this inventory.
Worldview-2 images from the year 2012 with cloud cover less than 10% were selected for
landslide detection. In these images, most landslides were greater than 5 pixels; thus, their
spectral and spatial characteristics were clear and detectable.

Among 197,482 rectangular patches cut out from images according to landslide poly-
gons, 10,000 patches where landslides were clear and not covered were selected as the
original sample set, and named S10000. The spatial distribution of original samples was
similar to that of the landslides in Figure 1. Furthermore, two smaller sample sets—namely,
S100 and S1000, whose sample numbers were 100 and 1000, respectively—were randomly
selected from the original sample set. The three training sample sets were used to test the
dependency of models on sample numbers

2.3. Methods

The flowchart of this study is shown in Figure 2. First, samples were generated from
remote sensing images with landslide polygons; then, typical deep leaning models (e.g.,
VGG neural networks (VGG), residual networks (ResNet), densely connected networks
(DenseNet), and U-Net) with different structures and layer numbers were trained and
validated with three sample sets (S100, S1000, and S10000), and then their performances
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were evaluated and compared; finally, suggestions for further study and projects were
given.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15 
 

 

The flowchart of this study is shown in Figure 2. First, samples were generated from 
remote sensing images with landslide polygons; then, typical deep leaning models (e.g., 
VGG neural networks (VGG), residual networks (ResNet), densely connected networks 
(DenseNet), and U-Net) with different structures and layer numbers were trained and 
validated with three sample sets (S100, S1000, and S10000), and then their performances 
were evaluated and compared; finally, suggestions for further study and projects were 
given.  

Samples generating

Model training Model validation

Performance evaluation and 
comparison

Conclusions and 
suggestions

Remote sensing 
images Landslide inventory

Deep leaning models

Local geological and 
geographical condition 

 
Figure 2. The flowchart of this study. 

2.3.1. VGG Models 
As shown Figure 3, multiple 3 × 3 convolution kernels are involved in a VGG model, 

as opposed to the larger convolution kernels (11 × 11, 7 × 7, 5 × 5) used in AlexNet [39]. 
Compared with AlexNet, VGG can learn more complex patterns at a lower cost (fewer 
parameters), as the depth of the network remarkably increases when adding multiple non-
linear convolution kernels. For instance, in VGG, three 3 × 3 convolution kernels were 
often used to replace one 7 × 7 convolution kernel from AlexNet.  

 
Figure 3. The structure of a VGG model (derived from [39]). 

Previous studies proved that multiple small convolution kernels could enhance the 
feature learning ability of the model. It is easy to obtain deeper and more abstract features 
with a VGG model [25]. Moreover, VGG has strong generalization ability. A trained VGG 
model could be smoothly used in other images, and achieved good performance. Typical 

Figure 2. The flowchart of this study.

2.3.1. VGG Models

As shown Figure 3, multiple 3 × 3 convolution kernels are involved in a VGG model,
as opposed to the larger convolution kernels (11 × 11, 7 × 7, 5 × 5) used in AlexNet [39].
Compared with AlexNet, VGG can learn more complex patterns at a lower cost (fewer
parameters), as the depth of the network remarkably increases when adding multiple
nonlinear convolution kernels. For instance, in VGG, three 3 × 3 convolution kernels were
often used to replace one 7 × 7 convolution kernel from AlexNet.
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Figure 3. The structure of a VGG model (derived from [39]).

Previous studies proved that multiple small convolution kernels could enhance the
feature learning ability of the model. It is easy to obtain deeper and more abstract features
with a VGG model [25]. Moreover, VGG has strong generalization ability. A trained
VGG model could be smoothly used in other images, and achieved good performance.
Typical VGG models—VGG16, and VGG19—were tested in this study, as they have shown
outstanding performance in many related studies [40]. VGG16 consists of 13 convolutional
layers and 3 fully connected layers, while VGG19 has 16 convolutional layers and 3 fully
connected layers.
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2.3.2. ResNet Models

