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Abstract: Approximately three of every five workers are affected by musculoskeletal disorders,
especially in production environments. In this regard, workstation ergonomic evaluations are
especially beneficial for conducting preventive actions. Nevertheless, today’s context demonstrates
that traditional ergonomic methods should lead to smart ergonomic methods. This document
introduces the Forces ergonomic method, designed considering the possibilities of inertial motion
capture technology and its applicability to evaluating actual workstations. This method calculates the
joint risks for each posture and provides the total risk for the assessed workstation. In this calculation,
Forces uses postural measurement and a kinetic estimation of all forces and torques that the joints
support during movement. This paper details the method’s fundamentals to achieve structural
validity, demonstrating that all parts that compose it are logical and well-founded. This method aims
to aid prevention technicians in focusing on what matters: making decisions to improve workers’
health. Likewise, it aims to answer the current industry needs and reduce musculoskeletal disorders
caused by repetitive tasks and lower the social, economic, and productivity losses that such disorders
entail.

Keywords: work-related musculoskeletal disorders; repetitive strain injuries; musculoskeletal risk
assessment; industry 4.0; smart ergonomics; occupational healthcare; biomechanics; inertial measure-
ment unit (IMU); kinematics and kinetics; design

1. Introduction

Musculoskeletal disorders remain the most common work-related health problem,
creating high costs for companies and affecting approximately three of every five work-
ers [1]. Moreover, these injuries are prevalent in production environments where the
worker must repeat tasks during the workday and are more frequent when the postural
burden is higher [2]. Therefore, musculoskeletal disorders in the working population have
significant repercussions on citizens’ quality of life and societal costs. Definitively, acting
on prevention is acting on individual and collective quality of life.

Rotating workers among workstations, educating them about risk prevention, con-
ducting permanent health surveillance, especially for more at-risk workers, and, if required,
improving, redesigning, or correcting workstations that may cause more musculoskeletal
injuries is paramount to prevent work-related musculoskeletal disorders [3]. In this regard,
the ergonomic assessments of workstations are particularly beneficial to identify ergonomic
issues that involve risk for the workers. Furthermore, this risk information is essential to
take better corrective actions [4–6], so much so that, in many countries, regulations require
conducting these assessments [7].

Typically, different observational methods or indices have long been applied to as-
sess musculoskeletal disorder risk and conduct ergonomic evaluations. For repetitive
work, Occupational Repetitive Action (OCRA, cited in the International Organization for
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Standardization (ISO) 11228-3) [8]; for load manipulation, the National Institute for Occu-
pational Safety and Health (NIOSH) equation (cited in the ISO 11228-1) [9]; for posture
load assessment, the method in ISO 11226 or other prestigious methods, such as the Rapid
Entire Body Assessment (REBA) [10,11], Rapid Upper Limb Assessment (RULA) [12], or
Ovako Working Analysis System (OWAS) [13]; finally, for more general purposes, such
methods as the European Assembly Worksheet (EAWS) [14] or Postural Ergonomic Risk
Assessment (PERA) [15]. These observational methods are useful in industrial environ-
ments because they do not require too much instrumentation—usually just a camera and a
predefined template to take handwritten notes. With their widespread use, this ease of use
has established these methods as reference methods in the industry [16].

However, the current context of Industry 4.0 [17] and interconnected intelligent de-
vices in the Internet of things [18,19] highlights the need to update these observational
methods [20,21]. Advances should also address risk prevention and consider the gener-
alization and democratization of posturally healthy workstations. Therefore, we should
strive for Ergonomics 4.0 or smart ergonomics processes [22–25]. Specifically, ergonomic
methods should efficiently supply risk maps [26] integrated into this intelligent ecosystem.
The risk maps are tables where the ergonomic risks of each assessed workstation can be
identified, differentiating between body segments and where to delve into the detected
problems and their origin to conduct improvement actions.

In this sense, several intrinsic factors related to observational methods make such
advances necessary. First, the long time required to apply these methods becomes critical
when ergonomic assessments must be conducted in large factories with many worksta-
tions [27]. In addition, the management of the information resulting from the evaluations
is usually analyzed in a nonautomated manner, which makes it difficult for prevention
technicians to focus on what matters: making decisions to improve their workers’ health.
Finally, so much delay is sometimes accumulated in ergonomic evaluations that the pro-
posed workstation corrections and modifications are received by the production area when
they are no longer necessary because production conditions have already changed [27].

Additionally, the observational essence of these methods implies an inherent subjectiv-
ity. The movement analysis is usually based on the workstation observation with the naked
eye, or at most, on the visualization of video [28]. Thus, direct and objective measurement
techniques in productive workstations are promoted to address these limitations [20,21].
Technologies such as motion capture [27,29] or surface electromyography (EMG) [30] can
be integrated into the ergonomic methodology to achieve an objective assessment.

Among these technologies, motion capture based on inertial measurement units
(IMUs) presents relevant advantages. IMUs are electronic devices that capture movement
through signal processing of the output data of various built-in sensors (accelerometers,
gyroscopes, and magnetometers) [31–33]. IMU-based motion capture technology is a
portable option because data collection can be conducted in a real environment while
workers conduct productive operations. Likewise, it does not require excessive preparation
time and is not excessively intrusive because it can be placed directly on the worker’s
clothing, especially when compared to the EMG, which must adhere electrodes directly to
the skin and requires highly qualified personnel [34,35].

Robert-Lachaine et al. [36] assessed the precision of an IMU-based motion capture
system against an optoelectronic system as a reference (Optotrack) to be used as a tool for
ergonomic evaluations (in situ occupational biomechanics) where there were varied and
complex movements. They concluded that the measured errors remain acceptable during
manual material-handling tasks, and the IMUs could track workers’ motions during their
labor. However, this technology is not without limitations; the built-in magnetometers
are highly sensitive to disturbances in the Earth’s magnetic field, especially in indoor
environments, and a drift artifact is caused by cumulative gyro integration error [37].

In addition to the applicability of direct measurement in the industrial environment
concerning the technology used, it is essential to consider the information analysis method
that the specific technology can provide. Regarding this, Caputo et al. [29] applied the
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EAWS [14] method to production lines by replacing posture observation conducted by
an assessor with IMU-based motion capture. Likewise, Peppoloni et al. [30] and Vignals
et al. [38] used a similar process, applying the RULA method to a laboratory simulated
environment. This same idea is the one observed in commercial software, such as ViveLab
Ergo [39], NAWO Live [40], or ScaleFit [41], that allows the application of ergonomic
observational methods using motion capture to automate the postural load analysis.

Regarding these examples, we highlight the need to develop and design ergonomic
methods conceived considering the technology on which they are based. The technology
provides a large amount of precise and objective information that should benefit the
analysis and foster the automation of the entire ergonomic evaluation process. For example,
it makes little sense to rate the postural load by steps and not by interpolation if the
measured angles of the joints are continuous. Along these lines, Zare et al. [27] proposed a
novel score based on motion capture, including the postural factor as a first approximation
toward the assessment. This study leads us to highlight another point: the need to consider
and objectify other ergonomic factors, such as the efforts or accelerations that occur in
the body, in addition to the postural load. An example of this is the study by Peppoloni
et al. [30], who addressed this need using simultaneous IMU and EMG measurements to
study both postures and the efforts made.

To address the described challenges, we propose the Forces ergonomic method de-
signed considering the possibilities offered by IMU motion capture for application in
industrial environments to record workers’ movements at their workstations. This method
calculates the joint risks for each posture and provides a total risk for the assessed work-
station. In this calculation, Forces uses postural measurement, a kinetic estimation of all
forces and torques that the joints support derived from the movement, and the external
forces exerted by the worker, hence its name. In this paper, the method’s fundamentals are
detailed to achieve structural validity, ensuring that all parts that compose it are logical
and well-founded. This method is expected to address the current needs of Ergonomics
4.0, reducing work-related musculoskeletal disorders derived from repetitive tasks, and
minimizing the social, economic, and productivity losses that these injuries entail.

2. Materials and Methods

The Forces method aims to estimate the risk of musculoskeletal disorders in repetitive
workstations organized in work cycles. This estimation requires measuring the work cycle
with motion capture in a workstation with an operator and determining certain information
associated with the evaluated work. Then, the Forces scoring system determines the risk of
suffering musculoskeletal disorders in each assessed joint, specifically in the lumbar and
cervical spine, shoulders, elbows, wrists, and knees.

The Forces method was developed by a team of engineers from different specialties
(biomedical, industrial, mechanical, and product design) through an iterative process of
“research-action” [42]. It resulted from collaboration through different research projects
with prevention technicians and health practitioners involved in ergonomics and health
surveillance of industrial and prevention companies. In these projects, numerous er-
gonomic evaluations with observational methods and varied IMU-based motion captures
in manufacturing environments were accomplished. Some of these studies led to the
doctoral thesis by Boné [43] and laid the conceptual foundations for the Forces method. All
this work evolved Forces until it reached the current version presented here.

As mentioned, this research aims to verify and demonstrate the method’s usefulness to
fulfill its stated purpose effectively and efficiently [44]. Under this statement, the usefulness
of the ergonomic Forces method is associated with a double condition: that (1) the method
provides the risks correctly for effectiveness, which implies (2) adequate functionality and
applicability, overcoming the barriers described in the introduction for efficiency [45].

To demonstrate both conditions, we rely on the “theoretical structural validity” de-
scribed by Pedersen [45], which assumes that the parts that compose the new methodology
are validated and supported by the bibliography and that the joint of these parts is con-
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sistent and defines a flow of information without redundancies or errors. This concept
coincides with the “face validity” described by Takala et al. [46], which implies the method
has solid foundations and correct data collection and analysis processes.

