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Abstract: Recent progress in deep learning has led to accurate and efficient generic object detection
networks. Training of highly reliable models depends on large datasets with highly textured and
rich images. However, in real-world scenarios, the performance of the generic object detection
system decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images,
or (iii) they are merged with background information. In this paper, we refer to all these situations as
challenging environments. With the recent rapid development in generic object detection algorithms,
notable progress has been observed in the field of deep learning-based object detection in challenging
environments. However, there is no consolidated reference to cover the state of the art in this domain.
To the best of our knowledge, this paper presents the first comprehensive overview, covering
recent approaches that have tackled the problem of object detection in challenging environments.
Furthermore, we present a quantitative and qualitative performance analysis of these approaches
and discuss the currently available challenging datasets. Moreover, this paper investigates the
performance of current state-of-the-art generic object detection algorithms by benchmarking results
on the three well-known challenging datasets. Finally, we highlight several current shortcomings
and outline future directions.

Keywords: object detection; challenging environments; low light; image enhancement; complex
environments; state of the art; deep neural networks; computer vision; performance analysis

1. Introduction

Object detection is considered as one of the most important and elementary tasks
in the field of computer vision. The problem of object detection deals with the identi-
fication and spatial localization of objects present in an image or a video [1]. The task
of object detection covers a wide range of many other computer vision tasks, such as
instance segmentation [2-4], visual question answering [5], image captioning [6,7], object
tracking [8], activity recognition [9-11] and so on.

Object detection is a complex problem due to underlying high intra-class and low
inter-class variance [12,13]. High intra-class variance is the consequence of different objects
belonging to a single class, for instance, different poses of humans or humans wearing
different clothes in an image. Low inter-class variance is the outcome of similar-looking ob-
jects belonging to different classes such as samples of class chair can easily be misclassified
into the class bench and vice versa.

One of the earlier approaches for object detection algorithms relied on sliding win-
dows, applying classification on each window to find objects [14-16]. Later, the sliding
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window concept was replaced with region proposals to narrow the search before applying
classification [17-21]. The recent surge in deep learning has given rise to object detection
systems along with other fields.

The prior published work in object detection can be further classified into three
categories which are explained below. Figure 1 depicts the basic difference between them:

1. Object Detection (OD): OD aims at detecting objects regardless of their class category [17,22].
OD algorithms [23-26] generally propose a large number of possible region pro-
posals, from which, later on, the best possible candidates are selected according to
certain criteria.

2. Salient Object Detection (SOD): SOD algorithms use the human attention mechanism
concept to highlight and detect the objects in a picture or video [27,28].

3. Category-specific Object Detection (COD): COD aims at detecting multiple objects. Un-
like OD and SOD, COD has to predict the category class and the location of the object
in the image or video [16,29].

oD

(@)

SOD

(b)

COoD

(©

Figure 1. Visual demonstration of the possible three directions in the domain of object detection.
Object detection (OD): objects are detected as illustrated in part (a), Salient Object Detection (SOD):
human attention mechanism is applied to detect objects as presented in part (b), Category-specific
object detection (COD): object detection along with the class prediction as depicted in part (c).
Reprinted with permission from [30]. Copyright 2018 IEEE.

The deep learning-based object detection algorithms are categorized into two-stage
object detectors and one-stage object detectors. Two-stage object detection architectures
such as R-CNN [16], Fast R-CNN [31] and Faster R-CNN [23] segregate the task of object
localization from the object classification task. They employ region proposal techniques
to find possible regions where the likelihood of an object’s existence is maximum. Later
segmentation output and better detection pooling [23] techniques were introduced with
Mask R-CNN [25]. On the other hand, one-stage object detection algorithms first generate
candidate regions, and then these regions are classified as object/no-object. For instance,
one-stage detectors such as YOLO [24,32-34] and SSD [26] work with feature pyramid
networks (FPNs) [35] as a backbone to detect objects at multiple scales in a single pass
rather than first predicting regions and then classifying them.
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Analogous to other domains of computer vision, the output of object detection is
highly dependent on spatial features. Hence, the performance of the object detection
system decreases when the occlusions hide the objects, objects have different sizes or are
merged with background information. In real-time scenarios, it is frequent that the input
images received by the object detection network are not rich with information, or they
are captured under low-light conditions. This paper has referred to all these situations
in a challenging environment. Figure 2 illustrates the problem of object detection in a
challenging environment. This survey paper investigates the approaches that have worked
on detecting objects in such environments by leveraging deep neural networks.

Figure 2. Graphical illustration of object detection in a challenging environment (left image), whereas
object detection in a conventional environment is shown in the right image. There are two objects:
bicycle and bus are present in the challenging left image while the cow is a targeted object in the
right image.

Different pre-processing techniques have been applied to improve image quality
to improve object detection performance in challenging environments over the years.
Figure 3 illustrates the comparison between the flow of traditional approaches and deep
learning-based methods. Traditional methods rely on improving image quality through
image enhancement and manual feature selection methods [1,14,36,37]. Later, these tech-
niques were replaced with Deep Neural Networks (DNNs) due to their robust and
generalization capabilities.
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Image Input | —— | ImagePre | 5 Selection Regression — Detected
Processing Objects

BRIEF/SIFT...

Classification
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Object Detection
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Figure 3. Pipeline comparison of traditional and deep learning approaches for object detection.

In traditional approaches, generally, image enhancement is applied before feature extraction to
improve object detection performance. Unlike traditional approaches, deep learning methods can
find required features for detecting objects without relying on traditional rule-based methods.
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Contributions

This survey paper focuses on the recent works that have tackled object detection
in a challenging environment by employing deep neural networks. With the modern
advancement of deep learning-based object detection approaches, a noticeable surge has
been observed in the field of object detection under a complex environment, as illustrated
in Figure 4.

Attention Based Network
(Zhengzheng et al.)

GooglLeNet RetinaNet peep loU EM-Merger
(Szegedy et al.) Lin et al.
‘ | (Eranetal) Faster-RCNN + DCGAN
Mask R-CNN Deep Saliency Networks (Kun et al.)
Ghose et al. ’
(He etal.) ‘ ' SiamMask RFB-NET
Wang et al. Y t al.
Q\u Q\C) o Q\/\ qu e ) Q,‘I’Q( R
B w v 7 e >
DenseNet Deep Pyramid Single Shot SegNet YoLo
(Huang et al.) (Ranjan et al.) (Kamal et al.) (Sasagawa et al.)
RCNN Faster R-CNN ShuffleSeg SSD Mask-RCNN
(Girshick et al.) (Ren et al.) (Rashed et al.) (Sarin et al.) (Avramovic et al.)
Fast R-CNN

(Ross Girshick et al.)

Object Detection

Challenging Object Detection

Figure 4. A timeline view of different deep learning approaches developed recently to improve object detection in

challenging environments.

To summarize, our contributions are as follows:

1.  We present a unified framework that explains object detection in a challenging
environment;

2. We give an overview of all the publicly available datasets that have been published to
detect objects in challenging scenarios;

3. We summarize the advantages and limitations of the discussed methods in order to
improve object detection in a challenging environment;

4. Webenchmark current state-of-the-art generic object detection algorithms on the three
well-known challenging datasets.

