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Abstract: Automated pavement distress recognition is a key step in smart infrastructure assessment.
Advances in deep learning and computer vision have improved the automated recognition of
pavement distresses in road surface images. This task remains challenging due to the high variation
of defects in shapes and sizes, demanding a better incorporation of contextual information into deep
networks. In this paper, we show that an attention-based multi-scale convolutional neural network
(A+MCNN) improves the automated classification of common distress and non-distress objects in
pavement images by (i) encoding contextual information through multi-scale input tiles and (ii)
employing a mid-fusion approach with an attention module for heterogeneous image contexts from
different input scales. A+MCNN is trained and tested with four distress classes (crack, crack seal,
patch, pothole), five non-distress classes (joint, marker, manhole cover, curbing, shoulder), and two
pavement classes (asphalt, concrete). A+MCNN is compared with four deep classifiers that are
widely used in transportation applications and a generic CNN classifier (as the control model). The
results show that A+MCNN consistently outperforms the baselines by 1∼26% on average in terms of
the F-score. A comprehensive discussion is also presented regarding how these classifiers perform
differently on different road objects, which has been rarely addressed in the existing literature.

Keywords: smart infrastructure assessment; road safety; automated pavement condition assessment;
convolutional neural network; deep learning

1. Introduction

According to the 2021 America’s Infrastructure Report Card by the American Society
of Civil Engineers (ASCE) [1], road infrastructures in the U.S.A. are graded D on average,
showing poor pavement conditions. The current practices of maintenance, repair, reha-
bilitation, and replacement are not sustainable to restore aging road pavement. State and
municipal departments of transportation (DOTs) conduct regular surveys to measure road
conditions in terms of (i) cracking and patching, (ii) ride quality, and (iii) rutting. Of these,
the first is considered to be the only subjective measure by human inspectors as the other
two can be measured accurately using vehicle-mounted accelerators and laser profilers,
respectively. To measure cracking and patching, an image-based survey method is often
adopted using high-speed line-scanning cameras mounted on a vehicle. The line-scanning
cameras can easily collect high-density digital images at a spatial resolution of about 1 mm
at a highway speed of higher than 100 km/h. However, many technical challenges still
exist regarding the accurate, reliable, and rapid detection, classification, and quantifica-
tion of various distress and non-distress objects from images collected from large road
networks. The challenges are mainly due to (i) variations in image collection conditions,
such as camera calibrations, lighting conditions, and image qualities; (ii) variations in the
appearance of road distress and non-distress objects in terms of shapes, sizes, orientations,
textures, colors, etc.; (iii) the existence of grooving, oil or water stains, dirt or sand, skid
marks, leaves, etc.; and (iv) the huge number of images to process for large road networks.
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Recent studies have shown remarkable improvements in road image analysis using
various computer vision techniques in semi-automated and automated manners [2–5].
The improvements were possible because of advances in computer hardware and software.
On the hardware side, graphics processing unit (GPU)-based parallel processing allows for
high-performance computing to process a large amount of image data at a low cost. On the
software side, deep learning algorithms, as a data-driven approach, associated with GPUs,
have made a significant improvement to the accuracy of road object recognition. Another
advantage of deep learning algorithms is that, as a model-free approach, they do not require
the explicit representation of the objects to be detected. This is particularly important in
the applications of pavement distress recognition as road distresses are highly random
in their appearances. Therefore, it is not straightforward to define the features required
for traditional model-based approaches. Among the many variations of deep learning
algorithms, convolutional neural networks (CNNs) have demonstrated promising results
in the applications of pavement distress detection, classification, and segmentation [6–9].

Although existing studies have shown promising progress on road image analysis,
few studies have succeeded in the detection of a wide range of objects using a single
image processing algorithm. For an efficient and consistent practice of pavement condition
assessment, the development of a single image processing algorithm that can detect various
road objects is necessary. The presence of various pavement objects with different sizes
and shapes and various surfaces and lighting conditions pose difficulties for deep learning
algorithms to classify objects.

To address those technical challenges, we present an attention-based multi-scale
CNN (A+MCNN) as a novel deep learning algorithm to classify pavement images with
11 different classes, including four distress classes (crack, crack seal, patch, pothole), five
non-distress classes (joint, marker, manhole cover, curbing, shoulder), and two pavement
classes (asphalt, concrete). The images are collected from both flexible and rigid pavement
surfaces using four different high-speed line-scanning cameras to consider variations in
camera properties and lighting calibrations. To cope with the variety of pavement objects,
we design the A+MCNN to capture contextual information through multi-scale input tiles,
as shown in Figure 1. Early fusion, mid-fusion, and late fusion are three approaches that are
usually employed to fuse features extracted from multi-scale tiles. We employ an attention
module as a mid-fusion strategy to adaptively combine multi-scale features based on their
importance for the final prediction.

Figure 1. An overview of the presented A+MCNN model. The feature maps are produced by the CNN at each scale and fed
to the shared attention module to generate the score maps. The attention module learns to assign scores representing the
importance of each feature map. The weighted features are passed to the deep CNN classifier to label the object class.

We present a comprehensive experimental comparison of the state-of-the-art image
classifiers, including VGG16, VGG19, ResNet50, DenseNet121, and A+MCNN, in terms of
precision, recall, F-score, class separation ability, and computational costs. These extensive
comparisons reveal how classifiers perform differently on different pavement objects
and how an adaptive attention-based fusion of information improves the classification
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performance. Furthermore, a parametric study of the A+MCNN is conducted, providing a
deep understanding of the effect of architecture choices on the multi-class classification of
pavement objects. Our main contributions are summarized as follows:

• We employ the A+MCNN with two unique features that are crucial for improving
classification performance: (i) the extraction of multi-scale features using input tiles at
three different scales, and (ii) an attention-module for the mid-fusion to produce score
maps as weight matrices determining the degree to which feature maps at different
scales should contribute to the final class label prediction.

• Using the UCF-PAVE 2017 dataset, the classification task is conducted for a wide range
of objects in images collected from two types of pavement in various conditions. Fur-
thermore, quantitative and qualitative comparisons of the state-of-the-art classifiers’
performance on pavement objects are provided.

• The A+MCNN outperforms all compared classifiers by 1∼26% on average in terms of
the F-score.

The rest of this paper is organized as follows: Section 2 reviews the previous literature
on deep learning-based pavement image analysis as well as employing multi-scale features
and attention modules in deep learning algorithms. Section 3 illustrates the architecture
of the A+MCNN, and Section 4 describes how the UCF-PAVE 2017 dataset is prepared
for experiments. Section 5 shows baseline models, implementation details, and experi-
mental results. Ablation studies including the effect of architectural designs as well as
computational costs are provided in Section 6. Finally, Section 7 concludes the paper by
summarizing contributions, limitations, and recommendations for future works.

2. Related Works
2.1. Deep Learning in Pavement Image Analysis

Image-based pavement distress detection has been studied for the past three decades
and has traditionally been based on hand-crafted features such as shape and texture [10–15].
In the past years, deep learning (DL) methods have been successfully applied to over-
come the limitations of the traditional image analysis methods. In deep learning models,
features are automatically learned from images at many different levels of abstraction.
Therefore, this eliminates the need for human-defined features of distresses, which are
often not straightforward for pavement objects due to their highly random appearances.
Deep CNNs, a kind of deep learning models, have been applied in various computer
vision applications, including image classification [16–19], image segmentation [20–24],
and object detection [25–28]. Deep CNNs have been also applied to detect different pave-
ment distresses, especially cracks. Those crack detection studies can be divided into three
categories: (i) binary or multi-class classification; (ii) semantic (or pixel-level) segmentation;
and (iii) object detection.