From this perspective, this section presents the measurement and analysis funda-
mentals to provide consistent and structurally valid risk values and describes the experi-
mentation conducted to define the maximum effort thresholds to compute the risk values
(effectiveness). Subsequently, in Section 4, the applicability of this method is discussed
through a use case (efficiency). Finally, this article is accompanied by Supplementary
Materials (Forces_Tables.xlsx), which is cited throughout this section because it contains
tables and graphics for the Forces application.

2.1. Motion Capture System

Concerning motion analysis, the Forces method does not require the use of a spe-
cific motion capture system. In our case, we used the MoveHuman (MH) Sensor motion
capture system developed by the IDERGO Research Group, with the system’s MH-IMU
configuration, which was recently described by Marín et al. [35,47]. This system is based
on next-generation IMU (NGIMU) devices developed by X-io technologies [48], which
measure the rotations via signal processing in embedded sensors (accelerometers, gyro-
scopes, and magnetometers) and transmit the information via Wi-Fi. Specifically, we use
the full-body setting (15 IMUs) configured at 60 Hz and placed on the body with elastic
bands, exactly as Marín et al. [35] explained. The calculation process of the Forces method
was implemented on the MH application under the same development platform: Vizard
(6.2 version, WorldViz, Santa Barbara, CA, USA, 2020), which is based on Python.

A laptop, which can be placed on a tripod tray, a portable router, and two video
cameras to take pictures of workers’ movements are required to use the MH system
in the field (Figure 1). Cameras are not required for motion capture; they only offer
additional visual information. One of the cameras is directly connected to the computer
and provides an overview of the workstation (Logitech C920 webcam), and the other is
remotely controlled and managed by an assessor to obtain details of the worker’s hand
actions (sports camera GITUP GIT2). The captured motion, along with the video images,
allows for ergonomic assessment.

Figure 1. Cont.
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Figure 1. Motion capture in the field, placement of sensors on the worker’s clothing.

The use of the MH system is justified in the first place for its reproducibility. In a
gait analysis experiment with healthy subjects, it reached an average intraclass correlation
coefficient of 0.90 in the representative variables [35]. Reproducibility is the most general
and important indicator to ensure the proper functioning of motion capture systems [49,50].
High reproducibility ensures that the system produces similar data under the same con-
ditions and has sufficient precision to compare results. Additionally, the MH system
incorporates an anatomical calibration procedure or sensor-to-segment alignment [51–53]
called Fitbody. This process is applied for a few seconds and is effectively transmitted to
the participant. The worker adopts a specific neutral body position (posture illustrated in
Figure 5a of the paper by Marín et al. [35]), and then the operator of the capture system
executes the Fitbody function, ensuring that the participant’s position is adequate [35,47].

This Fitbody process allows for the deactivation of the IMUs’ magnetometers to
avoid the magnetic influence. These magnetic disturbances are expected in industrial
environments, where there is equipment, wiring, and electromagnetic signals. However,
disabling the magnetometers is not without limitations; due to the internal IMU sensor
fusion algorithm, there is a drift error that increases with time in the absence of magnetic
information; thus, the calibration duration depends on the integration of the drift of the
gyros. For this reason, we apply the Marín et al. [35] approach; they demonstrated that if
captures are limited to about 3 min, which is longer than the usual manufacturing cycles,
and a Ftibody calibration process is accomplished before each recording, a satisfactory
reproducibility is achieved. However, since this approach has limitations, other options to
prolong the capture time are included in the discussion section.

2.2. Human Model, Worker Anthropometry, and Percentiles

Figure 2 depicts the human model embedded in the MH system. It illustrates the
neutral position (zero rotations) and the local coordinate system for each bone. The bone’s
coordinate systems are situated on the centers of the joints at the beginning of each bone
(e.g., the center of the femur bone is situated on the center of the hip joint), except for
the pelvic bone, where the center is located at the geometric center of the pelvis. This



Sensors 2021, 21, 5139 6 of 30

convention facilitates the interpretation of the rotations for each joint, which follow the
right-hand rule.

Figure 2. Human model in a neutral position. Sign convention is established to interpret the bone
rotation directions according to the right-hand rule [35].

The dimensions of different body segments of the human model directly influence
kinematic and kinetic parameters and, therefore, the risk assessment. The system re-
quires the assessor to enter the height of the worker and the distance between the elbows
(olecranon) in a neutral position to adjust the human model in Figure 2 to the worker’s
anthropometry. This distance is projected on the anatomical frontal plane and allows
adapting the model’s shoulder width internally. In this manner, the system generates
a human model whose parameters are obtained by interpolation from the Huston [54]
male and female models, included in Table 1. However, it is possible to recalculate the
Forces method a posteriori, considering other anthropometric characteristics (i.e., scaling
the human model to the P05, P50, or P95 percentiles of male or female).

Table 1. Height and weight percentiles of the population according to Huston [54].

Male Height (cm) Male Weight (kg) Female Height (cm) Female Weight (kg)

P05 164.9 66.21 151.8 49.44
P50 175.9 80.50 161.8 59.85
P95 186.9 96.41 172.4 72.43

In the same vein, the weight considered for the human model is calculated according
to Table 1, interpolated with the worker’s height. In this regard, the worker’s weight can
be introduced if we aim to estimate risk for a particular operator. However, if we intend to
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obtain the risk for the workstation, it is preferable to use the weight associated with the
anthropometric data in Table 1.

Likewise, for kinetic calculations, Table 2 lists the percentage assigned to each body
segment of the total body weight (%W) and the position of the center of gravity of each
segment as a percentage of the length of the bone concerning its origin from which it rotates
(%CG; see origins in the human model in Figure 2). Note that variables along the paper
are included in italics to further identify them. The data in Table 2 were obtained from
Huston’s book [54] and transformed into the coordinate system of the MH system.

Table 2. Values of %W, %CG, and T for the kinetic calculation according to Huston [54].

%WM %WF %CGM %CGF T
M.P05

T
M.P50

T
M.P95

T
F.P05

T
F.P50

T
F.P95

Pelvis 12.42 16.72 50.0 50.0
[0.065,
0.105,
0.105]

[0.091,
0.148,
0.148]

[0.122,
0.199,
0.190]

[0.052,
0.083,
0.086]

[0.075,
0.120,
0.123]

[0.106,
0.169,
0.174]

Lumbar 13.60 11.02 50.0 50.0
[0.065,
0.105,
0.105]

[0.091,
0.148,
0.015]

[0.122,
0.199,
0.199]

[0.031,
0.050,
0.051]

[0.045,
0.072,
0.074]

[0.064,
0.102,
0.104]

Thorax 23.19 15.55 49.7 49.7
[0.052,
0.075,
0.075]

[0.073,
0.106,
0.106]

[0.098,
0.142,
0.142]

[0.021,
0.031,
0.031]

[0.030,
0.044,
0.044]

[0.042,
0.062,
0.062]

Head 8.39 9.13 30.0 30.0
[0.027,
0.014,
0.027]

[0.038,
0.019,
0.038]

[0.051,
0.026,
0.051]

[0.017,
0.009,
0.017]

[0.025,
0.013,
0.025]

[0.035,
0.018,
0.035]

Arm 2.77 2.85 38.0 37.9
[0.002,
0.019,
0.019]

[0.003,
0.027,
0.027]

[0.004,
0.036,
0.036]

[0.001,
0.012,
0.012]

[0.002,
0.017,
0.017]

[0.003,
0.024,
0.024]

Forearm 1.73 1.71 49.5 49.6
[0.001,
0.014,
0.014]

[0.001,
0.020,
0.020]

[0.001,
0.027,
0.027]

[0.001,
0.009,
0.009]

[0.001,
0.013,
0.013]

[0.001,
0.018,
0.018]

Hand 0.65 0.69 80.0 80.0
[0.001,
0.001,
0.003]

[0.001,
0.001,
0.004]

[0.001,
0.001,
0.005]

[0.001,
0.001,
0.001]

[0.001,
0.001,
0.002]

[0.001,
0.001,
0.003]

Thigh 10.49 12.57 53.2 53.0
[0.069,
0.017,
0.069]

[0.097,
0.024,
0.097]

[0.130,
0.032,
0.130]

[0.049,
0.013,
0.049]

[0.071,
0.018,
0.071]

[0.100,
0.025,
0.100]

Shin 4.28 4.53 49.8 49.4
[0.006,
0.001,
0.006]

[0.008,
0.001,
0.008]

[0.011,
0.001,
0.011]

[0.003,
0.001,
0.003]

[0.005,
0.001,
0.005]

[0.007,
0.001,
0.007]

Foot 1.28 1.44 50.0 50.0
[0.005,
0.005,
0.001]

[0.007,
0.007,
0.001]

[0.009,
0.009,
0.001]

[0.003,
0.003,
0.001]

[0.004,
0.005,
0.001]

[0.006,
0.007,
0.001]

Notes: %W: percentage of weight by body parts, %CG: position of the centers of gravity as a percentage of the length of the bone, concerning
its origin, T: inertial tensors, M: male, F: female.