The remainder of the paper is organized as follows: Section 2 briefly discusses previous
surveys conducted on object detection in challenging environments. Section 3 provides
an exhaustive discussion on recently applied approaches to solving problems of object
detection in difficult environments. Figure 5 explains the structural flow of mentioned
methodologies. Section 4 provides details about publicly available datasets for challenging
object detection tasks. Section 6 explains well-known evaluation metrics and provides
performance of all the discussed approaches in Section 3. Section 7 highlights the current
challenges and suggest future directions, and Section 8 concludes the paper.
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Figure 5. Organization of explained methodologies in this paper. The problem of object detection in challenging environ-

ments has been tackled by employing various deep learning concepts. In this paper, we categorize these methods according

to the utilized architectures.

2. Related Surveys on Object Detection

There are many surveys carried out on the topic of object detection [38—41]. This
section covers some of the prior surveys.

Han et al. [30] organized the survey in which deep learning techniques for salient
and category-specific object detection are reviewed. In 2019, Zou et al. [42] performed an
extensive survey on object detection methods that have been proposed in the last 20 years.
The authors discussed all the types of object detection algorithms proposed over the years
and highlighted their improvements.

Another survey organized by Jiao et al. [43] discussed various deep learning-based
methods for object detection. The proposed work provided a comprehensive overview of
traditional and modern applications of object detection. Moreover, the authors discussed
methods for building better and efficient object detection methods by exploiting existing
architectures. Arnold et al. [44] surveyed 3D object detection methods for autonomous
driving. The proposed work compared various 3D object detection-based approaches.

It is vital to mention that all of the prior surveys have focused on the general problem
of object detection. Although these surveys explain how object detection has improved
over the years, they do not cover the challenges and solutions to improve object detec-
tion performance in a challenging environment such as low light, occlusions, hidden
objects, and so on. To the best of our knowledge, we provide the first survey that reviews
the performance of deep learning-based approaches in the field of object detection in a
challenging environment.

3. Methodologies

The process of detecting an object is divided into the following steps:
1.  Find regions as object/no-object;
2. Classify the detected regions where objects exist.

This section discusses the various approaches that have tackled object detection prob-
lems under complex scenarios by employing deep neural networks. As explained earlier
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in Section 1, various object detection-based algorithms and a few semantic segmentation-
based approaches have been exploited in the recent past to develop object detection systems
under challenging situations. For convenience, we have categorized the methodologies
according to the employed architectures. Figure 5 shows the structure of this section,
whereas the categories of the explained methods are illustrated in Figure 6. Furthermore,
Table 1 summarizes the main advantages and limitations of the mentioned approaches.
Moreover, Figure 7 exhibits the generic mechanism of the recently proposed approaches in
this domain.

Single Stage > Deep Pyramid Single Shot > YOLO > RFB-NET
Detectors Single Shot Detector (2020) (2020)
(2019) (2019)
Two Stage 5, Deep loU EM- 3 Mask R-CNN . Faster R-CNN
Detectors Merger (2020) (2020)
(2019)
Semantic Image Deep Saliency _ ~segNetUnet 5  ShuffieSeg o, Fully Convolutional
Segmentation Networks (2019) (2019) Siamese Networks
(2019) (2019)
Salient Object =» Attention Based
Detection Networks
(2020)

Figure 6. Different object detection algorithms approaches are categorized into four categories. One-stage detectors are fast
but lack accuracy, whereas two-stage detectors are slow but accurate. Semantic image segmentation deals with pixel-level
detection, and salient object detection deals with detecting objects by applying an attention mechanism.
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Figure 7. The generic mechanism of the proposed approaches that have tackled the problem of object detection in a

challenging environment. Image-enhancement networks extract important features from the input images. Object detectors

employ these features to retrieve final predictions.

3.1. One-Stage Detectors

One-stage detectors predict the candidate regions without taking aid from region pro-
posal networks. Compared to two-stage detectors [23,25], they are efficient and widely ex-
ploited in developing real-time object detection systems [45—47]. The architectural overview
of one-stage detectors is depicted in Figure 8. Researchers have proposed approaches to
detect objects in arduous environments by adopting one-stage detectors. This section
further arranges the approaches according to the operated one-stage object detectors.

3.1.1. YOLO

You Only Look Once (YOLO) [24] has been widely applied to develop real-time object
detection systems in various domains [45-47]. Unlike region-based convolutional neural
networks, YOLO only takes a single look and divides the image into S x S grid of cells. For
each object that exists on the image, one grid cell is supposed to be responsible for having
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that object at its center. Figure 9 illustrates the main idea of YOLO. This section covers the
techniques that have exploited YOLO to detect objects in a complex environment.

By leveraging the power of transfer learning, Sasagawa et al. [48] proposed an ap-
proach to detect objects under low illumination. The work proposed combining two trained
models from different but related domains through glue layers and a generative model.
The authors have used the knowledge distillation technique to train the proposed approach.
Initially, encoder—decoder network [49] is used to extract spatial features from the given
image by using convolutional [50] and pooling layers [51]. The pooling layer is used
to capture features at different frequencies of information. Once the encoder-decoder
network learns the latent representation, it is propagated to the glue layer. The glue layer is
composed of batch normalization [52], pooling, and concatenation. The authors empirically
established that the concatenation of all latent features produces the optimal result. The
glue layer uses RGB data generated by encoder g, using the knowledge distillation method.
YOLO [24] is utilized to localize and identify objects. Since the proposed technique relies
on pre-trained networks, the backbone network is pre-trained on MS-COCO [12] and See
in the dark(SID) [53] datasets. By combining pre-trained models using glue layers, the
proposed method could detect objects in scenes illuminated by less than 1 lux. Further, it is
2.4 times more sensitive than the original YOLO model [24]. Moreover, the use of the glue
layer further reduces the computational resources.

Input Image
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e ettt ettt tlied
L} 1
L}
' Two Stage Detectors :
; '
' 1
N N '
N i
' 1
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' 1
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Figure 8. Graphical illustration of the object detection algorithms. The upper part of a figure exhibits two-stage detectors in

which the backbone network extracts features that are passed to RPN to generate region proposals. These region proposals

are refined to detect the objects in images. The lower part illustrates one-stage detectors in which objects are localized and

classified in a single forward pass. The grey cubes in the backbone demonstrate the convolutional operation.

Utilizing YOLO, Mate et al. [54] employed thermal images to improve object detection
performance in challenging conditions such as bad weather, night-time, and densely packed
areas. The authors argued that thermal images could easily show the difference between
objects and the surrounding environment based on temperature values as compared to RGB
images. This aids the process of detecting objects in difficult situations such as low-light
scenarios, rainy or foggy weather. This work consists of two different experiments. The
first network was fine-tuned on the thermal dataset UNIRI-TID [55], whereas the second
model was trained from scratch on the same UNIRI-TID thermal dataset. The authors
found that the model trained from scratch performed better than the fine-tuned model.
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The authors also reported that the model’s performance drops in the case of bird’s-eye
view images.

Final detections

S xS grid on input

Class probability map

Figure 9. The explained architecture of YOLO [24]. YOLO sees the complete image at once and
segments an image into S x S grids. Each cell predicts bounding boxes and a confidence score for
every bounding box. The cell in which object is present at the center is liable to detect the object.
Reprinted from [24].

3.1.2. RFB-Net

Currently, existing state-of-the-art detection algorithms use pre-trained backbones
based on Feature Pyramid Network (FPN) to extract low-level and high-level features.
Instead of relying on a pre-trained backbone, RFB-Net is inspired by the Receptive Fields
(RFs) structure in the human visual system. RFB-Net considers the relationship between
size and eccentricity of RFs to enhance features. Figure 10 illustrates the main building
block of RFB-Net.