As shown in Figure 4, a residual block—the basic unit of a ResNet—consists of two
convolutional layers and a shortcut connection. Through shortcut connections, residuals
can be quickly transferred, and gradient problems can be alleviated. The ResNet ensures
that the input information can be completely propagated among all layers by using the
“shortcut connection” [41]. ResNet can effectively avoid gradient loss or exploding gra-
dients when its network becomes very deep, which implies that the model may improve
landslide detection accuracy by increasing its number of layers. No additional parameter
or calculation is needed for adding shortcut connection to the network. Two typical ResNet
models—ResNet50, and ResNet101—were tested in this study.
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2.3.3. DenseNet Models

In the DenseNet proposed by [42], all layers connect with one another, in order to
ensure that information can be transmitted between layers (as shown in Figure 5). DenseNet
consists of dense blocks and transition layers; two adjacent dense blocks are connected by
a transition layer, which includes a 1 × 1 convolutional layer and a 2 × 2 average pooling
layer. Feature maps and gradients can be effectively transmitted between dense blocks
through transition layers. Then, gradient loss can be easily avoided in this model, as each
layer can directly get the input information and loss function.
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DenseNet greatly reduces the number of parameters by using a dense block structure.
It has a strong ability of anti-overfitting, due to the modified manner of information and
gradient transfer. Furthermore, it can be effectively trained even if samples are relatively
insufficient, as the connected dense blocks have a regularization effect [43]. Two typical
DenseNet models—DenseNet120, and DenseNet201—were tested in this study.
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2.3.4. U-Net models

U-Net was proposed to reduce the loss of feature maps and spatial location information
in the pooling process of the fully convolutional networks [44]. In the model, the original
image is first transformed to a high-dimensional feature vector through 3x downsampling
with a fully connected neural network, and then the vector is restored to a feature map
whose resolution is the same as the original image, through 3x upsampling [45] (Figure 6).
Each layer of the model has a skip connection, which ensures that features of different
layers could be effectively transferred to the final feature map.
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In order to investigate the influences of parameters and structures on the performance
of U-Net models in landslide detection, three types of U-Net model—namely, UNet−,
UNet+, and ResUNet—were proposed and tested in this study. UNet− has 18 convolutional
layers, while UNet+ has 22 convolutional layers. In ResUNet, 23 residual blocks were used
to replace the convolutional layers of the original UNet model, similarly to in [31].

2.3.5. Performance Assessment

Five typical indicators were used to evaluate the performances of the above models in
landslide detection, including the accuracy, precision, recall, and F1 score. Additionally, a
statistical significance test was designed to quantify the likelihood scores of two models,
with the known F-test. When a very low p-value is obtained (p < 0.05), there is a statistically
significant difference between models.

In the following formulae of performance indicators, true positive (TP) means that
both the detected and the reference are landslides; false positive (FP) means that the
detection is landslide but the reference is not; true negative (TN) means that both the
detected and the reference are non-landslide; and false negative (FN) means that the
detected is non-landslide but the reference is landslide.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Accuracy is the proportion of correctly detected samples to all samples. It is used to
indicate the overall performance of a model.

Precision =
TP

TP + FP
(2)
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Precision is the ratio of true positive samples to all detected positive samples. The
higher the precision, the greater the probability of the model finding positive samples.

Recall =
TP

TP + FN
(3)

Recall is the proportion of true positive samples to all positive samples in the area.
The higher the recall rate, the higher the probability of the model detecting all positive
samples. The recall rate reflects the sensitivity of the model to identify positive samples.

F1 Score =
2 ·Precison·Recall
Precison + Recall

(4)

F1 Score is the harmonic average value of Precision and Recall. If, and only if, both
Precision and Recall are 1, the F1 Score is equal to 1, implying that the model identifies all
true positive samples successfully.