Finally, Table 2 also includes the inertial tensors of each male and female body segment
(T) that Huston [54] considered and their percentiles. Inertial tensors indicate the inertia
of the body segment in each of the axes of rotation and are necessary for calculating the
inertia forces caused by the movement applied in the centers of gravity of each segment.
The tensors correspond to 3 × 3 diagonal matrices; therefore, only the diagonal values of
each tensor are included. The first value is the moment of inertia for the x-axis, the second
for the y-axis, and the third for the z-axis; the xyz axes correspond to the global coordinate
system at the bottom of Figure 1. Interpolating between percentiles using the weight of the
human model is necessary to calculate the intermediate values.
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2.3. Kinematics: Calculating Rotations, Displacements, Velocities, and Accelerations in Joints

After describing the capture system and human model, the complete kinematics
must be calculated to apply the Forces method. This application requires computing the
joint rotation, displacement, velocity, and angular and linear acceleration for each capture
instant. Marín et al. [35] described how to calculate the kinematics with the MH capture
system. For this, the rotations measured by the sensors are transformed to relative joint
rotations around each of the axes (Rx, Ry, Rz). The described right-hand rule and coordinate
systems of Figure 1 must be considered to interpret these rotations as positive or negative.
Likewise, as Marín et al. [35] explained, this model provides the displacement of each
bone’s center along each axis. These displacements are calculated by direct kinematics [55]
using the joint rotations and lengths of each bone [55,56].

Each joint’s angular and linear velocity and acceleration can be calculated from the
rotation and displacement. Angular velocity is the first derivative of the Rx, Ry, Rz
curves, and the angular acceleration is the second derivative (calculated using Python’s
Scipy module). Moreover, the linear velocity and acceleration can be calculated in the
same manner from the displacement. Therefore, from the motion capture, the complete
kinematics values of the evaluated worker are known, which is necessary for the next stage
of the process.

2.4. Kinetics: Calculation of Forces and Torques in Joints

The next step is to calculate the kinetics in each joint (i.e., the module and direction of
the force and torque vectors). Various authors have described how to calculate the forces
and torques in each joint from the kinematics [57–60]. In our case, the MH application
calculates the forces and torques in each joint and at each instance using the Huston [54]
equations, modeling the human body as a set of bars with a known length, weight, center
of gravity, and tensor of inertia (described in Section 2.2). These bars are linked by ball
joints and move in space, considering that the body is in equilibrium at all instances.

However, before solving the Huston equations [54], the forces and external torques
regarding the workers’ performance with the hands to accomplish actions during the work
cycle must be known. For this, the form in Figure 3a was implemented. In this form, each
row represents an action performed by the worker. It is required to indicate the range of
frames during the action (Fr.Ini, Fr.End), whether the action is exerted with one or both
hands (right (R), left (L), or both), the force vector (Fx, Fy, Fz), the torque (Tx, Ty, Tz), and,
finally, the grasp type.

The coordinate system linked to the system of the pelvic bone was established to
facilitate the entry of the force and torque vectors, as illustrated in Figure 3b. This coordinate
system rotates with the pelvis, but the y-axis was established vertically to the ground
(i.e., it rotates with the pelvis), and the z- and x-axes are parallel to the ground. The
vector sign (positive or negative) is interpreted as the perceived force or torque in the
hands due to the action. Figure 3b includes examples of forces and torques and their
interpretation for data entry into the form. In addition, if the force or torque is not
exerted in an orthogonal direction to the xyz described coordinate, it is possible to make a
decomposition by projecting the vector in these three axes.

Once the hand actions are introduced, it is necessary to determine the support points
of the body at each moment. If the support situation is standing or walking, the algorithm
that incorporates the MH application detects whether one or both feet are supported [35].
In these cases, it is not necessary to enter additional information regarding the support.
However, if the worker is seated or has one or both hands supported, it is necessary to
enter the range of frames where these situations occur. For this purpose, a form similar to
the one in Figure 3a is available.
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Figure 3. (a) Form to introduce external forces and torques exerted with the hands. (b) Criteria and examples of interpreting
force and torque vectors are entered in the form.

With these considerations, physics and biomechanics equations are applied to obtain
the forces in each joint. The calculation is conducted posture by posture, following the
sequence of captured frames, and with the condition that the sum of the forces and torques
in the three axes of space must always be zero. Figure 4 illustrates the result in an example
posture, where the force vectors are represented in blue, the torque vectors are in green,
and the support is indicated with a red point.
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Figure 4. Kinetics calculation. (a) Result of the kinetic calculation marking the support situations (red points), the forces
(blue arrows), and torques (green arrows) on the joints. (b) Segment isolation to calculate force and torque vectors supported
by a specific joint.

The calculations are organized in two stages. The first stage considers the body as
a whole and estimates the reactions at the support points. The following factors must be
considered for the estimation: (1) position of the center of gravity of each body segment; (2)
weight of each body segment applied in each of these centers; (3) sense and magnitude of
the external efforts of the worker applied on the center of gravity of the hand; (4) inertial
forces derived from the linear and angular acceleration of the movement applied on the
centers of gravity of each body segment (in the opposite direction of the acceleration vector);
and (5) support points of the body (standing, sitting, or with one or both hands in support).

In the second stage, the internal stresses in the joints (i.e., the force and torque vectors
that each body segment is exerting on the joint that allows it to rotate) are calculated. In
this manner, the efforts of the shoulder are exerted by the arm and the following kinematic
chain (forearm and hand) in each frame. Thus, the calculation begins with the distal joints,
wrists, and ankles and continues into the body, following the kinematic chain until reaching
the pelvis, which corresponds to the origin segment of the body for both the upper and
lower limbs.

Following this structure, Equation (1) shows how to calculate the vector
→
f J , repre-

senting the force supported by a joint. To perform this calculation at a specific joint, the
anterior segment of the kinematic chain is isolated, as shown in Figure 4b. In this manner,

if we calculate
→
f J , for example, at the wrist joint, the segment to be isolated is the hand

and, for example, at the elbow joint, the segment to be isolated is the forearm. In Equation
(1), the vector

→
wCG is the self-weight of the segment, which points continuously towards

the ground;
→
i f CG is the inertial force, which depends on the linear acceleration and the

mass of the segment;
→
f P is the force vector in the previous joint, calculated following this

same process;
→
e f P is the external force applied on the previous joint, which can be entered

in the form described in Figure 3; finally,
→
r P is the reaction in the previous join, calculated

in the described first stage, according to the support conditions.

→
f J =

→
wCG +

→
i f CG +

→
f P +

→
e f P +

→
r P. (1)

→
t J =

→
l CG ×

(
→
wCG +

→
i f CG

)
+
→
l P ×

(→
f P +

→
e f P +

→
r P

)
+
→
itCG +

→
t P +

→
etP. (2)

Equation (2) shows how to calculate the vector
→
t J , which represents the torque

supported by a joint. In this equation,
→
l CG is the distance vector between the joint under
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study and the center of gravity of the isolated segment;
→
l P is the distance vector between

the joint under study and the previous joint along the length of the segment;
→
itCG is the

inertial torque, which depends on the angular acceleration, the angular speed, and the

inertial tensors;
→
t P is the torque vector in the previous joint, calculated following this same

process;
→
etP is the external torque applied on the previous joint, which can be entered in

the form described in Figure 3; finally, the other terms are those explained for Equation (1).

2.5. Risk Calculation Process

Once the human model’s kinematics and kinetics of movement are known, the Forces
method can be understood as a score that assesses the risk of suffering musculoskeletal
disorders based on this information in the context of the repetitive work cycle. Regarding
the concept of the risk of suffering a musculoskeletal disorder, ISO 11228-3 defines certain
risk factors that make practical sense. The factors are (1) repetitiveness; (2) strength;
(3) posture and movement; (4) duration of work; (5) insufficient recovery time, and (6)
additional factors (i.e., vibration, adverse environmental conditions, placement accuracy,
and others). Thus, a task repeated many times throughout a day, even if performed with
reduced force and accomplished with load postures for a long time without sufficient
recovery time and with adverse conditions (e.g., outdoors), presents a high risk of suffering
a musculoskeletal disorder.

Based on these factors, Forces calculates the risk for each joint and posture according
to the kinematics and kinetics (Factors 2 and 3 of the standard mentioned above) and
subsequently obtains a value for each joint, which summarizes the risk during the entire
work cycle and includes risks derived from what we call general factors (Factors 1 and
4–6). To conduct this estimation in each joint, Forces applies the following process: (A)
First, the biomechanical risk per posture (RiskPerPosture) is calculated, which can be un-
derstood as the risk value for each posture considering the kinematics and kinetics. The
RiskPerPosture is a percentage value for the maximum achievable values, established from
the experimentation described later in Section 2.6. (B) Subsequently, the total risk per
minute (RiskPerMinute) is calculated, which is the weighted sum of the risk for all postures.
Although the calculation process is linear, and the final result of RiskPerMinute is of interest,
the RiskPerPosture also provides relevant information so that the evaluator can delve into
the reasons for the results.

However, before describing the calculation process, the user must enter specific
additional data into the application, the explanation of which helps to understand the
calculations. For data entry, a form similar to the one in Figure 3 is used, which includes
the following fields:

• Initial and final frame: This is the range of considered frames to calculate the Forces
method. If not specified, the entire range of captured frames is considered.

• Cycle time: This is the time granted in seconds by the production area to accomplish
the work cycle. If not specified, the time of the initial and final frame range is taken.

• Nonrecovery time per workday: This is the time in hours without rest (whole number).
It is considered 1 h if the worker rests at least 10 min. The final hour of the day is
always considered recovered.

• Micro-pauses: This is the risk reduction factor that depends on the number of seconds
of rest for each manufacturing cycle. According to Rojas and Ledesma [61], it can be
considered 1.0 for a cycle without rest, 0.9 for 1 s every three cycles, 0.8 for 1 s every
two cycles, and 0.7 for 1 s each cycle.

• Repetitive task time per workday: The time in hours of the workday (decimal number)
with physical activity must be entered for the entire workday of the productive area
under study. It can be reduced if a period has nonphysical activity during a certain
period of the day. In this manner, it is taken by convention that the risk value resulting
from a workstation indicates that the worker remains in the workstation throughout
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the workday. The implications of this convention are extended in the discussion
section (see use case).