Relu activation Relu activation

/ +
‘ Concatenation + 1x1 Conv ‘ Concatenation + 1x1 Conv ‘
3x3 Conv, 3x3 Conv, 3x3 Conv, 3x3 Cony,
3x3 Cony, rate=1 3x3 Conv, rate=3 3x3 Cony, rate=5 rate=1 rate—3 rate—3 o
Shortcut Shortcut
3x3 Conv

1x1 Conv

1x1 Conv

/ | 1x3 Conv ‘ ‘ 3x1 Conv |
1 T

1x1 Conv H 1x1 Conv H 1x1 Conv ‘

1
\MI Previous Layer
(a) RFB (b) RFB-s

Figure 10. The explained architecture of RFB [56]. RFB is inspired by Receptive Fields (RFs) in human visual system. RFB
considers the relationship between the size and eccentricity of receptive fields into account to enhance the features. (a) RFB

is identical to Inception, responsible for simulating the RFs of multiple sizes, and (b) part reproduces the relation between

the RF size and eccentricity in the human visual system by using smaller kernels. Reprinted from [56].
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Existing state-of-the-art generic object detection algorithms do not perform well
on images captured at low light because most low-level features are merged with the
background. To tackle this problem, Yuxuan et al. [57] fused contextual information in
the backbone to avoid loss of low-level contextual features. Lower spatial feature maps
with higher spatial feature maps are fused to preserve low-level features, maximizing
pre-trained channel information.

The second problem with images captured in low light is that when these images are
passed through conventional hierarchical convolutions, the resulting edges and features are
not very rich with information. Therefore context fusion is incorporated in the backbone
part of the network. The aim is to compensate for the information loss during the lower to
higher-level convolution process. Low-level feature maps of the network are selected and
interpolated to the identical shape of its successive feature maps. The resulting feature map
is rich in contextual information, combining high-level features and low-level features. The
authors merged RFB-Net [56] as a base architecture with the proposed modifications.

3.1.3. SSD

SSD [26] is another extensively employed real-time object detection algorithm belong-
ing to the family of one-stage detectors. SSD eliminates the region proposal network from
the Faster R-CNN [23] to increase the network’s speed. SSD includes multiscale features
and default boxes to compensate for the performance trade-off. The architecture of SSD is
illustrated in Figure 11.

Sarin et al. [58] proposed a convolutional neural network-based human detection
and SSD-based face detection system to improve the results of surveillance systems in
challenging environments. The first human detection network is used to identify whether
an input image contains a human. Once a human is detected, the method exploits SSD
to localize the area of the face on a predicted image. Since the conventional method
tends to over-fit on the provided dataset, the proposed work leverages dropout [50] and
data augmentation techniques to avoid overfitting. For the enhancement of dark images,
brightness normalization with the zero-center method was adopted. The model operated on
AlexNet [50] and was modified for the problem at hand. Two datasets, the KAIST [59] and
UFDD [60] datasets, were used to train human and face detection networks, respectively.

Table 1. A summary of advantages and limitations of methods tackling object detection in challenging environments. The

double horizontal line separates the approaches according to the categories explained in Section 3.

Literature

Methods

Advantages Limitations

Yuxan et al. [57]

Images are transformed and then fed
into the RFB-Net (Section 3.1.2).

Relies on prior information
about type of object, shape etc
for detecting them in night-time.

Context information fusion allows
detection of object in low-light.

Mate et al. [54]

Fails at capturing from
bird’s-eye view. Further, thermal

Thermal images incorporated with
YOLO (Section 3.1.1).

Thermal images give better information
then RGB images in difficult conditions.

images are not useful in
environments where
background and object
temperature is same.

Ranjan et al. [61]

Single shot deep pyramid face detector
(DPSSD).

Extract rich contextual information and
multiscale features with help of pooling
layers.

Requires a fixed input size.

Sasagawa et al. [48]

Fusion of pre-trained models using
Glue layer and information distillation
(Section 3.1.1).

Domain joining with help of glue layer
reduces in computation and provides
more information for models to learn
from different domains.

Relies on prior domain
knowledge.

Sarin et al. [58]

Single shot human and face detector
(Section 3.1.3).

Simple and effective approach.

Fails in low light and gets fooled
by human look alike pictures.
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Table 1. Cont.

Literature

Methods

Advantages

Limitations

Avramovic et al. [62]

Region of interest(ROI) integration
with Mask-RCNN and YOLO
(Section 3.2.2).

Only choose regions of interest where
objects of interest can occur instead of
applying object detection to whole
image.

Relies on prior knowledge of
where objects can show.

Eran et al. [63]

Modification of CNN with Soft-IOU
layer and custom EM-Merger layer.

Reduces overlapping detections
(Section 3.2.3).

Treats overlapping predictions
as clustering problem. Not very
real run time.

Kun et al. [64]

Generative adversarial network with
Faster R-CNN (Section 3.2.1).

Networks learns both day and
night-time features.

Relies on prior information of
converting night-time images to
day time.

Ghose et al. [65]

Fusion of thermal images and their
saliency maps using deep saliency
networks (Section 3.3.1).

Provides rich contextual and depth
information.

Relying on thermal images
causes poor performance in day
time or similar conditions.

Rashed et al. [66]

Fusion of RGB images with LiDAR
sensors information with
encoder-decoder architecture
(Section 3.3.2).

Fusion of RGB, rgbFLow and lidarFlow
provides greater information.

LiDAR sensors data and
rgbFlow data need to be merged.
There are multiple methods of
fusion.

Kamal et al. [67]

Combination of SegNet and U-Net to
detect traffic signs (Section 3.3.3).

Less computation cost as four corners of
image are cropped and merged together
before passing through network

Relies on prior information
regarding where objects are
most likely to occur. Fails when
object location changes.

Wang et al. [68]

Fully convolutional Siamese networks
with modified binary segmentation
task (Section 3.3.4).

Pre-frame binary segmentation mask is
used for low-level object representation
instead of relying on feature extractor
backbone.

Relies on prior information
while generating binary
segmentation mask. Fails when
faced with motion blur and
non-object pattern.

Zhengzheng et al. [69]

Two Stream convolutional neural
network with attention mechanism
(Section 3.4).

Fusion of rgb and thermal image to
generate features and noise reduction
with convolutional block attention
module. A new dataset for
benchmarking.

Thermal images are not efficient
for every environment use.
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Figure 11. The explained architecture of SSD [26]. The architecture of SSD is based on the VGG-16 [70] as base network by
replacing VGG fully connected layers with auxiliary convolutional layers to provide feature extraction at multiple scales.

Later, the multibox detector [71] performs the task of object detection. Reprinted from [26].

Deep Pyramid Single Shot Face Detector

For face detection in a harsh environment, Ranjan et al. [61] proposed a Deep Pyramid
Single Shot face Detector (DPSSD). The authors argued that deep pyramidal architecture
in SSD [26] can even detect small-scale faces in the images. In this work, the input image
is passed through up-sampling layers to extract rich contextual features and then passed
through pooling layers. Final detection boxes are generated from the up-sampling layers
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through the anchor box matching technique. The output prediction divides into two
branches: regression and classification. Furthermore, to optimize network convergence,
crystal loss is introduced for face verification and classification tasks. The proposed crystal
loss minimizes the angular distance between similar subject pairs and maximizing the
angular distance between different subject pairs. For the training purpose, the WIDER
Face dataset [72] was employed. The proposed approach is extensively evaluated on
unconstrained face detection datasets of IJB-A [73], JB-B [74], and IJB-C [75].