3. Results

In this study, VGG16, VGG19, ResNet50, ResNet101, DenseNet120, DenseNet201,
UNet−, UNet+, and ResUNet were trained with S100, S1000, and S10000. The detection
results of scene-oriented models within the target area are shown in Figures 7 and 8,
and Supplementary Figures S1 and S2. The results of U-Net models are displayed in
Figures 9 and 10, and Supplementary Figures S3 and S4. Statistical significance test results
are shown Figures S5 and S6. Related confusion matrices are shown in Supplementary
Tables S1–S3.
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landslides misidentified as non-landslide does not increase much. It is worth noting that 
increasing the number of layers of DenseNet could apparently improve the performance 
of landslide detection, as the number of FPs and FNs in the DenseNet201 results is far 

Figure 7. Detection results of scene-oriented models with sample set S10000 around the Daguangbao landslide (the
central one) in the Wenchuan earthquake area: (a) VGG16; (b) ResNet50; (c) DenseNet120; (d) VGG19; (e) ResNet101;
(f) DenseNet201. The Daguangbao landslide is known for its area (7.11 km2) and height difference (1567 m) [46]. Here,
landslides correctly detected (TP) or missed (FN) are shown in the form of polygons, while scenes misidentified as landslides
(FP) are shown in blue rectangles. The blurred patch in the southwest is a defect of the original DEM, not related to the
detection result.
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Figure 7 shows that VGG models produced the fewest FP patches, indicating that the
fewest scenes are misclassified as landslides in its results. When the VGG model becomes
deeper, the number of FP patches reduces. Similarly, ResNet101 and DenseNet201 generate
fewer FP patches than their shallower models (ResNet50 and DenseNet120, respectively).
Among all panels, the most FPs are found in the DenseNet120 results. It is suggested that
deeper models have the better ability to reduce overdetection. The most FNs and the fewest
FNs are discovered in the VGG19 and ResNet101 results, respectively. For ResNet, when
the number of layers increases, the number of FNs decreases remarkably, i.e., ResNet101
has far fewer FNs than ResNet50. For other models, increasing the number of layers does
not lead to an absolute decrease in the number of FNs.

Supplementary Figures S1 and S2 illustrate detection results with smaller sample
sets (S1000 and S100, respectively). It can be observed that the FN and FP numbers of the
VGG results did not change much when the number of samples decreased. This implies
that VGG could maintain performance well when the number of samples decreases. With
regard to the other two models, both the FP and FN numbers barely change when tested
with 1000 samples; then, a dramatic increase in the number of FPs and unchanged FNs
is witnessed when the number of samples decreases to 100. When only 100 samples are
available, many non-landslide scenes are misidentified as landslides, while the number of
landslides misidentified as non-landslide does not increase much. It is worth noting that
increasing the number of layers of DenseNet could apparently improve the performance
of landslide detection, as the number of FPs and FNs in the DenseNet201 results is far
fewer than in the DenseNet120 results. Finally, it can be concluded that 1000 samples
seem sufficient for model training, as the results from this sample size are similar to those
from 10,000 samples—especially for VGG and DenseNet201—while 100 samples are not
recommended, because the results from this sample size are much worse.

It should be noted that the distributions of FPs and FNs in all panels are similar,
suggesting that misclassifications often occurred in specific slopes. This can be explained
in that for those areas sharing similar spectral and spatial characteristics with landslides
(e.g., bare slopes), it is hard to distinguish them no matter which model is used. It can also
be observed that greater landslides are more likely to be correctly detected in all models’
results.
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The accuracy of all models is about 0.9, and increases along with the growth of the
sample size, as shown in Figure 8a. Although this indicator seems very promising, it
cannot reflect the real performance of landslide detection, as non-landslide scenes are also
involved. In short, high accuracy does not necessarily mean high correctness of landslide
detection.

Figure 8b shows that VGG models achieve the highest precision among all models.
The precision is similar when tested with S1000 and S10000, while it decreases a little when
the sample size decreases to 100. Figure 8c shows that VGG models obtain the lowest
recall rate, which fluctuates a little when the sample size decreases. With regard to ResNet
models, the precision is a little lower than that of DenseNet models, which decreases
evidently when the sample size reduces. Fortunately, ResNet models obtain the best recall
rate among all models, which also fluctuates a little when the sample size decreases. For
DenseNet models, the precision also decreases significantly when the sample size reduces
to 100, while the difference between tests with S1000 and S10000 is tiny. Unfortunately, the
recall rate with S1000 is much lower than those with other sample sets.