• Additional factors: This is the percentage of cycle time with additional factors. The
value is established at the evaluator’s discretion to consider other factors cited by
the ISO 11228-3 standard. The list of additional factors can be consulted in the
Supplementary Materials (first sheet in the Excel workbook Forces_Tables.xlsx). For
situations in production plants without highlighting factors, it is advisable to set this
value at 20% to penalize the results lightly and be on the safe side.

• Worker preparation: This parameter determines the physical condition of the worker
who performs the tasks in the evaluated workstation. This parameter affects the
maximum achievable values for the risk calculation, which are established according
to the methods in Section 2.6. If the value is 0 (sensitive worker), the maximum
thresholds (force and torque) are reduced with a coefficient of 0.9 (reduction of 10%). If
the value is 1 (average worker), the maximum efforts are not modified. If the value is
2 (trained worker) or 3 (specially trained worker), the maximum efforts are increased
with a coefficient of 1.1 or 1.2, respectively. Therefore, this factor can significantly affect
the resulting risks. Thus, a value of 1 is recommended unless the prevention service
intends to determine whether the risks are still acceptable for a sensitive worker (value
0) or whether the preparation level of the workers is verified or accredited (a value of
2 or 3).

2.5.1. Biomechanical Risk Per Posture

The Forces method uses Equations (1) and (2) to assign a score to the kinematics and
kinetics of a joint in each posture and obtain the RiskPerPosture. At each frame and in each
joint, the risk factors of AngleScore, AngularAccelerationScore, ForceScore, TorqueScore, and
GripScore must be estimated to solve these equations. The minimum value of these factors
is 1; thus, as indicated in Equation (3), a FactorsPerPosture equal to zero generates a null
RisksPerPosture percentage. Similarly, as all the factors are multiplied, if a factor takes a
value of, for example, 1.5, which implies that the total risk increases by 50%, then each
factor affects and contributes proportionally to the resulting total risk:

RiskPerPosture(%) =
FactorsPerPosture

MaximumFactorsPerPosture
× 100, (3)

FactorsPerPosture = (AngleScore× AngularAccelerationScore× ForceScore·TorqueScore× GripScore)− 1. (4)

Along this line, the risk factors in Equation (4) are calculated according to parametric
graphs, such as those in Figure 5 for the lumbar joint. The complete parametric graphs are
presented in the supplementary material; some are inspired from the literature, and some
from the experimentation described in Section 2.6. In these parametric graphs, the input
value to obtain the risk factors in a particular posture are the values of the joint rotation (to
obtain the AngleScore), angular acceleration (to obtain the AngularAccelerationScore), force
module (to obtain the ForceScore), torque module (to obtain the TorqueScore), and selected
grip (to obtain the GripScore, which only affects the wrist joint). The following items define
each of the factors.
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Figure 5. Example of the lumbar joint of the parametric graphs to obtain risk factors introduced in Equation (4). (a) Angle-
Score, (b) AngularAccelerationScore, (c) ForceScore, and (d) TorqueScore.

• The AngleScore was established to range from 1 to 2 depending on the joint rotations
under study; therefore, it can increase the risk by up to 100%. In the case of the
lumbar spine, the rotations are flexion-extension (Rx of the pelvis, see the human
model in Figure 2), rotation (Ry), and lateralization (Rz). These angles are entered
in the corresponding graph in Figure 5a for the lumbar flexion-extension angle. As
a result, three scores between 1 and 2 are obtained, one per angle, and the highest
score is then introduced in Equation (4). The supplementary material reveals that the
shoulder joint is different from the rest due to its wide range of motion. In this case, a
double-entry table is used, with the angles of elevation and anteroposterior rotation.
The AngleScore graphs are inspired by the tables of the main postural loading methods:
ISO 11226, REBA [10,11], RULA [12], and OWAS [13]. However, unlike these methods,
Forces interpolates between the different points and does not score the angle in steps.

• The AngularAccelerationScore was established to range from 1 to 1.5 depending on the
angular acceleration of the joint under study; therefore, it can increase the risk by 50%.
When the body segment undergoes acceleration or deceleration, the musculoskeletal
structures of the involved joint recruit the muscles, tendons, and ligaments necessary
to achieve that acceleration and deceleration, which increases the risk on the joint.
Therefore, the musculoskeletal requirements on a joint are increased not through speed
but change. Thus, each joint has an AngularAccelerationScore graph, such as the one in
Figure 5b for the lumbar spine, which comes from the experimentation described in
Section 2.6. In this graph, the module of the relative angular acceleration is introduced
to obtain the score entered in Equation (4).

• The ForceScore was established to range from 1 to 2 depending on the module of the
force supported by the joint under study; therefore, it can increase the total risk by
up to 100%. The graphs defined for each joint must be used to obtain this parameter,
which comes from the experimentation described in Section 2.6. Figure 5c displays the
example for the lumbar spine for a male model of P50. An internal force in the lumbar
spine greater than 65.1 kg (maximum value calculated in the experiment in Section 2.6)
corresponds to a ForceScore value of 2, and a value less than 44.6 kg (force caused
by the body’s weight standing) corresponds to a ForceScore value of 1 (minimum
value). Intermediate force values are calculated by interpolation, and the resulting
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value is entered in Equation (4). In this manner, unlike the previous parameters,
the ForceScore depends on the anthropometric characteristics of the human model.
Therefore, the maximum thresholds have a version for the male or female model and
P5, P50, and P95 percentiles. In addition, as mentioned above, the worker preparation
factor also influences the thresholds. All this can be observed in the supplementary
material, where a drop-down menu allows the percentile and worker preparation level
to be selected to view their influence on the graphs. In this manner, in practice, the
thresholds for a worker are calculated automatically by interpolation using the height
and values included in the supplementary material tables.

• The TorqueScore was established to range from 1 to 2.5 depending on the module of the
torque supported by the joint; therefore, it can increase the total risk by up to 150%.
The interpretation, use, and calculation of the TorqueScore factor coincide with the
explanation of the ForceScore factor. Figure 5d indicates how to estimate the TorqueScore
for the lumbar joint example.

• The GripScore only affects the wrist joint and ranges from 1 to 2; therefore, it can
increase the total risk by up to 100%. As described, the grasp type for each action is
entered by a drop-down menu using the form in Figure 3. Then, Table 3 is used to
obtain the GripScore, which is inspired by ISO 11228-3 (OCRA) [8].

Table 3. GripScore definition.

Grasp Type GripScore

0. Not specified 1.0
1. Appropriate wrap 1.3
2. Unprepared wrap 1.8
3. Appropriate hook 1.3
4. Reasonably appropriate hook 1.6
5. Unprepared hook 1.9
6. Pinch 1.3
7. Precision pinch 1.6
8. Appropriate open hand 1.7
9. Unprepared open hand 2.0

After introducing the risk factors, the MaximumFactorsPerPosture in Equation (3) can
be established. This value is a constant that corresponds to the FactorsPerPosture achieved
when all factors reach their maximum score. Table 4 lists the MaximumFactorsPerPosture
for each joint. From this information, it can be deduced that the FactorsPerPosture can be
between 0 and 14, except for the wrist joint, which can be between 0 and 23.

Table 4. MaximumFactorPerPosture for each joint.

Angle
Score

Angular
Acceleration Score

Force
Score

Torque
Score

Grip
Score

Maximum
Factors Per Posture

Lumbar 2.0 1.5 2.0 2.5 1.0 14
Cervical 2.0 1.5 2.0 2.5 1.0 14
Shoulder 2.0 1.5 2.0 2.5 1.0 14
Elbow 2.0 1.5 2.0 2.5 1.0 14
Wrist 1.6 1.5 2.0 2.5 2.0 23
Knee 2.0 1.5 2.0 2.5 1.0 14

In this manner, after calculating the RiskPerPosture for each posture and joint, a graph
like the one in Figure 6 can be plotted. This graph represents the risk of the joints throughout
the capture and makes it possible to identify those frames in which the risks are high.
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Figure 6. Example of the RiskPerPosture in a set of frames. R: Right side. L: Left side.

2.5.2. Total Risk per Minute

Afterward, by applying Equation (5), we can calculate the RiskPerMinute, representing
the final value of the risk for each joint throughout the work cycle. In this equation, the
FactorsPerPosture for each posture calculated from the previous stage, are summed. Never-
theless, this is a weighted summation; thus, each value of FactorsPerPosture is multiplied by
the Repetitiveness Factor, in Figure 7a. This factor was established to penalize those frames
with high risk and prevent the most critical postures from being excessively damped when
added to low-risk postures. This factor considers the risk involved in repetitive actions in
production cycles throughout the workday:

RiskPerMinute(%) =
∑(FactorPerPosture× RepetitivenessFactor)× 60

CycleTime (seg)

MaximumFactorPerMinute
× 100× GeneralFactors. (5)

Figure 7. General factor parametric graphs: (a) RepetitivenessFactor, (b) RecoveryFactor, (c) DurationFactor, and (d) AdditionalFactor.

In Equation (5), the weighted summation described above is multiplied by 60 (seconds
per minute) and divided by the cycle time, obtaining the risk weighted per minute, as
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proposed by ISO 11228-3 (OCRA) [8]. Therefore, for the same number of tasks performed,
if the cycle time is reduced, the risk increases and vice versa. Additionally, the Maximum-
FactorPerMinute term in Equation (5) represents the maximum factor that can be achieved
in 1 min. This factor is a constant calculated in Equation (6), which multiplies the Maxi-
mumFactorPerPosture described in the previous section by the 3600 postures processed per
minute (60 postures per second):

MaximumFactorPerMinute = MaximumFactorPerPosture× 3600. (6)

The GeneralFactors term is introduced to complete Equation (5). As mentioned, certain
risk factors exist other than those derived from kinematics and kinetics, which can cause
or aggravate work-related musculoskeletal disorders. The Forces method considers these
factors under the GeneralFactors concept, which is calculated using Equation (7):

GeneralFactors = (RecoveryFactor×MicroPausesFactor)× DurationFactor× AdditionalFactor. (7)

In Equation (7), the RecoveryFactor depends on the nonrecovery time per workday
(whole number of hours) entered by the user in the form (see the beginning of Section 2.5).
The factor can range from 1 to 2.6 and is calculated according to Figure 7b. The RecoveryFac-
tor can be reduced by the MicroPausesFactor, which is between 0.7 and 1 and, as indicated
above, is entered by the user.