In binary classification, an image tile, a portion of a pavement image, is classified as a
crack or not based on the presence of any crack pixel in the tile. Zhang et al. [29] classified
99 × 99 pixel image tiles, created form 3264 × 2448 pixel pavement images, using a deep
CNN. Similarly, Gopalakrishnan et al. [30] used a deep CNN with the transfer learning
method to classify pavement images for binary crack classification. They employed a
pre-trained VGG-16 on the ImageNet dataset to extract deep features from pavement
images before the classifier predicted the labels. For multi-class classification, Li et al. [31]
proposed a deep CNN to classify pavement tiles into five categories: longitudinal crack,
transverse crack, block crack, alligator crack, and non-crack. They trained deep CNNs with
various receptive field sizes using 256 × 256-pixel 3D pavement tiles.

Pixel-wise segmentation assigns a label to each pixel in a pavement image. In the
semantic segmentation studies, Zhang et al. [32] proposed CrackNet to segment pavement
image pixels into crack or background. CrackNet is a CNN-based model in which hand-
crafted features, provided by a feature generator, are fed to two convolution and two
fully connected layers. Zhang et al. [33] improved CrackNet’s performance by increasing
its learning capability and performance speed in CrackNet II. Comparing to CrackNet,



Sensors 2021, 21, 5137 4 of 27

CrackNet II uses a deeper architecture with no hand-crafted features. Zou et al. [34]
proposed DeepCrack, in which an encoder–decoder architecture is employed to segment
pavement image pixels into crack or non-crack. The encoder extracts crack features while
the decoder localizes the cracks in the pavement image. Similarly, Bang et al. [6] applied
a deep convolutional encoder–decoder network via transfer learning to segment cracks
in black-box images. Lau et al. [35] proposed a U-Net-based [36] network architecture in
which the encoder is a pretrained ResNet34 [37] to segment pavement cracks.

In object detection studies [38], objects are localized with a bounding box, and their
classes are predicted. Li et al. [39] applied Faster R-CNN [40] to detect cracks and potholes
in pavement images. Anand et al. [41] also proposed Crack-pot for real-time crack and
pothole detection. The Crack-pot tool is a deep CNN-based model combining texture and
spatial features to generate bounding-box candidates and then to predict the object class.

Table 1 provides a summary of the literature reviewed in this section. In the second
column, we categorize the methods into two groups: deep learning-based methods (DLs)
and non-deep learning-based methods (non-DLs). In the automated detection of road
distresses such as cracking, DL is considered to be advantageous over non-DL as DL does
not require human-defined features of cracks, which are not always straightforward to
define due to the randomness in their appearances. The literature mostly focused on the
recognition of a limited set of pavement objects. We believe this gap is due to specific
challenges introduced by the high variations in the appearance of distressed and non-
distressed objects. Thus, in this study we aim to (1) design a unified image processing
algorithm that can classify various pavement objects with high variations in shape and size
and (2) provide a deeper insight into the performance and computational cost of current
CNN architectures for pavement condition assessment.

2.2. Multi-Scale Features in Deep Learning

Multi-scale features that encode contextual information have demonstrated significant
improvements in various computer vision applications, such as image classification and
segmentation [42,43]. Two approaches have often been employed to exploit contextual
information from image data: (i) multi-scale inputs (such as image pyramid) [44–47]
and (ii) multi-scale features, extracted from different layers of a network, through skip
connections [24,48–50].

In the image pyramid methods, Farabet et al. [22] employed the Laplacian pyramid
to generate multi-scale inputs. Multi-scale features are extracted from a shared network,
and features from all scales are concatenated to predict pixel-level labels. Eigen and
Fergus [44] fed images at three different resolutions sequentially to a deep CNN to generate
coarse to fine predictions. Pinheiro and Collobert [51] applied multi-scale images at
different stages of a recurrent convolutional neural network (RCNN). Lin et al. [45] resized
each input image to three scales and fused the extracted feature maps to generate the unary
and pairwise potentials of the conditional random field. Chen et al. [47] used multiple
resized input images and merged the extracted multi-scale features using an attention
model. It should be noted that our work is different from [47] in that we feed multi-scale
image tiles containing various contextual information to the A+MCNN, with the goal
of encoding information from neighboring areas for the better classification of a central
image tile. Chen et al. [47], on the other hand, resized the same image with different
scales (the contextual information was the same across all the scales and simply the size of
objects changed).
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Table 1. Image processing algorithms for pavement object recognition.

References Methods Tasks Objects Pavement Types

[10] Local Binary Pattern (Non-DL) Segmentation Crack Only Asphalt

[11,14] MorphLink-C (Non-DL) Segmentation Crack Only Asphalt

[12] Wavelet Transform (Non-DL) Segmentation Crack Only Not Specified

[32,33] CNN (DL) Segmentation Crack Only Asphalt

[34,35] CNN (DL) Segmentation Crack Only Not Specified

[15] Superpixel (Non-DL) Segmentation Marker, Patch, Manhole, Crack seal Asphalt

[29] CNN (DL) Classification Crack Only Not Specified

[30] CNN (DL) Classification Crack Only Asphalt+Concrete

[31] CNN (DL) Classification Longitudinal Crack, Traverse Crack, Block Crack, Alligator Crack Asphalt

[13] Shape & Texture Features (Non-DL) Detection Pothole Only Asphalt

[38] CNN (DL) Detection Lateral Crack, Longitudinal Crack, Alligator Crack, Pothole, Well Cover Asphalt

[39] CNN (DL) Detection Crack, Pothole Asphalt

[41] CNN (DL) Detection Longitudinal Crack, Transverse Crack, Patch, Pothole Asphalt
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In the skip connection-based approaches, features are combined in the intermediate
layers of CNNs. These features are inherently multi-scale since the receptive field increases
throughout the layers. Hariharan et al. [52] defined hypercolumns at a pixel as the concate-
nation of all features from intermediate layers above that pixel to conduct segmentation
and object detection for input images simultaneously. Mostajabi et al. [53] concatenated
features that were extracted from zoomed-out regions around a superpixel and fed them
to a multi-layer perceptron (MLP) to classify the superpixel. Chen et al. [24] extracted
multi-scale features by applying MLP to the input and outputs of pooling layers. A major
limitation of these methods is that the training process is not ideal (feature extraction
section is usually separated from classifier training) or the training takes a long time.

In road pavement applications, some studies have employed multi-scale features to de-
tect cracks. Komori et al. [54] generated multi-scale images using a Gaussian filter and fused
the resulting probability maps based on the Bayesian theorem to detect cracks. Ai et al. [55]
developed an SVM-based method to generate the probability of each pixel containing a
crack based on multi-scale neighborhood information. Yang et al. [8] exploited context
information using a pyramid module in a CNN model for crack detection. Song et al. [7]
captured contextual information by using dilated convolution layers to improve crack
detection. Sun et al. [56] defined an encoder–decoder architecture with skip connections to
combine multi-scale features at various levels for crack segmentation. Konig et al. [57] used
a fully convolutional, U-Net based [36] neural network with a pooling function, called the
gated scale pooling operation, to merge multi-scale features from different layers of the
model. These studies aimed to exploit multi-scale features through skip connections in a
CNN model. In other words, multi-scale features are extracted and merged in intermediate
layers of CNNs for crack segmentation. Although skip-nets improve segmentation results
by exploiting multi-scale features, the training process is not ideal [47]. Furthermore, these
studies are limited to applying a multi-scale paradigm for only crack detection.

To the best of our knowledge, no study in the transportation literature has exploited
multi-scale feature encoding for multi-class pavement object classification, despite its
advantages in classifying objects that are highly random in size and shape as compared to
the commonly used single-scale counterparts.