3.2. Two-Stage Detectors

Along with one-stage detectors, two-stage detectors have been applied to tackle
object detection in difficult situations. Figure 8 depicts the basic architecture of two-
stage detectors.

3.2.1. Faster R-CNN

Faster R-CNN [23] is one of the most widely exploited object detection networks [76,77].
It is the extension of Fast R-CNN [31] with Region Proposal Network (RPN). RPN aims to
generate proposals with different sizes and aspect ratios. These proposals and the spatial
features are propagated to the Fast R-CNN [31] module, which performs object detection.
The basic architecture of Faster R-CNN [23] is depicted in Figure 12. This section discusses
the methodologies that employ Faster R-CNN [23] as an object detection algorithm in their
system of identifying objects under various difficult scenarios.

o classifier

Rol pooling

proposals

b b
Region Proposal Network4

feature maps

conv layers ,

Figure 12. The explained architecture of Faster R-CNN [23]. The base network generates the feature
maps from input images and propagates them to RPN and ROI pooling. The RPN generates region
proposals which are refined by ROI pooling to perform regression and classification. Reprinted
from [23].

Generative Adversarial Networks (GANSs) [78] have also been applied to enhance
the visual quality of images captured under low light. Kun et al. [64] proposed the Deep
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Convolution Generative Adversarial Networks (DCGANSs) [79] combined with Faster
R-CNN [23] to solve the problem of object detection in low light. The first step is to use
DCGAN to convert night-time scenes into daytime scenes by keeping the important aspects
maintained between two input images. The second step is multiscale convolution feature
fusion. This work applies up-sampling and down-sampling convolutions to fuse features
extracted from starting layers.

The third contribution of this work is the proposed modification in the ROI pooling
layer. According to the coordinate vector, the standard ROI pooling layer uses bilinear
interpolation to obtain pixel value. Although conventional ROI pooling reduces parameters,
the target object’s critical features are lost. Therefore, the authors employed ROI pooling of
different sizes to capture more detailed information. Subsequently, the final ROI pooling
output is passed to the classifier and regressor to obtain final predictions.

3.2.2. Mask R-CNN

In the family of region-based convolutional neural networks, Mask R-CNN [25]
has been exploited by the state-of-the-art object detection and instance segmentation ap-
proaches [80,81]. Mask R-CNN [25] extends Faster R-CNN [23] with an addition of another
branch that retrieves the mask for each detected object. The complete framework of Mask
R-CNN is illustrated in Figure 13. This section covers the approaches that have tackled
object detection under strenuous conditions by exploiting the capabilities of Mask R-CNN.

Qg\
]

RolAlign

conv

Figure 13. The explained architecture of Mask R-CNN [25]. The architecture of Mask R-CNN
extends the architecture of Faster R-CNN [23] with two modifications: (1) replacing the Rol pooling
with RolAlign layer; (2) addition of segmentation branch along with regression and classification.
Reprinted from [25].

Another approach for detecting traffic signs is proposed by Avramovic et al. [62]. The
authors discussed that a driver could only focus in front of him and beside him through side
mirrors during driving. Hence, to detect traffic signs, the model should perceive an input
image in the same way. Therefore, instead of applying object detection to the whole image,
the proposed work focuses on a specific region where a traffic sign is likely to be seen.
Selecting a limited amount of Regions Of Interests (ROIs) reduces the overall computation
cost and propagates smaller images through the network efficiently. Furthermore, the
original aspect ratio of traffic signs is preserved by using a small number of ROIs. They
evaluated the approach equipped with Mask-RCNN [25] and YOLO [24] on the DFG traffic
sign dataset [82].

3.2.3. Deep IOU with EM-Merger

In a challenging environment, generic object detectors predict multiple bounding
boxes for a single object. To address this issue, Eran et al. [63] proposed a Soft-IOU layer
for estimating Jackkard distance as a quality detector between the predicted bounding box
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and the ground truth. The presented approach aims to minimize overlap regions between
multiple detections. Once the network predicts the bounding boxes for the input image, the
predictions are treated as a clustering problem. The method applies a custom EM-Merger
layer to group similar predictions to form a single detection.

Although conventional non-max suppression can remove overlapping detection, the
authors argued that non-max suppression does not provide a satisfactory result in densely
packed situations. This work empirically established that it is better to use the EM-Merger
layer to combine extra detections. Their proposed approach achieved better results than
the state-of-the-art object detection-based algorithm on SKU-110K benchmark dataset [63].

3.3. Semantic Image Segmentation

In addition to generic object detection algorithms, researchers have investigated the
capabilities of Semantic Image Segmentation (SIS) [83] in identifying objects in arduous
conditions. Instead of localizing an object in an image, SIS predicts a class label for each
pixel in an image. This task is also termed a dense prediction. Once we acquired the
labeled pixels, we segmented the objects by grouping the pixels belonging to the same class.
The methods based on SIS mainly operate on Fully Convolutional Networks (FCNs) [84].
Unlike other deep neural networks, FCNs consist of only convolutional layers and no
fully connected layers. Therefore, FCNs can work with images of various sizes. A visual
illustration of FCNs are exhibited in Figure 14. This section addresses some of the methods
that operate on the concept of SIS to deal with object detection in perplexing scenarios.

forward/inference

backward/learning

21

Figure 14. The explained architecture of Fully Convolutional Networks (FCNs). FCN first down-
samples and then transforms the image back to the original spatial size using up-convolutions. Using
dense predictions, it tries to predict a class label for each pixel in an image and segment the objects
based on the classes of pixels. Reprinted from [84].

3.3.1. Deep Saliency Networks

In 2019, Ghose et al. [65] proposed the combination of saliency maps with thermal
images to detect pedestrians in poor lighting conditions. This work suggested that instead
of relying on thermal and RGB images, the addition of saliency map information to thermal
images facilitates the network to identify the objects. At first, the method augments the
thermal images by replacing one duplicate channel with a corresponding saliency map.
This combination helps illuminate salient parts of the image while preserving textural
information. To extract saliency maps, the authors experimented with two state-of-the-art
deep saliency networks (PiCA-Net [85] and R3Net [86]).

PiCA-Net generates an attention map for each pixel in an image and employs Long
Short Term Memory (LSTM) [87] to scan the image and obtain global context. U-Net [88]
is then applied to detect salient objects from the generated attention maps. R3Net [86]
uses residual refinement block to learn residuals between the ground truth and saliency
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maps. To assess the performance of the proposed method, the authors exploited KAIST
multispectral pedestrian dataset [59].

3.3.2. ShuffleSeg

Following the concept of applying image segmentation [65], Rashed et al. [66] pro-
posed an FCN-based architecture for moving object detection by concatenating spatial
information with LiDAR sensors. The presented work employed three encoders to handle
RGB, rgbFlow, and lidarFlow information separately. The whole network follows encoder—
decoder architecture. The encoder extracts the latent features while the decoder up-samples
them to generate the final image. To analyze the capabilities of the proposed approach,
the authors used KITTI dataset [89] and a custom-made Dark-KITTI dataset to simulate a
low-light environment. The proposed method achieved a 4.25% improvement on standard
KITTT and 10.1% relative improvement on the Dark-KITTI dataset.