The DurationFactor is calculated according to the graph in Figure 7c as a function of
the amount of repetitive task time per workday (decimal number of hours), which the user
enters. This factor can vary from 0.5 to 2, although it typically does not exceed a value of
1.1, corresponding to 8 h of physical work.

Additionally, the AdditionalFactor is calculated in Figure 7d. This factor depends on
the proportion of the cycle with additional factors described above, entered at the user’s
discretion. This factor can vary between 1 (no additional factors) and 1.18, which would be
the most unfavorable situation.

2.5.3. Final Risk Assessment

According to the above, the RiskPerMinute represents the total risk for each joint
throughout the work cycle. Table 5 includes the RiskLevel, which can range from 0 to 5 and
is calculated by interpolating the RiskPerMinute value reached for each joint according to
the intervals in the table and the resulting valuation and interpretation. In order to improve
the interpretation process, a color is assigned to each RiskLevel. These scoring, color, and
assessment levels are inspired by the ISO 11228-3 (OCRA) standard [8].

Table 5. Scoring and interpretation of the risk reached at a joint throughout the entire work cycle.

RiskPerMinute (%) RiskLevel Valuation Interpretation
≤10 ≤1 No risk

Acceptable>10 ≤ 15 >1 ≤ 2 Low risk
>15 ≤ 25 >2 ≤ 3 Medium risk
>25 ≤ 40 >3 ≤ 4 High risk Conditional
>40 ≤ 70 >4 ≤ 5 Very high risk Unacceptable

>70 >5 Severe risk

2.6. Experimentation to Obtain the Maximum Risk Database

An experiment was conducted with seven healthy volunteers (four males and three
females of 36.7 ± 15.3 years old) to develop the described ForceScore, TorqueScore, and
AngularAccelerationScore parametric graphs included in the supplementary material. The
Bioethics Committee of Aragón, Spain (N◦ 12/2018) approved the study, and informed
consent was obtained from all participants.

In this experimentation, three types of exercises were conducted. The first type was to
capture the maximum stresses (force and torque) and the maximum angular accelerations
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of each joint. The second type was to record the stresses at rest in a standing position.
Finally, the third was to measure the minimum angular accelerations.

The estimation of stresses and accelerations was accomplished using the MH system
and described kinematic and kinetic calculations. Additionally, regarding the protocol,
IMU sensors were placed on the participants as described by Marín et al. [35] and presented
in Figure 1. Then, a researcher stood in front of the participant to indicate the movements
to perform in each exercise.

For the first type of exercise, each participant described wide arcs with each joint
under study: lumbar, cervical, shoulders, elbows, wrists, and knees. The movements were
executed to reach angular maximums in all rotation axes. The supplementary material
includes a set of photograms showing representative postures performed by the volunteers
during the experimentation. The velocity was previously agreed upon by the researchers
and was planned to represent the maximum speed reached in work actions without
achieving speeds of other activities, such as sports.

Additionally, to achieve more realistic movements during this exercise, the volunteers
carried dumbbells with a weight of 2 kg in each hand. Nevertheless, before processing
these captures, it was assumed that the participant was carrying a load of 8 kg in each
hand instead of 2 kg, resulting in a total load of 16 kg, which is considered the maximum
load to be manipulated [9]. For this purpose, the form in Figure 3 was used, assuming a
force vector of (0, −8, 0) in each hand throughout the capture. Therefore, the results can be
considered maximum stresses and accelerations for ergonomic evaluation. Furthermore,
they represent the most unfavorable situations by manipulating weighted objects.

Regarding the amount of information collected in this first experiment, the seven
participants performed movements for about 3 min, during which they moved all joints.
Each 3-min capture was repeated three times for each participant. Therefore, a total of
7 × 3 = 21 captures were performed. Likewise, as described, the MH application allows the
human model to be subsequently modified to a male or female model of percentile P05, P50,
or P95 (i.e., six combinations of models). The result is as if the captured movement had been
performed by a man or woman with the anthropometry of these percentiles. This process
of changing the human model was accomplished with these 21 captures. Consequently, a
total of 21 × 6 = 126 captures were processed for the analysis of the maximum stresses and
accelerations.

Subsequently, the second type of exercise was performed. In this exercise, a resting
posture was captured in the standing position for a few seconds without any weight on the
hands to obtain the minimum values of the stresses. The resting position already produces
stresses on the joints; for example, the lumbar spine must support the weight of the trunk,
head, and upper extremities.

Afterward, the third type of exercise, which consisted of the same exercises as in
the first type, was performed but with slow speeds without a weight on the hands. The
researchers agreed on the velocity to perform the movements during this capture to avoid
increasing the risks of suffering musculoskeletal disorders caused by inertia from moving
the body segments. In the second and third types of exercise, three captures were taken
with one participant and transformed according to various human models.

3. Results

This section presents the results of the experiment described in Section 2.6, allowing
the composition of parametric graphs relative to ForceScore, TorqueScore, and AngularAccel-
erationScore. The complete parametric graphs are in the supplementary material.

Table 6 includes the results of the variables presented in the following bullet points,
which are computed for each capture of male (M), female (F), and percentile (P50, P05, and
P95). In this table, for each variable and joint, the average value and its standard deviation
in brackets are presented. Note that the AngularSpeed variables do not change between
male, female, or percentiles because they do not depend on the dimensions of the human
model, only on the relative angles measured by the sensors.
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Table 6. Experimentation results.

Variable P (%) Lumbar Cervical Shoulder R Shoulder L Elbow R Elbow L Wrist R Wrist L Knee R Knee L

M. Force
Max. (kg)

P50 65.1 (0.8) 8.8 (0.0) 13.6 (0.1) 13.6 (0.1) 11.6 (0.0) 11.6 (0.0) 10.6 (0.1) 10.6 (0.1) 81.1 (6.7) 80.2 (10.2)
P05 56.4 (0.3) 7.2 (0.0) 13.0 (0.1) 13.0 (0.1) 11.4 (0.1) 11.4 (0.0) 10.5 (0.1) 10.5 (0.1) 68.0 (5.7) 67.0 (8.6)
P95 75.3 (1.4) 10.5 (0.0) 14.3 (0.1) 14.3 (0.1) 11.9 (0.0) 11.9 (0.0) 10.7 (0.1) 10.7 (0.1) 95.8 (7.4) 95.0 (11.7)

M. Force
Min. (kg) P50 44.6 (0.0) 6.8 (0.0) 4.2 (0.0) 4.2 (0.0) 1.9 (0.0) 1.9 (0.0) 0.5 (0.0) 0.5 (0.0) 36.4 (0.3) 37.5 (0.5)

F. Force
Max. (kg)

P50 46.9 (0.2) 7.1 (0.0) 12.7 (0.1) 12.7 (0.1) 11.2 (0.1) 11.2 (0.0) 10.5 (0.1) 10.5 (0.1) 60.8 (5.7) 60.0 (7.9)
P05 42.0 (0.2) 5.9 (0.0) 12.3 (0.1) 12.3 (0.1) 11.0 (0.1) 11.0 (0.1) 10.4 (0.1) 10.4 (0.1) 51.5 (5.1) 50.8 (6.8)
P95 53.0 (0.3) 8.6 (0.0) 13.3 (0.1) 13.3 (0.1) 11.5 (0.1) 11.5 (0.0) 10.5 (0.1) 10.5 (0.1) 72.2 (6.5) 71.3 (9.4)

F. Force
Min. (kg) P50 27.7 (0.0) 5.5 (0.0) 3.1 (0.0) 3.1 (0.0) 1.4 (0.0) 1.4 (0.0) 0.4 (0.0) 0.4 (0.0) 26.8 (0.2) 27.6 (0.4)

M. Torque
Max. (kg·m)

P50 22.95 (2.79) 0.90 (0.07) 5.86 (0.09) 5.85 (0.09) 3.21 (0.07) 3.20 (0.09) 0.83 (0.00) 0.83 (0.00) 23.72 (7.31) 28.95 (11.1)
P05 18.90 (2.14) 0.66 (0.05) 5.39 (0.08) 5.39 (0.08) 2.98 (0.07) 2.97 (0.08) 0.81 (0.00) 0.81 (0.00) 18.32 (5.33) 22.36 (9.01)
P95 27.94 (3.47) 1.18 (0.1) 6.37 (0.11) 6.36 (0.09) 3.46 (0.08) 3.44 (0.09) 0.85 (0.00) 0.85 (0.00) 30.16 (9.86) 36.96 (13.87)

M. Torque
Min. (kg·m) P50 1.81 (0.12) 0.15 (0.00) 0.47 (0.02) 0.50 (0.04) 0.33 (0.00) 0.33 (0.00) 0.04 (0.00) 0.04 (0.00) 3.63 (0.51) 3.84 (0.57)