2.3. Attention Models in Deep Learning

Attention models have been successfully applied in various deep learning applica-
tions, including image classification [58–60], object detection [61–63], image captioning [64],
visual question answering (VQA) [65], machine translation (MT) [66], and action recogni-
tion [67]. In image captioning, Xu et al. [64] proposed an attention-based long short-term
memory (LSTM) network to caption images by generating one word at every time step
related to a spatial region of the image. In machine translation, Luong et al. [68] improved
the translation task between German and English in both directions by employing an atten-
tion mechanism to align the source word or sentence for each word in the target language
sentence. Yang et al. [65] employed attention layers in image question answering, generat-
ing high scores for regions in the image that were highly related to the answer. In object
detection, Caicedo and Lazebnik [62] used reinforcement learning (RL) with a dynamic
attention-action strategy to select the contents that required more attention and transform
the bounding boxes accordingly, resulting in a more focused target object. Gregor et al. [59]
proposed the Deep Recurrent Attentive Writer (DRAW), employing an attention mecha-
nism to select where to look and write image regions for image generation. Mnih et al. [69]
proposed an attention-based recurrent neural network (RNN) that is capable of selecting
specific regions in images to be processed at high resolution. The presented attention model
is not differentiable, which is necessary for a standard backpropagation during the training.
Xiao et al. [58] conducted deep learning-based fine-grained image classification using two
attention models: the first attention model was object-level attention to select the most
relevant patches for the classification; the second attention model was part-level attention
to highlight discriminative parts that differentiated various object classes. To the best of
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our knowledge, there is no study in the transportation literature that applies the attention
module for pavement object classification.

3. Method
3.1. Network Architecture

The goal of the A+MCNN framework is to classify a pavement image tile into 11 dif-
ferent object classes including four distress classes (crack, crack seal, patch, pothole), five
non-distress classes (joint, marker, manhole cover, curbing, shoulder), and two pavement
classes (asphalt, concrete). The large and varying sizes of pavement images make it practi-
cally difficult or infeasible to feed the full-size images to the deep networks. Thus, we use
a patch-wise segmentation strategy with a ≤50-mm spatial resolution that is satisfactory in
most road survey applications. To accomplish this goal, the A+MCNN framework consists
of five main components as shown in Figure 2: (i) generating input image tiles at three
scales; (ii) scale-specific feature extraction; (iii) the mid-fusion of feature maps using an
attention module; (iv) multi-class classification; and (v) the aggregation of tile labels to
generate the image-level segmentation mask.

Figure 2. The A+MCNN framework. Input image tiles are created at three scales to encode contextual information. All
image tiles are resized to 50× 50. Scale-specific features are extracted through separate branches of the CNN for each image
tile. Extracted features are passed through the attention module to generate the score maps, reflecting the importance
of features at different positions and scales. Weighted features are concatenated to feed the classifier for the final class
prediction. The output labels are aggregated to generate the image-level segmentation mask.

The original pavement image in Figure 2 is an 8 bit grayscale image with a 1.0 mm/pixel
spatial resolution. This type of image is usually available with commercial line-scanning
cameras that are adopted in most state and municipal-level road surveying projects.

Feeding multi-scale input tiles can significantly improve the performance of the
A+MCNN compared to single-scale inputs since multi-scale inputs provide the network
with more comprehensive contextual information of road objects with various sizes (details
in Section 3.2).

In the scale-specific feature extraction step, the CNNs process the input tiles to extract
contextual information (i.e., features) at each scale. As a black-box technique, the CNN can
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extract important features of the image tiles automatically, which is not straightforward
to define with traditional hand-crafted feature extraction techniques for road objects with
irregular shapes. To obtain more details, each input tile is first passed to the three convolu-
tion layers with convolution filter numbers of 32, 64, and 64, respectively. The convolution
filter size is 3 × 3 pixels for all three CNNs. Each convolution layer is then followed by
a batch normalization layer and a rectified linear unit activation (ReLU), which are not
shown in Figure 2 because of space limitations. The CNN produces feature maps Fm, where
m∈{1, 2, 3} is the scale number. A max-pooling layer is applied to the feature maps with a
size of 50 × 50 × 64. Applying a 2 × 2 max-pooling layer results in 25 × 25 × 64 feature
maps, where 25 × 25 indicates the spatial resolution of feature maps and 64 indicates the
number of filters, and each filter represents a visual pattern. It should be noted that, up to
this point, the extracted feature maps are processed independently at each scale. In the
mid-fusion of the feature maps, the attention module consists of three convolution layers
of 1 × 1 × 64, and one sigmoid layer is used to generate the score maps for each scale,
Sm. The size of the score map is 25 × 25 × 64. Then, the weighted feature maps F̃m can be
obtained by the inner product as

F̃m
= Fm · Sm (1)

or
f̃ m
w,h,d = sm

w,h,d · f m
w,h,d (2)

where w and h are the x and y-coordinates of the 2D input tile; d is the number of convo-
lution filters; f̃ m

w,h,d is the weighted feature intensity at the spatial position (w, h) for the
convolution filter number d at the scale m; and sm

w,h,d is the score (or the weight of contribu-
tion to final class label prediction) corresponding to the feature f m

w,h,d. Then, the weighted
feature maps at different scales are concatenated to produce the concatenated weighted
feature map with a size of 25 × 25 × 192.

In the mid-fusion of the feature maps, the concatenated weighted feature map is
passed to the deep CNN classifier. The classifier consists of a total of six convolution layers
and three max-pooling layers. After the sixth convolution layer, no additional convolution
process can be added since the size of the processed feature map becomes 3 × 3 × 1024.
Then, those six fully connected layers are used to improve the classification performance.
Two dropout layers with a rate of 0.2 are used to prevent over-fitting.

In the step of the output class, the class label is determined for the input image tiles
by selecting the highest number among the 11 classes specified by the classifier. As the
final step, the class determined in the previous step is labeled to the scale-1 region in the
original image. Once label predictions for all non-overlapping 50 × 50 tiles corresponding
to an image are generated, they are aggregated to create a segmentation mask with the
same size and shape as the original image.

In summary, the A+MCNN is improved in two aspects compared with existing deep
learning techniques: (i) multi-scale inputs for random-size objects and (ii) an attention
module for the mid-fusion of multi-scale feature maps. In the next two subsections, we
discuss in detail how these improvements are implemented in this study.

3.2. Multi-Scale Inputs

To segment pavement images with an appropriate spatial resolution, the A+MCNN
assigns 1 of the 11 classes to a 50 × 50 mm2 region at actual scale, which is equivalent to
50 × 50 pixels in the original image. Although the 50× 50 mm2 spatial resolution is usually
dense enough to localize those distress and non-distress objects, using a 50 × 50 mm2 tile
as the input image is not necessarily advantageous in classification.