3.3.3. SegNet, U-Net

Kamal et al. [67] integrated two different network architectures based on FCNss [84] to
localize and classify traffic signs. This approach operated on a combination of SegNet [90]
and U-Net [88] to detect segment signs and a VGG-16 [70] network for the classification.

Initially, the method extracts patches from all the corners of the input images. The
models (SegNet and U-Net) train on these patches to predict the segmented traffic signs.
Then, predictions of the four patches are merged to make an output mask for the original
image. VGG-16 [70] categorizes the detected sign into 14 various classes. To increase the
detection of small traffic signs, the authors used the L1 constraint term to modify Tversky
Loss [91] instead of the conventional intersection over union loss. To appraise the system,
the author used the CURE-TSD dataset [92] and achieved a precision of 94.60% and recall
of 80.21% beating previous state-of-the-art results.

3.3.4. Fully Convolutional Siamese Networks

Utilizing fully convolutional Siamese networks [93], Wang et al. [68] proposed SiamMask, a
modified network with an addition of a binary segmentation task. This work explained
the importance of producing per-frame binary segmentation masks instead of relying on
low-level object representations extracted from existing spatial extraction networks [70].

As siamese networks [93] can conveniently encode the required information to pro-
duce a pixel-wise binary mask, the method adds a different branch and loss to the existing
architecture. The first modification generates a binary mask by adding a simple two-layer
neural network with learnable parameters during training. Secondly, the authors proposed
binary logistic regression loss for the new branch.

Unlike Mask R-CNN [25] and other segmentation architectures that rely on main-
taining spatial information throughout the network, the proposed approach generates
masks starting from a flattened representation of the object. For evaluation, two networks,
SiamFC [93] and SiamRPN [94], were modified to perform experiments on the VOT-2018
dataset [95]. SiamMask was able to perform better than prior existing algorithms.

3.4. Attention-Based Salient Object Detection

Employing salient object detection Zhengzheng et al. [69] fused RGB images with
thermal images to extract multilevel features to detect objects in adverse conditions. The
proposed work used a two-stream convolution neural network architecture to generate
RGB and thermal image features.

The proposed work exploited multiple attention mechanisms to extract weighted
features from both RGB and thermal input images. The extracted weighted features are
then fused to form single input for later convolutions. These feature maps are passed
through lower-level to high-level convolution blocks in a standard forward pass fashion.
Although high-level features are vital, mid-level features are essential to refine object
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details. Therefore, this work added Pyramid Pooling Module and a feature aggregation
Module to sharpen the object details and facilitate localizing the object.

To remove noise from features, the approach adds the Convolutional Block Attention
Module(CBAM) [96] to apply channel-wise and spatial-wise attention. Later, average
pooling aggregates the spatial information from feature maps while max-pooling generates
two different spatial context information. Subsequently, the approach merged the spatial
context features and applied the attention mechanism with the sigmoid. During the
training, edge loss and cross-entropy loss are added together. The proposed method was
tested on the VT5000 dataset [69].

4. Datasets

The performance of deep neural network-based approaches directly relates to the
size of datasets. In any area of research, standard datasets are essential to benchmark the
performance and draw fair comparisons between various proposed approaches. Several
challenging large-scale datasets have been introduced that consist of images or videos
captured in a harsh environment. In this section, we take a look at publicly available
challenging datasets. Moreover, Table 2 summarizes the essential information of the
explained datasets.

4.1. ExXDARK

One of the very few publicly available low-light datasets is the EXDARK (https:
//github.com/cs-chan/Exclusively-Dark-Image-Dataset accessed on 22 June 2021) dataset.
Patil et al. [97] published this dataset in 2020. The dataset contains 7363 real-life low-light
pictures from different low-light environments, such as indoors and at night-time. There
are a total of 12 classes in the dataset. All the images in the dataset were manually collected,
and afterwards, different image enhancement techniques such as de-hazing and blurring
are applied to them. The classes of this dataset are table, cat, people, motorbike, dog,
cup, chair, bicycle, boat, bottle, bus, car, and cat. As highlighted in Table 2, this dataset
only contains information for the boundaries of objects. Figure 15a exhibits a few samples
from this dataset. We have exploited this dataset to evaluate the performance of current
state-of-the-art object detection algorithms on this dataset.

4.2. CURE-TSD

CURE-TSD [92] (https://github.com/olivesgatech/CURE-TSD accessed on 22 June
2021) is a large-scale publicly available dataset for the task of traffic sign detection. The
dataset contains video sequences manually gathered by driving a car around different
areas at different times of the day to capture diverse scenarios. Furthermore, the manually
collected images are augmented to provide different kinds of occlusions such as rainy
weather, decolorization, blur, darkening, dirty lens, exposure, codex error, snow, and haze.
The authors of this dataset have suggested 34 videos for training, whereas 15 videos are
allocated for testing purposes. Given five different levels of challenges to each type of occlu-
sions, there is a total of 1.72 million frames. There are 14 types of traffic signs in this dataset
labeled as speed limit, goods vehicles, no overtaking, no stopping, no parking, stop, bicycle,
hump, no left, no right, priority to, no entry, yield, parking. Figure 15c illustrates few
samples of this dataset. We have included this dataset in our benchmarking experiments.

4.3. RESIDE

RESIDE [98] is a publicly available dataset employed for the task of object detection
in difficult weathers. The dataset contains multiple subdivisions, each for a separate
task. However, we have worked on the Real-world Task-driven Testing Set (RTTS) subset.
The subset RTTS contains 4332 real-world hazy images representing different scenarios
in a day. Images were collected manually through video cameras and annotated with
bounding boxes localizing objects. The dataset contains various real-world occlusions
such as hazy, rainy, snowy weather, and so on. There are five classes annotated as bicycle,
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bus, motorbike, car, and person. Figure 15b depicts a few samples from this dataset. We
incorporate this dataset along with EXDARK [97] and CURE-TSD [92] to benchmark the
results on state-of-the-art object detection algorithms.

() (k) )

Figure 15. Sample images belonging to challenging datasets. (a) Represents samples taken from ExDark [97] showing low-
light examples, (b) depicts samples from Reside [98] explaining harsh weather, (c) describes samples from CURE-TSD [92]
illustrating example of camera distortion, lens flare, (d) denotes samples from KITTI [89] depicting various objects to
be detected, (e) represents samples from Kaist [59] explaining saliency maps with their night-time images, (f) depicts
samples taken from UNIRI-TID [55] showing example of thermal images, (g) highlights samples from SKU-110K [63]
representing example of cluttered objects, (h) represents samples taken from Wider Face [72] showing faces at various
angles, (i) represents samples taken from VOT-2018 [95] presenting example of complex indoor scenes, (j) shows samples
taken from DFG [82] illustrating traffic signs at various places, (k) represents images taken from MS-COCO [12] describing
example of objects in daily life and (1) outlines samples taken from see in the dark [53] dataset exhibiting examples captured
at low illumination and high exposure.
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4.4. SKU-110K

SKU-100K (https:/ /github.com/eg4000/SKU110K_CVPR19 accessed on 22 June 2021)
is a new dataset collected by authors of the approach “Precise Detection in Densely Packed
Scenes [63]” where they have explained that for challenging scenarios, overlapping detec-
tions can occur. The publishers of this dataset collected data from supermarkets and stores
worldwide using cell cameras. The dataset only contains bounding box annotations for
each image. The dataset contains 11,762 images. For training, the authors have suggested
8233 images, 588 images for validation, and 2941 images for testing. To ensure the same
shop does not appear in more than one set, the authors recommended random selection of
the sample images for training, validation, and testing. A few samples from the SKU-110K
dataset are visible in Figure 15g.