F. Torque
Max. (kg·m)

P50 15.92 (1.79) 0.62 (0.05) 5.14 (0.07) 5.16 (0.08) 2.81 (0.07) 2.81 (0.08) 0.7 (0.00) 0.7 (0.00) 16.03 (4.73) 19.3 (8.21)
P05 13.49 (1.50) 0.45 (0.03) 4.76 (0.06) 4.78 (0.07) 2.62 (0.06) 2.62 (0.07) 0.68 (0.00) 0.68 (0.00) 12.27 (3.38) 14.78 (6.53)
P95 19.09 (2.18) 0.84 (0.07) 5.58 (0.09) 5.59 (0.08) 3.03 (0.07) 3.02 (0.08) 0.72 (0.00) 0.72 (0.00) 20.67 (6.34) 25.54 (9.81)

F. Torque
Min. (kg·m) P50 1.08 (0.07) 0.11 (0.00) 0.33 (0.01) 0.35 (0.03) 0.23 (0.00) 0.23 (0.00) 0.03 (0.00) 0.03 (0.00) 2.26 (0.33) 2.39 (0.35)

AngSpeed
Max. (◦/s) - 51.0 (6.1) 222.7 (39.4) 240.2 (43.9) 254.5 (40.3) 219.3 (22.3) 247.7 (21.4) 217.1 (51.2) 230.5 (48.9) 133.7 (21.5) 132.9 (25.2)

AngSpeed
Min. (◦/s) - 10.0 (1.3) 40.9 (4.8) 41.6 (3.8) 41.3 (4.5) 64.0 (4.4) 64.5 (6.7) 66.2 (3.8) 67.7 (4.6) 40.4 (6.7) 40.2 (6.5)

Notes: R: Right side, L: left side, M: Male, F: Female, P: Percentile.
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• Force Max and Torque Max: module of the force and torque corresponding to the 99th
percentile of the set of values resulting from capturing the first type of exercise;

• Force Min and Torque Min: average of the module of the force and torque resulting
from a static capture in the standing position (i.e., the second type of exercise);

• Angular Speed Max: module of the angular velocity corresponding to the 99th percentile
of the set of values resulting from capturing the first type of exercise;

• Angular Speed Min: average angular speed during slow gesture capture (i.e., the third
type of exercise).

The results of Table 6 are transformed into parametric graphs. For this purpose, values
obtained on the right and left sides are averaged, and the coefficients to obtain the P05
and P95 (CoefP05 and CoefP95) from the P50 are calculated. These coefficients, are the
ratio between the values obtained for the P50 or P50 and the P50 included in Table 6.
Note that the minimum force and torque values of Table 6, which correspond to the static
experimentation (second type of exercise), are only calculated for the 50th percentile. For
their conversion to other percentiles, the same transformation coefficients (CoefP05 and
CoefP95) resulting from the dynamic experimentation (first type of exercise) are used.

Thus, Tables 7 and 8 list the data that define the ForceScore and TorqueScore parametric
graphs. As described, the maximum values at each joint define the threshold above which
the risk is maximum. The minimum values correspond to the stresses in the joints in a
resting standing position with no load on the hands.

Table 7. Maximum and minimum forces for the 50th percentile; coefficients for 5th and 95th percentiles.

Male Female

Joints Min. (kg) Max. (kg) CoefP05 CoefP95 Min. (kg) Max. (kg) CoefP05 CoefP95

Lumbar 44.6 65.1 0.87 1.16 27.7 46.9 0.90 1.13
Cervical 6.8 8.8 0.82 1.20 5.5 7.1 0.83 1.21

Shoulders 4.2 13.6 0.96 1.05 3.1 12.7 0.96 1.04
Elbows 1.9 11.6 0.98 1.02 1.4 11.2 0.98 1.02
Wrists 0.5 10.6 0.99 1.01 0.4 10.5 0.99 1.01
Knees 36.9 80.6 0.83 1.18 27.2 60.4 0.84 1.18

Table 8. Maximum and minimum torque for the 50th percentile; coefficients for 5th and 95th percentiles.

Male Female

Joints Min.
(kg·m)

Max.
(kg·m) CoefP05 CoefP95 Min.

(kg·m)
Max.

(kg·m) CoefP05 CoefP95

Lumbar 1.81 22.95 0.82 1.22 1.08 15.92 0.85 1.20
Cervical 0.15 0.90 0.73 1.32 0.11 0.62 0.72 1.35

Shoulders 0.49 5.85 0.92 1.09 0.34 5.15 0.93 1.09
Elbows 0.33 3.20 0.93 1.08 0.23 2.81 0.93 1.08
Wrists 0.04 0.83 0.97 1.03 0.03 0.70 0.97 1.03
Knees 3.73 26.34 0.86 1.41 2.32 17.66 0.84 1.44

Finally, Table 9 presents the information that defines the AngularAccelerationScore
parametric graphs. The minimum values refer to an acceleration below, which there is
considered to be no risk, and the maximum values refer to an acceleration above which
the risk factor is maximum. It was considered appropriate to start from the angular speed
to calculate the acceleration because it is more reasonable to assess. In this manner, the
angular acceleration was estimated considering that the joint at these angular speeds stops
in 0.2 s (12 frames at 60 fps, i.e., Angular Acceleration (◦/s2) = Angular Speed (◦/s)/0.2 (s)).
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Table 9. Maximum and minimum angular velocities and accelerations.

AngularSpeed (◦/s) AngularAcceleration (◦/s2)

Joints Slow Maximum Slow Maximum

Lumbar 10 51 50 255
Cervical 41 223 205 1115
Shoulder 53 247 265 1235

Elbow 54 233 270 1165
Wrist 66 224 330 1120
Knee 40 133 200 665

4. Discussion

This paper presents the rationale and justification for the Forces ergonomic method,
which is designed to assess the risk of musculoskeletal disorders in a worker performing
repetitive and load handling tasks. It is a direct-measurement ergonomic assessment
method designed to be applied in situ with a portable motion capture system, in our case,
the MH system. This method provides an automated risk estimation. The risk assessment is
based on estimating joint stresses resulting from the postures, velocities, and accelerations
of the captured movement and the external forces that the worker exerts during the
work cycle. This stress estimation and the general factors related to the organization and
context make it possible to estimate the risk in different anatomical areas (lumbar, cervical,
shoulders, elbows, wrists, and knees).

The concept of risk in the Forces method is understood as a percentage with respect
to the maximum thresholds established by experimentation (i.e., how much the joint is
exposed in relation to the maximum admissible amount for each posture (RiskPerPosture)
and the overall work cycle (RiskPerMinute)). This scoring system provides a predictive
method of suffering musculoskeletal disorders, which aids in prioritizing ergonomic
interventions aimed at the workers’ behavioral or postural education and the workstation
design or redesign.

Concerning the experimentation presented to calculate the maximum stresses, the
multidisciplinary team defined the movements jointly. Thus, both the execution of the
gestures and the inclusion of a load of 8 kg in each hand generated realistic results to
establish the maximum thresholds. The values obtained on both sides, right and left, are
practically identical, and the standard deviations are remarkably low, which indicates that
the collected data are homogeneous and stable in the studied subject sample. These values
represent thresholds that should not be exceeded during the execution of repetitive work.
Thus, although future experiments can be conducted to provide more information, for the
moment, these values represent a reasonable and realistic approximation.

Concerning the structural validity of the method we intend to achieve [42,45,46], as
described above, the Forces method must be effective and efficient. Given Section 2, where
the fundamentals of the method are set out, and the results in Section 3, we can affirm
that, in terms of effectiveness, Forces fulfills its stated purpose of calculating risks through
a logical, justified, structured procedure without redundancies or errors. However, to
complete its structural validity, we must discuss whether the method is efficient (i.e., useful
and applicable in its context).

To address this last point, in Section 4.1, we discuss the value of the method compared
with the existing methods. Then, in Section 4.2, a use case is presented, explaining the appli-
cation of Forces to a workstation and a set of workstations. Afterward, Section 4.3 discusses
the contribution of forces to the concept of Ergonomics 4.0 or smart ergonomics [22–25].
Finally, Section 4.4 discusses the limitations and future actions.

4.1. Value Compared with the Existing Methods

Based on the outlined fundamentals, Forces is an ergonomic evaluation method that
advances the current observational methods. Its initial design is focused on the whole
information and possibilities from a motion capture system, and although observational
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methods inspire it, it is not an adaptation of an existing method [8–15]. Therefore, it
provides a method that frees the evaluator from tedious tasks required by traditional obser-
vational methods and uses an automated joint risk scoring system that is not influenced by
the subjectivity of the assessor.

Concerning the risk due to postural load, Forces provides a risk similar to the afore-
mentioned observational methods, but in this case, considering the stresses caused by
movement. Additionally, it performs the calculation at 60 postures per second, which
provides added value over the traditional postural load assessment methods, which are
limited to instances chosen by the assessors, depending on which instance they consider to
present a higher risk according to their previous experience and knowledge.

Regarding the risk of load handling, Forces calculates the internal stresses that the
joints must withstand to perform the required actions (forces and torques). These stresses
consider the inertias caused by the body movement, the inertias derived from the mass of
the handled object, and the acceleration or deceleration that the worker performs during
handling. In addition, they are estimated in the intermediate postures between picking up
and putting down the load, which can also be harmful to the worker and is essential to
consider when assessing the risk of handling loads. Consequently, it adds significant value
to applying such methods as the NIOSH equation (ISO 11228-1) [9].

In another vein, the method also accounts for linear forces in any direction and torques
exerted with the hands in any axis of rotation [57–60]. Thus, this method provides analysis
possibilities beyond the usual vertical forces exerted by load manipulation and allows
considering a wide range of situations in practice.

Finally, the method allows running simulations. In other words, it permits the modifi-
cation of parameters such as external forces, torques, or even the percentile of the human
model, to observe the effect on the resulting risk estimation. This approach is particularly
relevant to anticipate specific improvement actions applied to the workstations under
study [62,63].