Figure 3 shows sample image tiles at three scales for different pavement objects.
Although a small object, such as a crack, can be easily recognized in the scale-1 image,
a large object, such as a patch, is difficult to distinguish from an asphalt background at
the same scale due to limited visual scope. On the other hand, the patch can be easily
recognized at scale 3, but the crack is difficult to be recognized at scale 3, particularly
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when the crack is small and/or thin. Scale 2, the intermediate scale between scales 1 and
3, is good to detect the crack seals and the joints that are a middle form of the crack and
the patch, but scale 2 is less advantageous than scale 1 for cracks and less useful than
scale 3 for patches. Figure 3 illustrates why the multi-scale input tiles are needed for
random road objects: (i) the line-scanning camera used in road image collection does not
use a zoomable lens, and (ii) the distance between the line-scanning camera and road
surface is fixed. Consequently, a single-scale tile with a constant focal length cannot capture
enough contextual image information for various objects in pavement condition assessment
applications. Therefore, in this study, we use image tiles at scales 1, 2, and 3, which are
equivalent to the ROIs of 50 × 50, 250 × 250, and 500 × 500 mm2, respectively. Those tiles
are taken from the original image to ensure that the same center position is used. When
tiles are taken near the corners and edges, the larger-scale tiles (i.e., scales 2 and 3) can
exceed the boundary of the original image. In that case, the exceeded portions of scales
2 and 3 are “zero-padded” for the pixel sizes to make up 250 × 250 and 500 × 500 pixels,
respectively. Then, the scale-2 and scale-3 tiles are re-scaled to 50 × 50 pixels to obtain the
triple input tiles at the same pixel size.

Figure 3. Scope of small, intermediate, and large scales for different objects. (a) 50 × 50-mm2 region
in scale 1; (b) 250 × 250-mm2 region in scale 2; and (c) 500 × 500-mm2 region in scale 3.

3.3. Mid-Level Fusion with an Attention Module

The fusion strategy of the multi-scale CNN (MCNN) features affects the classification
performance significantly. In the A+MCNN, we address the feature fusion issues in
two aspects: “where” and “how”. For the “where” aspect, three methods can be used
for association with classifier models: (i) early fusion, (ii) mid-fusion, and (iii) late fusion.
The early fusion approach creates a joint representation of multi-scale input tiles by merging
the data at the input level. A shared model is involved in the training pipeline for all three
scales, and the final class prediction is generated by that single model. A limitation of this
method is that when mixed multi-scale data are presented to the network, the classifier
treats all the scales blindly as equal with the same weights. For example, in the early fusion,
scales 1 and 3 are treated equally while they cover different regions. In late fusion, each
scale is trained in parallel in a separate branch, which provides the network with more
flexibility. Then, high-level features are fused at the class-decision level. A limitation of this
method is that a separate training process is required to train the weights for different scales,
which is not ideal in terms of trainable parameters and computational cost. Furthermore,
data fusion at the inference level neglects the inter-relations between scales. Mid-fusion,
on the other hand, processes each scale independently until the mid-level features and then
merges them and passes them to the rest of the network. However, the information from
multiple scales is still treated equally in the fusion.

For the “how” aspect, different feature maps represent different visual patterns.
An ideal classification approach should be able to capture the variance in visual patterns
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and rely on more informative patterns in class prediction. To address this shortcoming,
we introduce the attention module to improve mid-fusion as an adaptively weighted
aggregation method. After extracting low-level features at three scales, each feature map is
weighted through the attention module. The attention module assigns a score between 0 to
1 to the feature maps of each scale in each channel and spatial position. Therefore, each
element in the feature map xw,h,d is revised to x̃w,h,d, in which scale, channel, and spatial
information is considered.

Figure 4 shows the sample score maps, sm
w,h,d , of a manhole cover at three different

scales. We can see that the attention module localizes the object by giving higher weights
to the pixels containing the object class. As we expect, scales 2 and 3 have higher weights
(>0.9) for localizing the object comparing to scale 1 (<0.56) with a limited field of view
for the manhole. Furthermore, the attention module highlights the edges in some of the
feature map channels, helping to discriminate the object. The edges have high scores (>0.8)
at scale 3, which is the most informative scale for the manhole cover. The background is
also discriminated from the object at scale 3 in some of the feature map channels. As we
expect, the weights assigned to highlight the background pixels (<0.6) are lower than the
weights generated to highlight the object (>0.9). This helps the network to pay attention to
the most informative features for classifying the object.

Figure 4. Samples of score maps generated by attention module for manhole tiles at three different
scales. While some score maps give higher weights to the object pixels, others highlight object edges
or the background.

In summary, we use an attention-based model as a mid-fusion method to generate
spatial and channel-wise score maps for features extracted from different input scales.
The main purpose of using the attention module in this study is to fuse heterogeneous
features of pavement objects that are random in terms of their shape, size, and orientation at
different scales. The generated score maps make the network sensitive to unique contextual
image features, improving the classification performance for 11 pavement objects. In this
way, for example, line-sensitive feature maps at scale 1 will gain higher weights for cracks,
while area-sensitive feature maps at scale 3 will gain higher weights for patches.

4. Data Preparation for Evaluation

To evaluate the A+MCNN, a series of experiments was performed using the UCF-
PAVE 2017 dataset. The dataset included 1215 pavement images, where 719 show asphalt
pavement and 496 show concrete pavement. The images were collected with four different
high-speed line-scanning cameras with a spatial resolution of 1 mm/pixel. Different camera
properties, calibrations, and lighting conditions were represented in the collected dataset.
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We developed a software application for semi-automated pixel-level annotation for
road objects in two steps: (i) areal object annotation using a superpixel segmentation
method [20] and (ii) linear object annotation using the MorphLink-C technique [14].
For areal objects, the Entropy Rate Superpixel Segmentation method [70] was used to
divide a road image into small homogeneous clusters, called superpixels, while preserving
the edges of objects as shown in Figure 5a,b. Then, an unsupervised mean shift clustering
method was used to combine neighboring superpixels into the same class as shown in
Figure 5c. For errors in the mean shift clustering, a human annotator could manually
correct false clustering and annotate clusters with the correct class as shown in Figure 5d;
thus, our annotation approach was semi-automated.

(a) (b) (c) (d)

Figure 5. Annotation procedures for areal objects. (a) Original image containing an areal object
(manhole cover); (b) superpixel segmentation; (c) unsupervised mean shift clustering to obtain bigger
clusters; (d) human correction of false clustering and classification.

Although superpixel segmentation is effective for areal objects, it is not effective for
linear objects, such as cracks and joints. Thus, after the areal object annotation was com-
pleted, we annotated linear objects only for background segments (i.e., asphalt and concrete
classes) using a series of morphological operations, called the MorphLink. The segmenta-
tion procedures for linear objects are shown in Figure 6. After the crack extraction using the
bottom-hat operation for dark crack pixels, as shown in Figure 6a,b, we applied the area
filter to remove small noise clusters of less than 25 pixels. In Figure 6c, one can notice that
the crack pixels exhibit two problems: first, unfiltered noise pixels may still exist since the
noise pixel removal is only based on the pixel size without sophisticated characterization
of shape, orientation, intensity, etc.; second, the crack in Figure 6c is fragmented into many
discontinued crack-pixel clusters. The fragmented crack can be treated as many discontin-
ued small cracks, which can be problematic in the further noise removal process and the
characterization of crack properties, such as the number and length of cracks. To label the
fragmented crack pixel as a single crack, we applied the dilation transformation with the
structuring element of 10 × 10 pixels. Then, the crack pixels within the highlighted area
in Figure 6d were considered as a continued single crack. As a semi-automated method,
a human annotator could select true continuous cracks for complicated cracks (e.g., block
and fatigue cracks) as well as for simple cracks (e.g., single and branched cracks). Using
the developed annotation software, we could calculate the averaged crack width according
to the total area of the crack pixels in Figure 6d divided by the length of the crack trace in
Figure 6e. Determining the crack width is important to measure crack severity in crack
surveys and control practices for concrete and asphalt structures.

With the above two-step process, we created a comprehensive image dataset, UCF-
PAVE 2017, with pixel-level annotation for four distress objects (crack, crack seal, patch,
and pothole), five non-distress objects (joint, marker, manhole cover, curbing, shoulder),
and two pavement backgrounds (asphalt, concrete) as shown in Table 2. In UCF-PAVE
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2017, we created three-scale input image tiles with the same center position, using the
zero-padding method explained in Section 3.2. As the result, the dataset had a total of
10,184,369 input image tiles at each scale, including 7,050,641 from asphalt pavement and
3,133,728 from concrete pavement.