With regard to F1 Score, ResNet101 with S10000 samples achieves the highest one
among all tests, followed by DenseNet201 with S10000. For ResNet and DenseNet, the F1
score rises along with the increase in the number of samples or layers. For VGG, the F1
score also increases when the samples grow, but the increased number of layers results
in a lower F1 score. Although no model could obtain both the highest precision and the
best recall at the same time, it can be concluded that a larger sample size can lead to better
results if the F1 score is employed as a comprehensive measure, and the increase in the
number of layers could also bring higher performance for ResNet and DenseNet. Given
that tens of thousands of samples are often not available in most applications, ResNet101
with 1000 samples is recommended for scene-oriented landslide detection according to the
F1 score.
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In Figure 9, the TP, FP, and FN of U-Net models are represented by pixels. In this
case, some landslide pixels may be misclassified as non-landslide pixels, but it becomes
impossible to miss all pixels of a landslide. From the figure, it can be observed that TP
pixels often reside at the central part of a landslide, while FP and FN pixels are more likely
to be located at the transition between the landslide and non-landslide cover. For these
pixels, their spectral and spatial characteristics are often not distinguishable. Specifically,
the most FPs and least FNs are found in the UNet− results (Figure 9a), while the other two
models have similar FN and FP numbers. As shown in Supplementary Figures S3 and S4,
when the number of samples decreases, the number of FPs increases slightly in UNet−, the
number of FNs increases noticeably in UNet+, and both FPs and FNs increase slightly in
ResUNet.
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Figure 10a shows that the overall accuracy of all models is about 0.8, and it increases
along with the growth in the number of samples. Figure 10 shows that UNet− obtains the
worst precision rate and the best recall rate, while UNet+ and ResUNet achieve similar
precision and recall rates. It can be observed that the test with 1000 samples obtains good
precision for all models, and a satisfactory recall rate for UNet− and UNet+. According to
Figure 10d, UNet− with S100 and S1000, and UNet+ with S1000, obtain better F1 scores
than other tests. Thus, UNet− is recommended for pixel-based landslide detection, when
a large number of samples are not available. Compared with Figure 8, the best precision
of U-Net are a little lower than those of DenseNet201 and ResNet101, while the Recall of
UNet− is evidently higher than that of all scene-oriented models. Specifically, fewer non-
landslides are misidentified as landslides in scene-oriented models, while less landslide
pixels are missed by UNet−.

Supplementary Figures S5 and S6 illustrate that when tested with a large number of
samples (e.g., 1000 or 10,000 samples, there is no significant difference between models’
performance. When the number of samples decreases, differences between models increase
and become significant. In particular, ResNet101 becomes significantly different from
other models when 100 samples are used. This suggests that sample size is critical to
deep-learning-based landslide detection.

4. Discussion

Several typical deep learning models—including VGG, ResNet, DenseNet and U-Net,
with varied structures, layers and samples—were involved in the comparative experiments
in the Wenchuan earthquake area. We found that most of the performance indicators,
except for accuracy, were a little lower than in other experiments [28–34]. The serious false
positives and false negatives may be caused by the large number of bare slopes—ranks that
have similar spectral and spatial characteristics to landslides in this high mountain area.
Generally, larger sample size leads to better performance for VGG, ResNet, and DenseNet,
while this is not the case for UNet. For ResNet and DenseNet, increasing the number of
layers could improve their results, while fewer layers achieve higher performance for VGG



Sensors 2021, 21, 5191 11 of 14

and UNet models. Considering the cost of generating samples, 1000 samples are suggested
for deep-learning-based landslide detection.

The difference between the scene-oriented models and the pixel-based methods should
be noted. For detecting landslides, scene-oriented models try to extract their semantic
features from remote sensing images. When the model structure is unreasonable or there are
too many convolutional layers, redundant features are extracted, and then cause detection
errors. In scene-oriented methods, an FN error means that a landslide is completely missed,
while an FP error indicates a non-landslide that is mislabeled as a landslide. Moreover,
the scene-oriented detection could just provide a very rough outline (e.g., a rectangle) of
a detected landslide. In contrast, in the pixel-based results, it is impossible for the pixels
of a true landslide to be barely detected, or for all pixels of a detected landslide to be
non-landslide [31]. Furthermore, it can be observed that TP pixels often reside in the
central part of a landslide, while FP and FN pixels are likely to appear around the TP pixels.
These results are helpful for delineating landslides’ boundaries approximately, and then
for further landslide investigation.