4.5. UNIRI-TID

UNIRI-TID [55] (https:/ /ieee-dataport.org/open-access/thermal-image-dataset-person-
detection-uniri-tid accessed on 22 June 2021) is a novel dataset published in [54] for the task
of detecting human/non-human objects in difficult weather. The dataset contains thermal
images collected manually using the thermal camera in different weather conditions. The
dataset was created to provide a balanced ratio of images for each kind of difficult weather
such as rainy, fog, clear, and hazy. Furthermore, the creators of this dataset applied custom
augmentation such as grayscale to increase the number of images. The dataset has a total
of 35,974 images with 2663 images for clear weather, 2313 for rainy weather, 1135 for foggy
weather, 18,333 are grayscale images, and the remaining 6111 images contain a mix of all
possible weather conditions. Figure 15f illustrates a few samples of this dataset.

Table 2. Important statistics of challenging object detection datasets. OD denotes object detection, SOD represents salient

object detection, and COD is for category specific object detection.

Dataset OD SOD COD Samples Type Location

ExDark [97] /X v 7K Camera https://github.com/cs-chan/Exclusively-Dark-
Captured Image Image-Dataset
Camera

CURE-TSD [92] v X 4 1.72M  Captured https:/ / github.com/olivesgatech/CURE-TSD
Videos
Thermal https:/ /ieee-dataport.org/open-

UNIRI-TID [55] v X v 36K Camera access/thermal-image-dataset-person-detection-
Captured Image  uniri-tid

KAIST

Multispectral /S v X 95K Camera https:/ /soonminhwang.github.io/rgbt-ped-

Pedestrian Captured Image detection/

Detection [59]

DEFG Traffic Camera ) . .

Sign [82] X 4 7K Captured Image http:/ /www.vicos.si/Downloads/DFGTSD
Camera https:/ /github.com /12118 /RGBT-Salient-

V5000 [69] oY x 53K Captured Image Object-Detection

. Camera )

Wider Face [72] v X X 32K Captured Image http:/ /shuoyang1213.me/WIDERFACE/
Camera .

UFDD [60] v X X 6.4K Captured Image https:/ /ufdd.info/

See-in-the-Dark /X v 5K Camera https://github.com/cchen156/Learning-to-See-

[53] Captured Raw in-the-Dark
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Table 2. Cont.

Dataset OD SOD COD Samples Type Location
MS-COCO[12] v v 328K Camera https:/ /cocodataset.org /#download
Captured Image
Video captured  https:
VOT-2018 [95] o X X 60 sequences / /www.votchallenge.net/vot2018/dataset.html
- Camera ) . e
Kitti [89] a4 v 1.5K Captured Tmage http:/ /www.cvlibs.net/datasets /kitti/index.php
SKU-110K [63] v X X 117K~ Gamera https:/ /github.com/eg4000/SKU110K_CVPR19
' Captured Image PS8 ' & -
Reside [98] /X v 43K Camera https:// github.com /Boyiliee /RESIDE-dataset-

Captured Image link

4.6. KAIST Multispectral Pedestrian Detection

KAIST Multispectral Pedestrian [59] (http:/ /rcv.kaist.ac.kr/multispectral-pedestrian/
accessed on 22 June 2021) is a publicly available dataset containing both RGB and thermal
images for the task of pedestrian detection. The dataset contains 95,000 images with
thermal-RGB pairs captured by a camera mounted on a vehicle. The dataset contains
challenging images captured during night-time and in harsh weather. Furthermore, the
dataset provides scale, occlusions, and other challenges for object detection. The dataset
only has two classes of pedestrians and background. A few samples of the dataset are
illustrated in Figure 15e.

4.7. DFG Traffic Sign Dataset

DEFG traffic sign dataset [82] (http:/ /www.vicos.si/Downloads/DFGTSD accessed on
22 June 2021) is another dataset that provides ground truth for both traffic sign detection
and recognition tasks. There is a total of seven thousand images collected with 200 different
traffic signs. The complete dataset is divided into a training set with 5254 images and a
test set with 1703 images. There is also an extended version of the dataset available with
artificially augmented traffic signs. The extended version contains 15K traffic signs in
natural images. Figure 15j exhibits a few examples of this dataset.

4.8. VT5000 Dataset

VT5000 dataset (https://github.com /12118 /RGBT-Salient-Object-Detection accessed
on 22 June 2021) is the custom dataset curated by Tu et al. [69] for the task salient object
detection. The dataset has 11 challenges collected in different scenes. There are 5500 pairs
of RGB images with their corresponding thermal images. The main advantage of this
dataset is that the sample images consist of objects with different sizes and varying
illumination conditions.

4.9. Wider Face

Wider face dataset [72] (http:/ /shuoyang1213.me/WIDERFACE/ accessed on 22 June
2021) is another dataset curated for detecting faces in complex scenarios. The dataset
contains 32,203 images with high variance in scales, poses, and occlusions. Due to several
tiny faces in the images, this dataset is one of the most challenging datasets for face
detection. A few samples are visible in Figure 15h.

4.10. UFDD

UFDD [60] is a new face detection dataset that captures real issues not present in other
datasets. The dataset contains images captured in different weather scenarios with rain,
snow, and haze weather. Motion blur and focus blur have been manually added to images
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to increase the total number of images in the datasets. There is a total of 6452 images with
10,897 annotations.

4.11. See in the Dark

Another dataset that operates under low light is published by Chen et al. [53]. The
dataset contains 5094 raw short-exposure images of both indoor and outdoor scenarios.
Outdoor images are taken at night-time to add further complications. There are only
bounding box annotations in the dataset. Therefore, it is an ideal dataset to employ object
detection-based approaches. Figure 151 explains the dataset visually.

4.12. MS-COCO

Common Objects in Context (MS-COCO) (https://cocodataset.org/#download ac-
cessed on 22 June 2021) [12] is one of the biggest publicly available datasets introduced
by Microsoft in 2015. The dataset contains 91 objects with 2.5 million labeled instances
in 328,000 images. The dataset contains annotations for object detection tasks, instance
segmentation, keypoints detection, panoptic segmentation, and salient object detection.
The authors have split the dataset into three parts, with 82,783 images belonging to the
training set, 40,504 images for the validation set, and 40,775 images for the test set. A few
samples of the dataset are visible in Figure 15k.

4.13. VOT-2018

VOT-2018 [95] is a publicly available dataset for tracking challenges. The dataset has
60 sequences captured with the help of a camera. The data captured in the dataset present
various challenges such as occlusion, illumination change, motion change, size change,
and camera motion. The dataset facilitates the researchers to perform object detection and
instance segmentation as well. A few instances from the dataset are shown in Figure 15i.

4.14. Kitti

KITTT [89] (http://www.cvlibs.net/datasets/Kkitti/index.php accessed on 22 June
2021) is one of the largest publicly available datasets. KITTI consists of several sub-datasets
that perform various tasks such as image segmentation, 2D object detection, and 3D object
detection. The data are collected with the help of LIDAR and various cameras mounted on
vehicles and driving around the mid-size city of Karlsruhe, in rural areas, and on highways.
More or less, each image has 20 annotated objects. There is a total of eight object classes.
Figure 15d depicts few instances of this dataset.