(a) (b) (c) (d) (e)

Figure 6. Crack segmentation generated by semi-automated annotation software. (a) Original image;
(b) crack extraction after the bottom-hat transformation; (c) area filtering to remove small-pixel noise
clusters; (d) fragment grouping using the dilation transform; and (e) centerline-crack trace using the
thinning transformation.

The class of input tiles was determined by the following rules: (i) if the asphalt or
concrete was the only pixel type in a scale-1 tile, it was categorized into asphalt or concrete,
respectively; and (ii) if there were pixels other than the asphalt or concrete, whichever
class except for those backgrounds with the largest pixel-count represented the class of the
scale-1 tile. Table 2 shows the statistics of scale-1 tile classes in the UCF-PAVE 2017 dataset.
Figure 7 shows the numbers of scale-1 pixels for different classes in the dataset. One can
see that the dataset was highly imbalanced in terms of class proportions. The background
pixels were dominant, occupying 90.6% of the entire dataset. Patch, curbing, marker,
and crack pixels accounted for between 2.4% and 1.6% of the dataset. Joint, manhole
cover, shoulder, crack seal, and pothole pixels were rare, at less than 0.4% of the entire
dataset. An imbalance of the class proportion is usually faced in pavement image analysis.
Although the backgrounds were dominant classes in number, the minor classes are more
important in pavement condition assessment. Therefore, a robust algorithm needs to
be developed for multi-class classification applications. To evaluate the classification
algorithms, we used 20% of each class of input tiles for testing, and the remaining 80% for
training, from which 20% was kept for validation.

Figure 7. The numbers of pixels for different classes in UCF-PAVE 2017.
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Table 2. UCF-PAVE 2017 database.

Types Labels

Asphalt Pavement Concrete Pavement All Pavement

Number
of Tiles

Avg. Number
of Tiles/img

Std. Number
of Tiles/img

Number
of Tiles

Avg. Number
of Tiles/img

Std. Number
of Tiles/img

Total Number
of Tiles

Avg. Number
of Tiles/img

Std. Number
of Tiles/img

Distress
objects

Crack
(CRK)

383,637
(5.4%)

533 723 73,325
(2.3%)

147 288 456,962
(4.5%)

376 616

Crack seal
(CRS)

18,797
(0.3%)

26 213 4812
(0.2%)

9 41 23,609
(0.2%)

19 166

Patch
(PAT)

229,021
(3.2%)

318 960 33,955
(1.1%)

68 246 262,976
(2.6%)

216 765

Pothole
(POT)

16,912
(0.2%)

23 208 11
(0.0%)

0 0 16,923
(0.2%)

13 160

Non-distress
objects

Joint
(JNT)

0
(0.0%)

0 0 96,684
(3.1%)

194 147 96,684
(0.9%)

79 134

Marker
(MRK)

276,903
(3.9%)

385 635 23,432
(0.7%)

47 212 300,335
(2.9%)

247 533

Manhole cover
(MAN)

26,104
(0.4%)

36 119 5186
(0.2%)

10 36 31,290
(0.3%)

25 95

Curbing
(CUR)

257,835
(3.7%)

358 394 4284
(0.1%)

8 67 262,119
(2.6%)

215 351

Shoulder
(SHO)

19,593
(0.3%)

27 136 3626
(0.1%)

7 35 23,219
(0.2%)

19 107

Backgrounds

Asphalt
(ASP)

5,820,803
(82.6%)

8095 3791 0
(0.0%)

0 0 5,820,803
(57.2%)

4790 4933

Concrete
(CON)

0
(0.0%)

0 0 2,888,409
(92.2%)

5823 414 2,888,409
(28.4%)

2377 2874

All 7,049,605
(100%)

9,801 - 3,133,724
(100%)

6,313 - 10,183,329
(100%)

8,376 -
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5. Experiment Setup and Results
5.1. Training

We trained the A+MCNN in a fully supervised manner. The Adam optimizer with
a learning rate of α = 0.0001, β1 = 0.9, β2 = 0.999, and ε = 10−8 was used, where β1 and
β2 are exponential decay rates, and ε is a constant for numerical stability. The network
was trained for 800 epochs with a mini batch size of 200. In each epoch, the network used
60,000 random tiles out of more than 6 million tiles in the training dataset. The model
with the best performance regarding loss for the validation dataset was selected as the
model for use in the testing mode. The training was conducted on an NVIDIA TitanX GPU
with a memory configuration of 12 GB. The code was implemented in Python 3.7.3 and
TensorFlow 1.14.0. Figure 8 shows the accuracy and loss of validation over 800 epochs
during the training of A+MCNN.

(a) (b)

Figure 8. The (a) accuracy and (b) loss curves for the validation dataset during the training of the
A+MCNN. The accuracy and loss continued to improve until becoming saturated.

5.2. Baseline Models for Performance Comparison

To evaluate the performance of the A+MCNN, we compared it with different deep
learning classifiers. The classifiers were divided into three categories to understand the
effects of different components of the A+MCNN. The first category included the widely
used single-scale CNNs, including VGG16, VGG19, ResNet50, and DenseNet121, as shown
in Figure 9a. By using the single-scale input of scale 1, the models in this category did
not involve the multi-scale fusion process explained in Sections 3.2 and 3.3. The second
category included the CNNs using a 3D channel input image to fuse the three-scale inputs
in an early-fusion manner as shown in Figure 9b. M-VGG16, M-VGG19, M-ResNet50,
and M-DenseNet121 were the networks in this category used to understand the difference
of the early fusion and mid-fusion effects in multi-class classification, where M denotes the
models with multi-scale input tiles. For a more direct comparison, MCNN-EarlyFusion
was trained with the same trainable layers in the A+MCNN, but it used an early fusion
paradigm with no attention module. The third category included the multi-scale CNN
model with a mid-fusion strategy and without the attention module (MCNN-MidFusion).
The MCNN-MidFusion and the A+MCNN have the same multi-scale inputs and the mid-
fusion process, but the MCNN-MidFusion does not have the attention module as shown
in Figure 9c. Thus, we were able to understand the effects of the attention module on the
classification performance in the comparison of the MCNN-MidFusion and the A+MCNN.

5.3. Experiment Results

We evaluated the multi-class classification performance of the algorithms in terms of
the precision, recall, and F-score:

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)
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F-score =
2TP

2TP + FP + FN
=

2× Precision× Recall
Precision + Recall

(5)

where TP, FP, and FN are true positives, false positives, and false negatives, respectively.
The precision determines how many of the positive predictions are truly positive, while
the recall shows the ability of the model to predict all relevant instances. The F-score
is a harmonic mean of precision and recall and is a useful measure to find the balance
between these two metrics. The normalized TPs, FPs, and FNs of each class using different
algorithms are shown in Figure 10.

(a) (b) (c) (d)

Figure 9. Network structures of (a) single-scale CNN, (b) multi-scale CNN with early-fusion, (c) multi-scale CNN with
mid-fusion, and (d) attention-based multi-scale CNN (A+MCNN).

(a) True positives (TPs).

(b) False positives (FPs).

(c) False negatives (FNs).

Figure 10. Normalized TP, FP, and FN of each class using different algorithms.
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Table 3 summarizes the results of the A+MCNN and the baseline models using the
UCF-PAVE 2017 dataset in training, validation, and testing. In Table 3, the last column
shows the average performance of each model on all 11 classes, and the best performance
of each class is shown in bold. The results show that the A+MCNN outperformed all
baseline methods in terms of overall precision, recall, and F-score.