It should be noted that the performance of VGG 19 is often lower than that of VGG 16.
As no regularization measure is carried out in VGG—such as weight attenuation, batch
normalization, etc.—increasing the convolutional layer may generate a large number of
redundant features in the learning process, known as “overfitting” [43]. Furthermore,
the large pre-training weight of VGG models may also bring uncertainties to landslide
detection. Our test also finds that the huge number of parameters often leads to high
computational complexity when training and applying the models, even though only the
classifier needs to be trained.

With regard to ResNet, it learns not only the original input data, but also the residuals
of the input data, which could alleviate the problem of gradient vanishing [29]. Then,
it is possible to improve landslide detection performance by increasing the number of
convolutional layers [41]. This was verified in this test, where ResNet101 showed better
recall, precision, and F1 score than ResNet50. The study also discovers that when the
number of layers increases to more than 1200, the model’s performance becomes similar to
ResNet101. That is to say, the performance of ResNet models cannot be improved infinitely
by simply increasing the number of convolutional layers, due to the overfitting problem.

For improving network performance, some models (e.g., Inception series) rely on
increasing the width of the network, while ResNet inclines to increase the number of
convolutional layers [47]. Unlike these, DenseNet tries to reduce network parameters
and alleviate the gradient vanishing problem via feature reuse and bypass settings [26].
In DenseNet, the input of each layer becomes the superposition of all previous layers,
and then its feature map is passed to all subsequent network layers. In this study, the
parameters of DenseNet201 are much less than ResNet101, while they achieve similar
precision, recall, and F1 score. It should be noted that the pre-training weight becomes an
important factor affecting their performance. Since the pre-training weights of DenseNet
and ResNet were obtained with the same sample set (ImageNet) and strategies, they show
similar performances in this test.

In addition, three UNet models (e.g., UNet−, UNet+, and ResUNet) were proposed
and tested for landslides detection. The design and training strategies—such as batch
normalization and weight attenuation—were learned from the original U-Net model. Tests
indicate that UNet− and UNet+ with 1000 samples obtain higher F1 scores, while the
performance of tests with S10000 is evidently lower. This challenges the idea that greater
sample size would lead to higher performance.

5. Conclusions

Typical deep learning models—including VGG, ResNet, DenseNet and U-Net—with
different structures, layers, and samples, were tested comparatively for landside detection
in the Wenchuan earthquake area. Although the number of models, sample sets, and layers
involved are limited, subject to time and computational capacity, some interesting results
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were still found. For VGG, ResNet, and DenseNet, a larger sample set often leads to better
performance, while tests with 10,000 samples achieve lower F1 scores for UNet models.
Moreover, the increase in the number of layers could improve the detection results for
ResNet and DenseNet. If tens of thousands of samples are not available in applications,
1000 samples are recommended for deep-learning-based landslide detection. It should be
noted that scene-oriented detection could provide a rough outline of a detected landslide,
while pixel-based models are able to delineate landslides’ boundaries approximately.

Based on tests with a large number of samples, this study provides valuable clues
for designing models’ type, layers, and sample size, and suggests that what matters to a
project (e.g., TP, FN, FP, cost, time, or landslide’s boundaries) should be investigated first.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21155191/s1, Figure S1: Detection results of scene-oriented models with sample set S1000
around the Daguangbao landslide; Figure S2: Detection results of scene-oriented models with sample
set S100 around the Daguangbao landslide; Figure S3: Detection results of U-Net models with
sample set S1000 around the Daguangbao landslide; Figure S4: Detection results of U-Net models
with sample set S100 around the Daguangbao landslide. Figure S5: Statistical significance test of
scene-oriented models; Figure S6: Statistical significance test of UNet models.
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