5. Experiments

We have investigated the performance of current state-of-the-art object detection al-
gorithms on the three most challenging datasets. The idea is to conduct an analysis that
explains how well object detection algorithms can perform under harsh conditions. We
employed Faster R-CNN [23], Mask R-CNN [25], YOLO V3 [33], Retina-Net [99], and Cas-
cade Mask R-CNN [100] to benchmark their performance on the datasets of ExXDARK [97],
CURE-TSD [92], and RESIDE [98].

We have leveraged the capabilities of transfer learning in our experiments. All the
object detection networks are incorporated with a backbone of ResNet50 [101] pre-trained
on the COCO dataset [12]. We fine-tuned all the models for 15 epochs with a learning rate
of 2 x 107 and used Adam [102] as an optimizer. We resized images to 800 x 800 during
the training and testing phases.

6. Evaluation

This section discusses the well-known evaluation criteria essential to standardize
state-of-the-art results for object detection in difficult situations. Moreover, this section
analyzes the performance of the approaches discussed in Section 3 with quantitative and
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qualitative illustrations. Finally, we will present the outcome of our experiments on the
three most widely exploited challenging datasets.

6.1. Evaluation Criteria

The standardization of how to assess the performance of approaches on unified
datasets is imperative. Since object detection in a challenging environment is identical to
generic object detection, the approaches appraise similar evaluation metrics.

6.1.1. Precision

Precision [103] defines as the percentage of a predicted region that belongs to the
ground truth. Figure 16 illustrates an the difference between precise object detection and
imprecise object detection. The formula for precision is explained below:

Predicted area in ground truth TP
Total area of predicted region ~ TP + FP

)

where TP denotes true positives and FP represents false positives.

6.1.2. Recall
Recall [103] is calculated as the percentage of the ground truth region that is present
in the predicted region. The formula for the recall is given by:

Ground truth area in predicted region TP
Total area of ground truth region =~ TP + EN

@

where TP is true positives and FN represents false negatives.

Figure 16. The image explains the visual difference between precise and imprecise prediction in
object detection. The green color represents the ground truth, and the red color depicts the predicted
boundary. Considering the IOU threshold value equals 0.5, the left prediction is not precise because
the IOU between the ground truth and the inferred bounding box is less than 0.5. The bounding box
prediction on the right side is precise because it covers almost the complete ground truth area.

6.1.3. F-Measure

F-measure [103] is computed by taking the harmonic mean of precision and recall.
Mathematically, it is explained below:

2% Precision x Recall

®)

Precision + Recall

6.1.4. Intersection Over Union

Intersection Over Union (IOU) [104] is one of the most important evaluation metrics
that is regularly employed to determine the performance of object detection algorithms. It
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is the measure of how much the predicted region is overlapping with the actual ground
truth region. IOU is defined as follows:

Area of Overlap region
Area of Union region

)

6.1.5. Average Precision (AP)

Average Precision computes average value of precision over different levels of recall.
Higher the value of AP, the better performance and vice versa. The formula for calculating
average precision is mentioned below:

AP =Y (Ry — R,_1)Py (5)

n

where R, and P, are the precision and recall at the nth threshold.

6.1.6. Mean Absolute Error (MAE)

Mean absolute error measures average pixel-level absolute difference between pre-
dicted value and ground truth. It can be calculated as follows:

D
Y lxi — il (6)
i1

6.1.7. Mean Average Precision

Mean Average Precision (mAP) is another extensively applied evaluation metric for
category-specific object detection. The mAP is the mean of average precision computed
over all the classes. Mathematically, it is explained by:

1 N
mAP = N Z; AP, 7)

where AP; is the average precision for a given class explained in Section 6.1.5 and N depics
the total number of classes.

6.2. Evaluations for Object Detection in a Challenging Environment

Object detection in a challenging environment is used to distinguish objects from the
background and regress their boundaries. Tables 3 and 4 summarize the performance
comparison of various methodologies that are explained in Section 3. Different approaches
have reported results on specific evaluation metrics. Therefore, we have placed a “-” on
the unused metric. By looking at Table 2, apart from [54,65], all the methods have reported
results on separate datasets and utilized distinctive evaluation metrics. Therefore, the
results summarized in these tables are not directly comparable to each other. Nonetheless,
it is evident that there is still much room for improvement in all employed datasets. For
instance, the method presented in [63] achieves the AP of 0.49 on SKU-110K dataset.
Owing to the challenges present in the dataset (see Section 4.4), the method could only
detect objects present in front of the camera or classify multiple objects with a single
class. The approach introduced in [57] obtain the AP of 0.34 on the ExDark dataset, which
contains dark indoor scenes make object detection even more challenging. Similarly,
methods in [54,65] report mAPs of 0.35 and 0.68 on the KAIST dataset, which includes
pair of thermal and RGB images taken at night-time or in harsh weather conditions (See
Section 4.6).
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Table 3. Object detection performance analysis in challenging environments. IOU represents intersection over union
threshold, whereas mAP and AP denote mean average precision and average precision, respectively. FPS represents frames
per second calculated at inference time.

Literature Year Dataset IOU mAP AP F-Measure Highlights FPS
Eran et al. [63] 2019 SKU-110K 0.50:0.95 - 0.49 - Deep loU with EM-Merger (Section 3.2.3) 0.5
Yuxuan et al. [57] 2020 ExDark 0.50:0.95 - 0.34 - RFB-Net (Section 3.1.2) -
Zhengzheng et al. [69] 2020 VT5000 - - - 0.81 Attention-based SOD (Section 3.4) -
Mate et al. [54] 2020 KAIST 0.50:0.95 0.35 - 0.36 YOLO (Section 3.1.1) -
Ghose et al. [65] 2019 KAIST 0.50:0.95 0.68 - - Deep Saliency Networks (Section 3.3.1 ) -
Avramovic et al. [62] 2020 DFG 0.50 0.94 - - Mask R-CNN (Section 3.2.2) 2
Sasagawa et al. [48] 2020 SID - 0.55 - - YOLO (Section 3.1.1) -
Rashed et al. [66] 2019 KITTI 0.75 - - - ShuffleSeg Segmentation Network (Section 3.3.2) 25
Wang et al. [68] 2019 VOT-2018 0.50 0.90 - - FC Siamese Networks (Section 3.3.4) 55
Kun et al. [64] 2019  Night-Dataset - 0.82 - - GAN + Faster R-CNN (Section 3.2.1) 3.22
Kamal et al. [67] 2019 CURE-TSD 0.50:0.95 - 0.94 - SegNet + U-Net (Section 3.3.3) -

Another technique that detects traffic signs on night-time images [62] reaches an
mAP of 0.94 on the DFG dataset, which is elaborated on in Section 4.7. The method by
Sasagawa et al. [48] detects objects with an mAP of 0.55 on the SID dataset that contains
images captured under low light (see Section 4.11). Furthermore, Wang et al. [68] attain a
mAP of 0.90 on the VOT-2018 dataset (see Section 4.13). The method introduced in [64]
that converts night-time images to day time prior to object detection reaches a mAP of 0.82,
and the approach from Kamal et al. [67] accomplish AP of 0.94 on the CURE-TSD dataset,
which is explained in Section 4.2. For the sake of readability, we have presented the results
of [61,72] in a separate table (Table 4) because they reported results on their own introduced
evaluation metrics. It is critical to emphasize that, apart from the five methods [62-64,66,68],
all other approaches have not discussed their computational performances.