In more detail, we compared the model performances for different classes. Worse
performances were observed with the single-scale models (S-CNNs including VGG16,
VGG19, ResNet50, DenseNet121) compared to the multi-scale models (M-CNNs including
M-VGG16, M-VGG19, M-ResNet50, M-DenseNet121): the average precision was 0.762,
the average recall was 0.640, and the average F-score was 0.678 for the single-scale models,
while an average precision of 0.883, average recall of 0.855, and average F-score of 0.867
was found for the multi-scale models.

We also observe that the data imbalance affected the classification performance sig-
nificantly. Joints, manholes, shoulders, crack seals, and potholes were the classes that
represented less than 0.4% of each class in the UCF-PAVE 2017 (Group 1), while patches,
curbing, markers, and cracks were the classes that made up between 2.4% and 1.6%
(Group 2), as shown in Figure 7. The asphalt and concrete classes represented 90.6% of the
dataset (Group 3). The analysis results show that the performance increased for the classes
with a greater amount of data for all models: the average F-score was 0.720 for Group 1,
0.832 for Group 2, and 0.976 for Group 3. The multi-scale input and the mid-fusion process
significantly improved the performance, especially for the classes with a smaller amount
of data: for Group 1, the F-score was 0.507 with the S-CNNs, 0.824 with the M-CNNs,
0.840 with the MCNN-EarlyFusion, 0.870 with the MCNN-MidFusion, and 0.889 with the
A+MCNN; for Group 2, the F-score was 0.747 with the S-CNNs, 0.864 with the M-CNNs,
0.867 with the MCNN-EarlyFusion, 0.915 with the MCNN-MidFusion, and 0.923 with
the A+MCNN; and for Group 3, the F-score was 0.966 with the S-CNNs, 0.979 with the
M-CNNs, 0.980 with the MCNN-EarlyFusion, 0.985 with the MCNN-MidFusion, and 0.987
with the A+MCNN. The above results show that the multi-scale input improved the classi-
fication performance significantly when the dataset was imbalanced. Among the M-CNNs,
the M-VGG16 and M-VGG19 outperformed the M-ResNet50 and M-DenseNet121 slightly
for Group 1: the F-score was 0.827 with the M-VGG16 and 0.836 with the M-VGG19, while
it was 0.814 with the M-ResNet50 and 0.819 with the M-DenseNet121. The reason for this
was that the deeper networks of the M-ResNet50 and M-DenseNet121 need more data
to be properly trained. This limitation was mitigated by using the designed networks
for Group 1: an F-score of 0.840 was found with the MCNN-EarlyFusion, 0.870 with the
MCNN-MidFusion, and 0.889 with the A+MCNN. The results suggest that, with the given
data, the customized network design worked better than the state-of-the-art deep networks.
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Table 3. Precisions, recalls, and F-scores of different classification models using UCF-PAVE 2017.

Metric Method Asphalt Marker Manhole Patch Pothole Crack Seal Shoulder Curbing Joint Crack Concrete Avg

Precision

VGG16 0.941 0.91 0.828 0.66 0.547 0.501 0.623 0.92 0.733 0.709 0.963 0.758

VGG19 0.938 0.917 0.878 0.765 0.587 0.474 0.571 0.916 0.713 0.726 0.96 0.768

ResNet50 0.94 0.897 0.887 0.76 0.487 0.412 0.562 0.923 0.741 0.67 0.964 0.749

DenseNet121 0.94 0.9 0.863 0.773 0.574 0.549 0.612 0.91 0.735 0.691 0.963 0.774

M-VGG16 0.969 0.953 0.841 0.885 0.844 0.707 0.88 0.975 0.837 0.742 0.98 0.874

M-VGG19 0.968 0.948 0.938 0.888 0.784 0.731 0.916 0.965 0.865 0.776 0.979 0.887

M-ResNet50 0.962 0.957 0.93 0.908 0.825 0.704 0.911 0.963 0.8 0.756 0.981 0.881

M-DenseNet121 0.967 0.947 0.911 0.874 0.818 0.823 0.926 0.965 0.829 0.733 0.98 0.889

MCNN-EarlyFusion 0.966 0.945 0.924 0.882 0.842 0.788 0.91 0.974 0.845 0.786 0.98 0.895

MCNN-MidFusion 0.982 0.948 0.944 0.945 0.788 0.808 0.944 0.978 0.867 0.812 0.983 0.909

A+MCNN (ours) 0.983 0.959 0.954 0.956 0.934 0.789 0.929 0.979 0.879 0.839 0.987 0.926

Recall

VGG16 0.971 0.896 0.74 0.688 0.299 0.085 0.394 0.942 0.676 0.352 0.989 0.639

VGG19 0.978 0.886 0.693 0.622 0.206 0.08 0.43 0.944 0.7 0.345 0.99 0.625

ResNet50 0.975 0.902 0.677 0.618 0.368 0.139 0.524 0.938 0.676 0.379 0.986 0.653

DenseNet121 0.976 0.898 0.709 0.615 0.305 0.092 0.466 0.948 0.684 0.376 0.988 0.642

M-VGG16 0.979 0.947 0.959 0.884 0.812 0.693 0.903 0.965 0.808 0.611 0.989 0.868

M-VGG19 0.981 0.953 0.941 0.898 0.884 0.64 0.895 0.969 0.785 0.586 0.991 0.866

M-ResNet50 0.983 0.931 0.911 0.822 0.76 0.612 0.856 0.972 0.841 0.567 0.988 0.84

M-DenseNet121 0.977 0.953 0.938 0.85 0.806 0.514 0.872 0.974 0.831 0.614 0.99 0.847

MCNN-EarlyFusion 0.982 0.962 0.934 0.882 0.788 0.652 0.908 0.969 0.819 0.574 0.991 0.86

MCNN-MidFusion 0.984 0.968 0.951 0.94 0.907 0.752 0.916 0.976 0.835 0.752 0.991 0.906

A+MCNN (ours) 0.987 0.969 0.953 0.943 0.886 0.788 0.944 0.986 0.842 0.761 0.991 0.914
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Table 3. Cont.

Metric Method Asphalt Marker Manhole Patch Pothole Crack Seal Shoulder Curbing Joint Crack Concrete Avg

F-Score

VGG16 0.956 0.903 0.782 0.674 0.386 0.145 0.483 0.931 0.703 0.471 0.976 0.674

VGG19 0.958 0.901 0.774 0.686 0.306 0.137 0.49 0.93 0.707 0.468 0.975 0.667

ResNet50 0.957 0.9 0.768 0.682 0.419 0.207 0.542 0.93 0.707 0.484 0.975 0.688

DenseNet121 0.958 0.899 0.778 0.685 0.399 0.158 0.53 0.928 0.709 0.487 0.975 0.682

M-VGG16 0.974 0.95 0.896 0.884 0.827 0.7 0.891 0.97 0.822 0.67 0.984 0.87

M-VGG19 0.974 0.95 0.939 0.893 0.831 0.682 0.906 0.967 0.823 0.667 0.985 0.874

M-ResNet50 0.972 0.943 0.92 0.863 0.791 0.655 0.883 0.968 0.82 0.648 0.984 0.859

M-DenseNet121 0.972 0.95 0.924 0.862 0.812 0.633 0.898 0.969 0.83 0.668 0.985 0.864

MCNN-EarlyFusion 0.974 0.953 0.929 0.882 0.814 0.714 0.909 0.971 0.832 0.663 0.986 0.875

MCNN-MidFusion 0.983 0.958 0.947 0.942 0.843 0.779 0.93 0.977 0.851 0.781 0.987 0.907