4.2. Manufacturing Industry Use Case

Regarding the applicability and usefulness of the method, in this section, we present a
use case related to the consumer goods manufacturing industry, where workstations with
repetitive tasks and load handling are typical. For this purpose, let us consider that we
intend to assess five workstations (coded from P001 to P005) located in a production line
that manufactures 120 washing machines per hour. These workstations belong to a section
of this line where five workers rotate throughout the workday. The working hours are from
6:30 a.m. to 2:30 p.m., with 20-min breaks at 10:00 a.m. and 12:00 p.m. The environmental
conditions are favorable; it is a temperature-controlled warehouse without excessive noise,
vibration, or excessive work pressure.

In this context, it is possible to define specific data for the Forces application relative
to the production plant and applicable to the five stations. We consider 30 s of cycle time
(120/60 = 2 washers every minute), 5 h without recovery, 0.8 micro-pauses (1 s of rest
every two cycles), 7.33 h (440 min) of repetitive activity, and 20% for additional factors
(established value for productive plants without adverse conditions).

In this scenario, we use the motion capture system to record the workers’ movements
at the workstations. To do this, we select one of the five workers, preferably the most
experienced, with a size and weight as close as possible to P50, whom we call “Jaime”. To
avoid interrupting production, another worker should replace Jaime because he will be
occupied making the recordings. In this manner, Jaime replaces each of the five workers to
capture the work cycle, and then the regular operators continue the work.

During the measurement protocol, it is recommended that two assessors operate the
capture system: one to control the computer and one to manage the portable camera. The
handheld camera records the tasks Jaime performs with his hands, which is necessary to
apply the method together with the recorded movement. With this, the sensor placement
time is about 6 min, and the explanation and adaptation of the worker to the technology
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is about 8–10 min. The capture time corresponds to the cycle time, adding the time to
move between stations and the possible wait for some of them to evaluate the production
situation, which may depend on the manufactured product model and the filling of the
containers, among other factors. In total, we can assume between 60–90 min for recording
the five stations.

Once motion capture has been performed and the production plant information has
been entered into the system, we use the form in Figure 3 to enter external forces exerted
by the worker in each workstation. Let us take the example of the P003 workstation, which
we assume requires the worker to (1) take the washing machine drum (known weight
of 3.5 kg) from a pallet and position it on the washing machine structure located on the
line. (2) Then, the worker places two screws on the front with an automatic screwdriver
that is suspended. (3) Next, the worker takes two other pieces, located on each side, and
inserts them into the product. These pieces have no appreciable weight and require no
representative force for insertion. (4) Finally, the worker presses a foot pedal to register the
end of the cycle.

In this manner, in the P003 form, we include an action for manipulating the load
and two actions for the screws. In the load manipulation, we fill in the first two fields of
the form by observing the video frames in which the load is picked up and released, for
example, from frames 512 to 653. With this, we introduce a force vector of (0, −3.5, 0) and a
grasp type of “4—Reasonably appropriate hook” because he picks up the drum with his
fingers and, although the piece has good proportions, it does not have a grip designed to
be manipulated. For the screwing actions, we search the frames in the video following
the same operation as in the load manipulation. For the following fields, in this case, it is
not necessary to enter the tool weight because it is suspended. However, we must enter
the torque of this tool according to its technical specifications; we assume it is 0.2 kg·m.
Further, as it is screwed forward, we include a torque vector of (0, 0, −0.2), which the
operator perceives due to the use of the tool, and a grasp type of “1—Appropriate wrap.”

Therefore, for the P003 workstation, we obtain the RiskPerMinute for each joint in-
cluded in Table 10. We observe that the highest risks are in the left elbow, implying a
“conditional” rating (Table 5). If it had exceeded 40%, it would be an “unacceptable” rating
and would require corrective actions. The subsequent highest risks are in the lumbar
and cervical joints, but they have an “acceptable” rating. Likewise, we can consult the
RiskPerPosture graph in Figure 8, where we observe the evolution of the risk of all joints
evaluated throughout the manufacturing cycle. In this case, in the frame interval 0 to
300, where load handling occurs, the risk to several joints increases. Subsequently, during
interval 300 to 700, where screw actions occur, the risks decrease, demonstrating that these
actions do not involve an appreciable load on the joints. Then, in the intervals 700 to 900
and 900 to 1100, where the right and left parts are picked up, the lumbar and cervical risks
increase due to back flexion. Finally, from frame 1100 onwards, where the pedal is pressed,
the risks decrease again.

Next, to be more realistic, we assume that the drums are stacked seven high on
the pallet at workstation P003, implying that the risk varies if the worker picks up the
drum in the lowest or highest position. In these cases, it is recommended to capture the
most representative situations to obtain an overall workstation assessment. Therefore, we
conducted three captures, one handling the drum from an intermediate height (version
P003_Medium, results described in Table 10), another handling the drum from the upper
area (P003_Top), and another from the lower area (P003_Low).

Table 10. Results of the P003 workplace example: RiskPerMinute values.

Lumbar Cervical Shoulder R Elbow R Wrist R Knee R Shoulder L Elbow L Wrist L Knee L
P003_Medium 22.9% 22.6% 8.8% 16.2% 15.4% 20.5% 9.1% 26.9% 14.2% 14.7%
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Figure 8. Results of the P003 workplace example: RiskPerPosture graph.

As illustrated in Table 11, and as expected, the risks are slightly different for each
situation. When the drum starts in the lower zone, the risks in the lumbar zone become
maximum (yellow) due to flexion. To obtain an average RiskPerMinute value for the
workstation, we combined the risks in these situations. To do this, we propose a weighted
sum of the risks, assigning a weight (W) to each captured situation. As there are seven
heights, we assume that the three intermediate heights are similar to the P003_Medium
situation (3 out of 7, 42.8%), the two upper heights are similar to the P003_Top situation (2
out of 7, 28.6%), and the two lower heights are similar to the P003_Low situation (2 out
of 7, 28.6%). The results are displayed in Table 11, representing the combined risk of the
assumed situations, which we call P003_COMBI.

Table 11. Example of the combination of workstation assessments considering a specific weight assigned to each situation.

Weight Lumbar Cervical Shoulder R Elbow R Wrist R Knee R Shoulder L Elbow L Wrist L Knee L
P003_Medium 42.8% 22.9% 22.6% 8.8% 16.2% 15.4% 20.5% 9.1% 26.9% 14.2% 14.7%
P003_Low 28.6% 34.2% 24.1% 8.6% 21.7% 14.9% 19.6% 8.6% 27.3% 12.4% 24.7%
P003_Top 28.6% 21.8% 20.7% 14.1% 24.0% 16.3% 15.2% 12.8% 29.7% 13.1% 18.2%
P003_COMBI 25.8% 22.5% 10.3% 20.0% 15.5% 18.7% 10.0% 27.8% 13.4% 18.6%

Proceeding in the five workstations in the same manner as in workstation P003, we
obtained the risk map [26] of Table 12, where we can view the resulting risks in each joint
for each workstation. This risk map is beneficial for detecting workstations with more
significant ergonomic risks that require more attention. In this regard, the risk map lists the
results for each workstation, assuming that the worker is assigned to only this workstation
during the entire workday. This agreement is useful for verifying whether the risk for each
workstation is acceptable.

Table 12. Example of a risk map and job rotation, considering a specific weight assigned to each situation (for combinations)
or each workstation (for job rotation).

Weight Lumbar Cervical Shoulder R Elbow R Wrist R Knee R Shoulder L Elbow L Wrist L Knee L
P001 20.0% 6.8% 25.4% 4.6% 11.4% 5.0% 4.5% 4.2% 10.3% 7.3% 4.7%
P002 20.0% 18.2% 16.7% 7.9% 15.7% 5.9% 5.3% 11.7% 18.7% 8.1% 4.3%
P003_COMBI 20.0% 25.8% 22.5% 10.3% 20.0% 15.5% 18.7% 10.0% 27.8% 13.4% 18.6%
P004 20.0% 13.6% 44.4% 22.4% 40.8% 36.4% 17.2% 24.4% 35.7% 37.4% 6.1%
P005 20.0% 30.4% 12.6% 7.9% 8.9% 4.9% 0.0% 9.4% 10.8% 8.4% 0.4%
Rotation 19.0% 24.3% 10.6% 19.4% 13.5% 9.1% 11.9% 20.7% 14.9% 6.8%

Nevertheless, if we intend to assess the benefits of a specific job rotation during the
workday, we can proceed similarly to the described combination process. We can create
a weighted sum of the risks of the workstations, assigning the corresponding time of
the workday to each of them (Table 12). In the example, if the workers spend the same
time at all workstations (440 min/5 workstations = 88 min per workstation), we assign
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20% to each of them. This calculation is inspired by the multitask ISO 11228-3 (OCRA)
standard [8] and does not consider the order of the tasks. Although the order could affect
the recovery of some musculoskeletal regions, the purpose of this simulation is to validate
an acceptable job rotation within a workday. Additionally, an individual workstation may
have unacceptable risk if performed throughout the day (as observed in workstation P004).
However, the resulting risk may be acceptable when combined in a job rotation, which is
the intended effect of mitigating risks through job rotation throughout the workday.

The weighted sum of the RiskPerMinute values can be calculated without introducing
the RecoveryFactor, MicroPausesFactor, and DurationFactor in the equations and then mul-
tiplying the result by these factors to be more consistent and follow the basis of the ISO
11228-3 (OCRA) standard [8] because they are multitasking factors. However, we propose
to do it as described because multiplying before or after does not affect the result, and it is
more complex to manage two risk maps, with and without considering multitask factors.