Table 4. Object detection performance: the results mentioned in this table are not directly comparable because different
datasets and evaluation metrics have been used.

Literature Year Dataset Evaluation Metric  Score Highlights FPS
Ranjanetal. [61] 2019 WIDER Face  True Accept Rate [61]  91.4% Single Shot deep pyramid Face Detector -
Sarin et al. [58] 2019 KAIST True Positive Rate [58] 92.80%  Single Shot Human and Face Detector (Section 3.1.3) -

Along with the quantitative analysis, we examined a few of the discussed approaches
by paying attention to their failure cases. In Figure 17, we observed that from the bird’s-eye
view, the method proposed by [54] fails to detect people. Similarly, the work of [58] gets
confused with non-living human-like objects in images as exhibited in Figure 18.

The system of Kamal et al. [67] is vulnerable to detect traffic signs that are not close
to the camera. A visual illustration is visible in Figure 19. Another approach presented
by Wang et al. [68] is unable to detect objects in motion blur images. On top of that, the
work tends to produce false positives on the images where no object is present. Figure 20
exhibits an example of such cases.
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Figure 17. Failure case of the method proposed by Mate et al. [54]. Fails at detecting persons from
the bird’s-eye view. Reprinted from [54].

Figure 18. Failure case of the method proposed by Sarin et al. [58]. Human and face detector fails in
low light and gets fooled by non-living human-like objects in images. Reprinted with the permission
from [58]. Copyright 2015 IEEE.

Figure 19. Failure case of the proposed method by Kamal et al. [67]. The proposed method fails
if traffic signs are placed at different places. Adapted with the permission from [67]. Copyright
2019 IEEE.
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Figure 20. Failure case of the proposed method by Wang et al. [68]. The proposed method fails when
faced with motion blur or a “non-object” pattern. Reprinted from [68].

6.3. Evaluation of Our Experiments

The performance of current state-of-the-art object detection algorithms on challenging
datasets is presented in Table 5. Since the task of object detection in challenging environ-
ments is analogous to a generic object detection problem, we have reported the results by
employing the same evaluation metrics [12]. By looking at Table 5, it is evident that there is
significant room for improvement on all of the employed datasets. For the ExDark dataset,
YOLO V3 [33] produced the best results with an AP of 0.67. For CURE-TSD, Cascade Mask
R-CNN [100] yields the best score, with an AP of 0.28. In the case of the RESIDE dataset,
Mask R-CNN [25] shows the best results with an AP of 0.51. Furthermore, we investigate
the computational capabilities of each employed object detection network on all three
datasets in terms of frames per second. Owing to the lightweight one-stage architecture,
YOLO V3 produces the best results with FPSs of 51, 50, and 50 on the datasets of ExDark,
CURE-TSD, and RESIDE, respectively.

Table 5. Object detection performance comparison on three challenging datasets. MR-CNN, FR-CNN, and CMR-CNN
represent Mask R-CNN, Faster R-CNN, and Cascade Mask R-CNN, respectively. APs denotes average precision for small
area at IOU = 0.50:0.95. APy, represents average precision for medium area at IOU = 0.50:0.95 and AP} depicts average

precision for large area at IOU = 0.50:0.95. FPS highlights the speed of object detection networks at inference time in terms
of frames per second.

ExDark CURE-TSD RESIDE
Our Models
AP AP APy AP, AP, FPS AP AP AP, AP, AP, FPS AP AP® AP, AP, AP, FPS
MR-CNN 054 084 022 046 059 8 020 035 02 017 037 5 051 079 04 011 057 8
FR-CNN 053 082 022 046 058 13 025 043 003 014 041 13 049 078 007 070 056 12
Yolo V3 067 093 05 061 071 51 016 032 005 003 026 50 037 078 007 087 056 50
Retina-Net 036 067 012 030 052 11 014 025 012 019 035 12 048 075 01 007 055 11
CMR-CNN 049 078 027 037 055 10 028 038 006 023 034 11 050 076 006 012 056 8

The main reason for the low performance of these state-of-the-art generic object
detection algorithms is that they are not trained on challenging datasets that include low-
light images or occluded images. Furthermore, the backbone network of these architectures
cannot optimally extract the spatial features necessary for detecting objects in challenging
environments. Hence, it is empirically established that generic object detection algorithms
are not ideal for resolving object detection in challenging images.

7. Open Challenges and Future Directions

After reviewing many methodologies and benchmarking on object detection in a
challenging environment, we have noticed several open issues that need to be highlighted
to be tackled in future research.

Standard evaluation criteria: We observe that there has not been a defined standard
while benchmarking on object detection in challenging situations. Some approaches
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have employed fl-score [54,69], whereas some have used mAP and AP to report their
results [63,65,67]. Moreover, we notice that different IOU thresholds have been exploited
to present the result, making the approaches incomparable to each other. Therefore, it is
vital to establish a generic standard on which all future approaches working in this field
can report the results.

Real-time applications: Similar to generic object detection, real-time challenging
object detection is the growing need in practical scenarios. Generally, deep neural architec-
tures require high computing power, which is unavailable in embedded devices. Therefore,
it is essential to build methods that can optimally work on low computational resources.
Furthermore, future research should discuss the computation of their proposed method,
including the quantitative and qualitative analysis.

Weak/unsupervised approaches: To the best of our knowledge, all the current ap-
proaches tackling object detection in tricky environments with deep neural networks
require large-scale annotated datasets. The creation of such datasets is an expensive
and laborious process. Hence, there is a growing need to introduce challenging object
detection systems that can train on no labels (unsupervised) or very few labels (weak
supervised learning).

Intelligent domain adaptation: Current object detection systems under challenging
environments work in similar types of challenges. For instance, a network trained on low-
light images will not detect objects present in underwater images. However, we humans
can adapt our learned knowledge into various domains. In the near future, we can expect
a flurry of innovative ideas towards this promising direction.

Leveraging GANSs: The deep neural network-based object detection systems demand
enormous datasets for training networks. The ability of GANSs to produce fake images
can be highly beneficial to create large-scale challenging datasets. Moreover, most of the
challenging datasets contain low-light, blurry, or not spatially rich images [59,97,98]. In
future research, powers of recently published cycle GANs [105,106] could be exploited to
transform images that are better suited for object detection algorithms.

Combining spatial and textual information: Modern object detection approaches
under complex scenarios operate on CNN-based architectures that mainly depend on
spatial features. However, images present in the challenging datasets are not spatially rich,
resulting in suboptimal extracted features. Therefore, fusing textual information along
with spatial information will facilitate the network to localize the objects. Nevertheless,
developing efficient multimodal systems to detect objects in difficult conditions would be
an exciting future direction.

8. Conclusions

With the rapid computational advances, noticeable improvements have been observed
by employing deep learning-based object detection algorithms in challenging environ-
ments. This paper comprehensively reviews the relevant approaches that have attempted
to identify objects under challenging scenarios through deep neural networks and pro-
vides an empirical performance analysis of currently employed object detection algorithms.
Moreover, the advantages and limitations of all explained techniques are provided. Fur-
thermore, this work describes all the relevant datasets currently exploited to resolve the
problem of object detection under challenging environments. This work discusses the
well-known evaluation criteria and presents a performance analysis of explained method-
ologies and object detection algorithms by benchmarking recent object detection algorithms
on challenging datasets of ExDark [97], CURE-TSD [92], and Reside [98]. In the end, we
highlight the current open issues and present future direction that can enhance the research
of object detection under challenging environments.
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