A+MCNN (ours) 0.985 0.964 0.953 0.949 0.909 0.788 0.936 0.982 0.860 0.798 0.989 0.920



Sensors 2021, 21, 5137 19 of 27

The crack is an important distress class in pavement condition assessment. We can
see that the A+MCNN outperformed the VGG16 and VGG19 by 41% for both, and it
outperformed the ResNet50 and DenseNet121 by 39% for both, in terms of the F-score.
Furthermore, the A+MCNN outperformed the M-VGG16 by 16%, M-VGG19 by 16%, M-
ResNet50 by 19%, the M-DenseNet121 by 16%, and the MCNN-EarlyFusion by 13% in terms
of the F-score. For the patch, another important distress class, the A+MCNN outperformed
the VGG16 by 29%, VGG19 by 28%, ResNet50 by 28%, and DenseNet121 by 28%, in terms
of the F-score. For this class, the A+MCNN also outperformed the M-VGG16 by 7%, M-
VGG19 by 6%, M-ResNet50 by 9%, M-DenseNet121 by 9%, and the MCNN-EarlyFusion by
7% in terms of the F-score. The above results demonstrate that the A+MCNN improved the
classification performance significantly, not only for cracks with small linear shapes but also
for patches with large areal shapes. A dramatic performance improvement was observed
with the crack seal. The crack seal represents a middle form of the crack and the patch
and can be easily misclassified into those two classes. The A+MCNN outperformed the
S-CNNs, including improvements on the VGG16 by 82%, VGG19 by 83%, ResNet50 by 74%,
and DenseNet121 by 80%. It also outperformed the M-CNNs, including improvements on
the M-VGG16 by 11%, M-VGG19 by 14%, M-ResNet50 by 17%, M-DenseNet121 by 20%,
and the MCNN-EarlyFusion by 7%.

A pothole can be easily misclassified as a patch, crack, or asphalt because it has
pixels with a darker intensity and the existence of cracks around it. Since the A+MCNN
calculates appropriate scores for the feature maps at each scale, the pothole can be distin-
guished accurately from other classes. The A+MCNN significantly outperformed both
SCNNs and MCNNs, improving on the VGG16 by 18%, VGG19 by 19%, ResNet50 by
19%, and DenseNet121 by 18%, while improving on M-VGG16 by 6%, M-VGG19 by 2%,
M-ResNet50 by 4%, M-DenseNet121 by 3%, and the MCNN-EarlyFusion by 9%.

Finally, the A+MCNN outperformed MCNN-MidFusion in terms of precision by
2%, recall by 1%, and F-score by 1% on average. On closer inspection of the A+MCNN
performance, it is noteworthy that the precision was improved by 14% and F-score by
7% for the pothole class as an important distress in pavement assessment, which had the
minimum number of samples in the dataset. This shows the contribution of the attention
module in effectively attending to the most discriminative information even in the presence
of minimal data while consistently improving upon the results of other classes in terms
of the F-score. Figure 11 shows sample segmentation results at the spatial resolution of
50 × 50 mm2 for different algorithms.

In summary, the introduced A+MCNN robustly classified 11 distress and non-distress
objects in both asphalt and concrete pavement images with an average of 92% in F-score
on entire objects. The A+MCNN outperformed all compared classifiers by consistently
improving the classification performance by an average of 1∼26% in terms of the F-score.
The comprehensive quantitative and qualitative comparisons in this study, which are barely
present in the literature, offer new insights: (1) compared to single-scale CNNs (S-CNNs),
the A+MCNN improved the F-score by 24.2% by using multi-scale image tiles to encode the
contextual information, and (2) compared to multi-scale CNNs (M-CNNs), the A+MCNN
improved the F-score by 4.9% by adapting a mid-fusion strategy with an attention module
to assign more importance to the more informative features.
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Figure 11. Sample segmentation results of road distresses using different algorithms. Segmentation
masks were created by aggregating classification results of 50 × 50 tiles.

6. Discussion
6.1. Effects of A+MCNN Parameters

In this section, we evaluate two A+MCNN parameters that could affect the classifi-
cation performance: (i) the depth of CNNs and (ii) the format of the score maps. First,
we conducted experiments with different numbers of CNN layers. As shown in Figure 2,
the A+MCNN employs (i) the CNNs for feature extraction with a depth of three layers and
(ii) the deep CNN for multi-class classification with a depth of six layers. To understand
the effects of the depths of those CNNs, we measured the performances for two cases by
doubling the feature-extraction CNNs to 6 layers and by doubling the classification CNN
to 12 layers. In the first case, the performance of the A+MCNN decreased by 3.9% in terms
of the average precision and 4% in terms of the average F-score, and it increased by 0.5% in
terms of average recall. In the second case, the average precision and F-score decreased by
3.8% and 4%, respectively, and the averaged recall increased by 0.9%. This shows the trade-
off between the depth of the network and the amount of training data needed. We showed
that the originally designed network’s capacity is enough for an optimal training based on
our data by adding more layers before or after the attention module, negatively affecting
the performance. Since the number of false negatives for distress objects is important in
pavement condition assessment, we do not sacrifice the recall to gain higher precision if the
overall performance (F-score) does not improve. Therefore, we also investigated the effect
of the network depth on the classification of four types of distresses in the dataset: crack,
crack seal, pothole, and patch. By increasing the number of convolution layers before the
attention module, the performance of the A+MCNN on pavement distresses decreased
by 8.2% in terms of the average precision and 8.7% in terms of the average F-score, and it
increased by 2.9% for the average recall. By increasing the number of convolution layers
after the attention module, the performance of the A+MCNN on pavement distresses
decreased by 6.9% for average precision and 6.2% for the average F-score, and it increased
by 3.1% for average recall. Therefore, the originally designed network improved the overall
performance without unreasonably sacrificing the false negative rate for distress objects.
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Second, we compared the performance of the A+MCNN with two different formats of
score maps. In Equation (2), the dimensions of the score map for each scale was w× h× d,
where w and h are the x and y-coordinates of the feature map and d is the number of
convolution filters. The parameters used in Section 5 are w = 25, h = 25, and d = 64.
In this way, we applied channel-wise and spatial attention to each scale. To understand
the effects of the score map dimension, we compared the performance with the reduced
dimension of w× h× 1, in which the attention module only generated spatial scores for
each scale. In other words, all channels of the feature maps had a shared weight in each
scale. The comparison results show that the first setting outperformed the second setting
by 1.9% in terms of the average precision, 0.4% in terms of the average recall, and 1.2%
in terms of the average F-score. This improvement showed that giving the network the
flexibility to give weights to each feature (d = 64) improved the performance compared to
assigning a similar weight to all the channels corresponding to the same spatial location
(d = 1). We also compared the performances using the sigmoid and softmax functions to
normalize the score maps generated by the attention module. The sigmoid function used
in this study increased the average precision, recall, and F-score by 0.3%, 4.4%, and 2.1%.
We believe that sigmoid outperformed softmax due to the weighting of the features in
each spatial location independently rather than forcing the network to only assign high
weights to a single spatial location (softmax). This specifically is important as, for some
of the classes in our dataset, the object of interest was distributed over different spatial
locations (e.g., crack, crack seal).

6.2. Capability of Class Separation

The ability to perform class separation is an important factor that affects the perfor-
mance of multi-class classification. Figure 12 illustrates the receiver operating characteristic
(ROC) curves to compare the performances of the A+MCNN and all baseline methods.
The curves summarize the trade-off between the true positive rate and false positive rate
for the models. The area under the curve (AUC) indicates the ability of the model to
separate the classes. The higher the AUC, the better the model distinguishes the classes.
We observe that the MCNN-MidFusion and the A+MCNN have the highest AUCs among
the presented models.