According to the above, the Forces method is valuable and applicable in its context and
has practical value. Therefore, it is an efficient method with several practical advantages.
It is objective, and the processing is automated. In addition, it is designed considering
the technology possibilities and leverages all collected information. Moreover, it does not
require excessive time in measurement, processing, or interpretation, and (5) does not
demand high knowledge for its use. Further, (6) it provides an overview of the evaluated
workstations (RiskPerMinute values included in the risk map) and allows drilling into
details to detect the causes (RiskPerPosture graph). Additionally, it considers external factors,
such as working hours or the work environment, and it permits running simulations by
varying parameters and reprocessing to observe the effects. Finally, it allows different
versions of a workstation to be combined and facilitates the study of job rotations.

4.3. Smart or 4.0 Ergonomics

Given the discussion in the previous sections, the Forces method provides a struc-
turally valid methodology to promote and enhance intelligent or 4.0 ergonomics [22–25].
However, to further explore how and to what extent Forces is integrated into smart logic
and Industry 4.0 [17], the schematic in Figure 9 is presented and described in this section.

Figure 9 lists specific ergonomic actions relevant to achieving intelligent ergonomics
and their connection with the Forces method at a conceptual level. These actions are
organized from three perspectives: organizational actions conducted from a management
approach, workstation actions focused on the design or study of the handled physical
elements, and worker actions aimed at improving the health and well-being of workers.
The activities are presented in closed boxes; however, they are interconnected.

Likewise, in this scheme, actions are categorized in three colors. The first category
comprises those directly related to Forces, as they are direct functionalities of the method.
The second includes those indirectly related to Forces, as they can be accomplished based
on the results, but their execution does not depend on the method. Finally, the last category
consists of those related to the medical service and follow-up of workers’ health, which
have an essential role in risk prevention [64].

The organizational perspective of Figure 9 includes working with “dynamic risk
maps” and “dynamic worker’s sensitivity maps.” As explained in Section 4.2, the risk maps
correspond to tables presenting an overview of the workstation and the associated risks for
each joint. These maps are generated directly after the application of Forces. Moreover, the
worker sensitivity maps identify those workers with musculoskeletal injuries or problems
and the affected anatomical areas. These maps come from periodic medical check-ups
or injuries reported by workers [65]. From the organizational perspective, being able to
contrast and relate both maps can be considered a basis of intelligent ergonomics [26]. If it
becomes possible to associate the workstation features with the workers’ particularities, it
would be possible to personalize the task assignment from an ergonomic approach and
significantly reduce risks and injuries.
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Figure 9. Relevant ergonomic actions for intelligent ergonomics and its connection with Forces.

Both maps include the “dynamic” concept (i.e., they are not static in time and must
be continuously updated [26]). In worker sensitivity maps, their dynamism is evident,
as health status can change continuously. The workstation risk maps can change, either
because workstation conditions change and require ergonomic reassessment or because
specific organizational parameters change and affect the Forces calculation.

In this regard, it would be advisable that the workers’ future sensitivity maps include
reported injuries and also an evaluation of the worker’s capacity (e.g., with a periodic
functional motion capture test [66,67]). Additionally, if this measurement of capacity
or sensitivity level had the same format as the risk map (i.e., divided by joints and a
percentage value), it would allow contrasting both maps in a more transparent, orderly,
and straightforward manner, generating a more efficient decision-making process.

Shifting the perspective, the workstation actions of Figure 9 refer to integrating the
productive requirements and also the ergonomic and preventive needs into the design
of workstations [65]. Detecting ergonomically unacceptable workstations through the
risk maps leads to questioning the causes, which requires analyzing the results more
deeply, for which Forces presents the RiskPerPosture graph. This graph allows detecting
which postures cause the most significant problems and facilitates identifying specific
problems that must be redesigned, which is one of the critical actions in implementing
intelligent ergonomics [68,69]. For this purpose, as mentioned, Forces allows simulations
(e.g., change human model percentile, vary the forces introduced, etc.), simplifying testing
and validating different possibilities and reaffirming that Forces is not intended for one-time
use but continuous use as a working tool within an intelligent ergonomic action framework.

Finally, concerning the worker’s perspective in Figure 9, the ergonomic actions should
also be aimed at managing and training workers. These actions should be complemented
and coordinated with the company’s health surveillance service without omitting periodic
medical check-ups. In this frame, two fundamental actions exist regarding the actions to be
accomplished for workers: job-rotation management, where we include the appropriate
location of sensitive workers, and postural education.

Job rotation reveals how Forces allows organizing balance rotations that do not over-
load specific joints, facilitating the relocation of workers with specific injuries to assign
workstations with low risk in the affected anatomical areas. In this regard, rotations may
have specific initial barriers, such as short-term cost, the negative psychosocial response of
workers, or reticence to leave the usual workstation [70]. However, rotation is associated
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with reducing the severity and incidence of musculoskeletal disorders and an improvement
in long-term productivity. Furthermore, rotation reduces exposure to postural demands
from high-risk workstations, reducing psychological stress, mitigating the fatigue of spe-
cific muscle groups due to repetitiveness, and increasing production flexibility due to less
dependence on expert workers [70–73].

Regarding postural education, the value that Forces provides is the detection of specific
problems. The method facilitates focusing the training on the specific issues, thus avoiding
generic training sessions that do not represent the real needs. Both education in ergonomics
and prevention make it possible to understand the risks underlying the performance of
specific tasks. Proper education should, among other things, raise awareness of preventive
measures, provide a strategy to identify which factors can trigger injuries or postural
disorders, and transmit certain basic principles of action [65]. In this aspect, motion capture
technology, virtual reality, postural simulation, and biofeedback-based training can have
an important role [74,75].

From the exposure, Forces constitutes a working support tool for various professionals:
risk prevention technicians, occupational physicians, therapists, quality technicians, human
resource managers, and more generally, professionals involved in disciplines related to
ergonomics or biomechanics. It provides a methodology that allows industrial companies
to apply an intelligent ergonomic action through anticipatory actions and a predictive
model. This method aids in the preservation of the worker’s health and prevents possible
disorders that cause temporary or chronic disabling injuries, which cause considerable
business and social costs. In this manner, given the connection between product quality
and the quality of the working conditions [1], Forces benefits both worker health and the
productivity and competitiveness of companies.

4.4. Limitations and Future Work

First, a limitation of this study is related to the subject sample, which is seven vol-
unteers. However, several captures were made per subject, and each was multiplied due
to the change in the human model for gender and percentiles, resulting in 126 processed
captures, which is a considerable number. Additionally, the deviations obtained in the
experimental results are minimal. Thus, although future studies may be conducted with a
larger subject sample, the results are sufficient and constitute an adequate starting point
for applying the proposed method.

Regarding the IMU technology used, it should be noted that the Fitbody calibration
process allows the magnetometers to be disabled for short-term captures. Nevertheless,
due to the drift error that increases with time in the absence of magnetic information,
this process has the limitation of losing precision in longer captures. In this regard, the
most straightforward approach for resolving the drift errors is to limit the capture time,
which is appropriate when only a short period is required to execute the movements
being investigated [76]. Nevertheless, it would be helpful to conduct future studies to
evaluate the loss of precision over time and the method’s sensitivity to joint angle drift.
Additionally, to prolong the capture duration, one approach is to use the exploitation of
kinematic constraints (such as boundary conditions in the degrees of freedom or the range
of motion of the joints), since they limit the drift artifact [77,78]; another possible approach
is to use zero-velocity updates [79] or dead reckoning [80] methods, which reset integration
and acceleration errors when detecting zero-velocity periods during the steps.

Furthermore, with the perspective of going beyond the structural validity presented
here, other evaluation actions can be accomplished. To this end, we understand that it does
not make much sense to compare this method with the observational methods because
it is directly inspired by them. If these observational methods were applied throughout
all postures, which would be an extremely laborious task, the data would have a similar
tendency. Perhaps to consolidate Forces more effectively, it would be better to conduct
epidemiological studies in actual production environments. These studies would contrast
the predictions of musculoskeletal injuries made by the Forces method with the opinion
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of workers and managers regarding workstation demands and with information from
medical services regarding the workstations causing the most injuries or discomfort. This
contrast would allow adjusting the values of the method to achieve a better prediction,
which can be materialized in new versions of the supplementary material tables.

Finally, concerning its application, the Forces method is not a tool that provides a
solution per se to the problems and is not instantaneous but requires an iterative process
of capture, analysis, and interpretation; however, its regular and continuous application
would bring value to preventing musculoskeletal disorders, especially if complemented
and coordinated with health surveillance services. All this would reduce the economic
losses caused by musculoskeletal disorders in the working population, which the company
and society must bear.

5. Conclusions

The presented Forces method is an ergonomic method of direct measurement, which
estimates the risk of suffering musculoskeletal disorders in the anatomical areas of the
cervical, shoulders, elbows, wrists, and knees in a worker performing repetitive tasks
or handling loads. It is applied in situ at the workstation with a portable inertial sensor
motion capture system and provides an automated risk estimation. The risk assessment
is based on the estimation of joint stresses, the captured movement, the external forces
performed by the worker during the work cycle, and certain general factors related to the
organization and context. It is a method designed considering the possibilities offered by
motion capture technology and its application in industrial environments.

This study concludes that the Forces method is structurally valid in terms of effec-
tiveness and efficiency. The method is effective because, according to its fundamentals, it
fulfills its stated purpose of calculating risks by employing a logical, justified, structured
procedure without redundancies or errors. It is efficient because it adds value concerning
the existing methods, has practical value, is useful and applicable in its context, and con-
tributes to smart ergonomics. With all this, this method constitutes a working support tool
for today’s industry, reducing musculoskeletal disorders derived from repetitive tasks and
the social, economic, and productivity losses that such disorders entail.
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