Figure 12. Receiver Operating Characteristic (ROC) curves. Our method achieved the highest area under the curve.

Figure 13 demonstrates the sample segmentation results generated by the A+MCNN
model. Furthermore, the corresponding heatmaps for the pavement classes are plotted for
qualitative comparison. A hotter color means a greater probability that the pixels belong to
the corresponding class. The heatmaps also show that the A+MCNN model predicts the
outputs with a strong class separation.
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Figure 13. Segmentation results on UCF-PAVE 2017 dataset using the A+MCNN. Hotter colors mean
a greater probability that the pixels belong to the specified class.

6.3. Computational Costs

Table 4 summarizes the computational costs for different classification approaches
used in this study, in terms of the number of trainable variables, training time per epoch,
and inference time for 100 batches. While the first column presents the costs for single-scale
baselines, including VGG16, VGG19, ResNet50, and DenseNet121, the second column
presents the costs for multi-scale baselines including M-VGG16, M-VGG19, M-ResNet50,
and M-DenseNet121. Comparing these two columns reveals that the extra computational
costs brought by the multi-scale strategy were almost negligible. However, the average F-
score increased by 18.9% for multi-scale baselines. Comparing fusion strategies in columns
three and four shows that the mid-fusion strategy required more parameters as well as
computations but led to a better classification performance (F-score increased by 3.2%
compared to the early-fusion approach). Moreover, a fraction of the extra parameters and
computations was needed to employ the attention module in A+MCNN to achieve a 1.3%
increase in F-score.

6.4. Comparison with a Pavement Classifier

In this study, the classification performance of A+MCNN was compared with the
state-of-the-art classifiers which are widely used not only in the computer science field but
also the transportation literature. Few studies exist addressing the multi-class classification
of various distress and non-distress objects simultaneously from both asphalt and concrete
pavement images. For a comparison with an existing work on the multi-class classification
of pavement objects, we applied the method proposed in [31] to the UCF-PAVE 2017
dataset using both single-scale and multi-scale input tiles. Li et al. [31] introduced a CNN
composed of three convolution layers and three fully connected layers to classify pavement
image tiles into four different categories of cracks. The classification results are presented
in Table 5. The A+MCNN outperformed the CNN in [31] by 39.3% in terms of the F-score.
Although using multi-scale input tiles improved the performance of the CNN in [31] by
9.3% in terms of the F-score, it still performed poorly on the classification of objects with a
limited number of samples (e.g., pothole and crack seal).
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Table 4. Comparison of computational costs for different classification approaches.

Computational Costs Single-Scale Baselines Multi-Scale Baselines MCNN-EarlyFusion MCNN-MidFusion A+MCNN

Number of parameters 51 M 51 M 62 M 88 M 95 M

Training time/epoch 107.9 s 110 s 96.6 s 181.7 s 199.4 s

Inference time/100 batches 4.0 s 4.2 s 5.5 s 8.0 s 8.7 s

Table 5. Classification results on UCF-PAVE 2017 dataset using the CNN presented in [31].

Metric Method Asphalt Marker Manhole Patch Pothole Crack Seal Shoulder Curbing Joint Crack Concrete Avg

Precision
CNN 0.921 0.893 0.823 0.790 0.427 0.305 0.514 0.925 0.709 0.664 0.945 0.675

M-CNN 0.942 0.918 0.881 0.773 0.576 0.572 0.740 0.939 0.734 0.648 0.955 0.756

Recall
CNN 0.980 0.853 0.407 0.457 0.076 0.052 0.249 0.907 0.610 0.241 0.976 0.491

M-CNN 0.974 0.919 0.544 0.596 0.202 0.147 0.646 0.943 0.738 0.433 0.989 0.571

F-Score
CNN 0.950 0.873 0.545 0.579 0.128 0.089 0.335 0.916 0.656 0.354 0.960 0.527

M-CNN 0.958 0.918 0.673 0.673 0.299 0.234 0.690 0.941 0.736 0.519 0.972 0.620
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7. Conclusions

In this paper, we presented a novel attention-based multi-scale convolutional neural
network (A+MCNN) to improve the multi-class classification of asphalt and concrete
images in pavement application. This novelty was achieved in two ways: (i) scale-specific
features were extracted from multi-scale tiles, covering 50 × 50, 250 × 250 and 500 × 500
pixel regions. Due to the high variation of pavement objects in sizes and shapes, we thus
aimed to capture both local and global fields of view for each object; (ii) a mid-fusion
strategy combined with an attention module was designed to combine multi-scale features
adaptively based on their contribution to classifying a specific pavement object. Weighting
original features by these importance factors improves the robustness of classification.

The A+MCNN was evaluated with a comprehensive pixel-level annotated dataset
(UCF-PAVE 2017) collected by four different line-scanning cameras. The ground-truth
dataset included a total of 1215 annotated asphalt and concrete pavement images with
11 distress and non-distress classes. The A+MCNN outperformed all compared CNN
classifiers (VGG16, VGG19, ResNet50, DenseNet121, and the generic CNN). We also
investigated the effect of encoding multi-scale contextual information, fusion strategies,
and the proposed attention module on the classification of each pavement object.

Our experiments showed that a multi-scale paradigm in the A+MCNN significantly
improved the classification performance by 24.2% in terms of the F-score compared to a
single-scale approach. The mid-fusion strategy used for combining multi-scale features
in the A+MCNN further improved the classification performance by 4.9% in terms of the
F-score on average compared to the early-fusion of multi-scale input tiles. Employing the
attention module provided additional benefits. For example, the classification performance
was improved with the attention module as much as 7% in terms of the F-score for the
pothole class, which had the least number of images in the training data (only 0.2% of
the training data). When a network does not have a large number of samples during the
training, it is extremely important to attend to the most informative parts (scales in our
case) of the data to learn the most information possible. This is exactly where the attention
module is beneficial to obtain a consistent improvement of classification performance for
all classes. The extra computation times incurred by the multi-scale paradigm, mid-fusion
strategy, and attention module for the inference mode were 5%, 45.5%, and 8.7% on average.

The parametric study of the A+MCNN provided deeper insights into the effect of
the network depth and the attention mechanism. Due to the trade-off between the depth
of the network and the complexity of the dataset, doubling the depth of the A+MCNN
in scale-specific feature-extraction layers and the deep classification layers decreased the
performance by 3.8% and 4% in terms of the F-score. Therefore, deeper networks improve
the object classification performance for pavement images only to a certain extent. Our
investigation also showed that applying channel-wise and spatial attention to each scale is
more beneficial (F-score improved by 1.2%) than spatial attention.

This study makes a four-fold contribution. First, we show that encoding contextual
information, especially while dealing with pavement objects with high variations in shape
and size, significantly improves the classifiers’ performance. Second, we show that in-
vestigating information fusion strategies and showing a mid-fusion strategy is the most
impactful strategy. Third, we propose an attention-based mid-fusion strategy to adaptively
weight the features to increase robustness and improve the performance even more. Fourth,
we study and provide deeper insights into the performance of different architectures,
network depths, and computational costs of pavement object classification.

One limitation of this study is that our approach provides a patch-level segmentation
mask for pavement images. Although the 50 × 50 mm2 spatial resolution used in this
study is acceptable in most road surveys, a pixel-level segmentation mask is required for
some pavement applications, such as crack width measurements. Therefore, one research
direction could be the semantic segmentation of images for various pavement objects.
Furthermore, employing unsupervised learning techniques for image-based pavement
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analysis, removing the need for annotated training data, is another research direction that
could be followed in future studies.
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