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Abstract: Mapping application task graphs on intellectual property (IP) cores into network-on-chip
(NoC) is a non-deterministic polynomial-time hard problem. The evolution of network performance
mainly depends on an effective and efficient mapping technique and the optimization of performance
and cost metrics. These metrics mainly include power, reliability, area, thermal distribution and delay.
A state-of-the-art mapping technique for NoC is introduced with the name of sailfish optimization
algorithm (SFOA). The proposed algorithm minimizes the power dissipation of NoC via an empirical
base applying a shared k-nearest neighbor clustering approach, and it gives quicker mapping over
six considered standard benchmarks. The experimental results indicate that the proposed techniques
outperform other existing nature-inspired metaheuristic approaches, especially in large application
task graphs.

Keywords: network-on-chip; sailfish hunting; metaheuristic optimization

1. Introduction

The overall performance and scalability of the system-on-chip (SoC) are degraded
because of the increasing number of intellectual property (IP) cores embedding on the SoC.
For the improvement of overall performance and flexibility of the SoC, new promising
solutions have been proposed, and they are called network-on-chip (NoC) [1]. NoC is an
on-chip, packet-based communication switching network which is created for interaction
between IP cores of the SoC designs [2]. Routers (switch fabric) are linked in some standard
topology for communications among IP cores. A router is available for every IP core in an
NoC. The router is a basic building block of the NoC architecture; a fault-resilient router
architecture is necessary for reliable on-chip communication. The authors of [3–6] did
some architectural modifications in the existing NoC routers designs to propose a reliable
on-chip network communication infrastructure. A message passing technique is used
for the exchange of data between IP cores. As per the multi-core system principle, the
contribution of NoC in power consumption of the total system is around 40%, and this has a
vital role in network performance [1,7]. The power, latency and area of NoC-based systems
are conspicuously impacted by the selection of an on-chip interconnection architecture [7].
Depending on the interconnection networks, numerous standard topologies are established
for the NoC. The most renowned topology out of all prevailing conventional topologies of
the NoC architecture is a mesh topology [8].

In the mesh topology, there are short paths for communication between IP cores and
high bisection width. The interconnected structure is regular and fixed, and the links are of
equal size. Considering this context, various techniques for applications mapping have
been proposed using search-based and exact optimization methods. Additionally, proper
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modeling via an analytical approach has been investigated to reduce the area, latency and
power in NoCs.

Because computation time to solve the mapping problem increases with the size of the
application to be mapped, it is known that an application mapping is a non-deterministic
polynomial-time (NP)-hard problem. To obtain the optimal solution over NoC perfor-
mance metrics, search-based optimization techniques have been considered. Therefore, the
solution of NP-hard problems is significantly dependent on the choice of the best heuristic
or metaheuristic technique.

In practical systems, resources are limited so that an efficient utilization of given
resources is a critical issue. Optimization techniques can be employed in a wide range
of areas, including engineering, finance, resource planning and Internet routing. Using
a mathematical model of the social and political progression, metaheuristic algorithms
provide an effective algorithm to solve the given optimization problems. These algorithms
can obtain a universal solution by facilitating interaction between high level approaches
and local improvement methods.

Furthermore, a metaheuristic algorithm can be efficient if it offers a realistic equi-
librium between experimentation and exploitation on a provided optimization problem,
which is critical. Intensification (i.e., exploitation) is associated with local search, while
diversification (i.e., exploration) is associated with global search. Diversification tends to
find out diverse solutions globally (i.e., global search). On the other hand, intensification
focuses on searching local regions with the knowledge of the current best solution from
this region (i.e., local search). There is no initial solution required for global search, while
local search starts from an initial candidate solution. The mobility of candidate solutions
should be randomized as far as possible during the exploration phase. On the other hand,
the exploitation process entails thorough investigation of the promising area(s). The most
dominant difference between current metaheuristic algorithms, in general, is how they
balance the discovery and exploitation phases. Depending upon the context mentioned
above, sailfish optimization (SFO) is considered in this study.

SFO provides a suitable equilibrium between intensification (exploitation) and diver-
sification (exploration) to avoid early convergence. To examine the performance metrics of
NoC, the novel metaheuristic optimization algorithm used in this paper, that is, SFO, is
described in [9]. The SFO algorithm is modeled after a sailfish group targeting a school of
sardine prey in a series of attacks. To begin, SFO uses two assortments of prey and predator
species to replicate the technique of group hunting. Second, the presented algorithm breaks
down the mutual security of grouping prey by alternating attacks. Third, prey mobility
can be changed across the search region, allowing the hunter to capture the right prey and
improve its fitness. The effectiveness of the SFO algorithm is verified by examining the
optimal mapping for eight NoC benchmarks for the two-dimensional (2D) mesh topology.

The remainder of the paper is structured as follows. The related work is given in
Section 2. The inspiration for the sailfish optimization algorithm is described in Section 3. The
mapping using SFO, models used for the analysis of metrics and the proposed algorithm
are described in Sections 4–6, respectively. The experimental setup along with considered
benchmarks and results are summarized and analyzed in Section 7. Section 8 ends with
some conclusive remarks.

2. Related Work

In [10], Araki and Yoshihiro presented a multi-path reliable distance-vector routing
strategy by utilizing multiple paths for the extension of reliable distance-vector routing
(RDV) for the improvement of communication performance, decreased delivery delay,
higher load-balancing and more substantial network capacity. In comparison to RDV, fault
tolerance is also greater against the topology modifications. In [4], Rashid et al. proposed
a reliable on-chip network communication architecture by making some architectural
improvements in the existing NoC routers’ designs. In [11], a router’s controllers design
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based on finite-state machine (FSM) is presented for the minimization of error propagation,
aiming at low utilization of logical resources.

In [12], Wu and Cai presented a Fibonacci tree optimization strategy (FTOS) for the
scheduling query of wireless sensor networks. The proposed algorithm provided less
energy consumption and optimization of detection efficiency. In [13], Rhee et al. presented
an artificial neural network (ANN) model combined with the genetic algorithm (GA) for
the cost-effective operation of a silo. The combined technique gave the optimized results
with the improvement in the accuracy of internal level prediction of the silo, and an efficient
number of sensors and their positions of installation are determined. In [14], the authors
presented a comprehensive overview of the algorithms of machine learning for embedded
systems and mobile computing space. In [15], the authors presented a heuristic technique
based on the moth-flame optimization (MFO) algorithm for resolving the weak exploration
problem of the k-means data clustering algorithm.

The problem of application mapping has stimulated the research community because
of the expeditious growth in NoC. Tosun et al. proposed integer linear programming (ILP)
as an exact mapping method for the mesh-based two-dimensional NoC with an energy
minimization principle in [8]. In [16], Hu and Marculescu presented a branch and bound
(BB) mapping solution for the topological allocation of IP cores on an NoC platform for
the minimization of the total consumption of energy with the limitation of bandwidth of
the link. In [17], Lei et al. presented a two-step genetic algorithm (GA) based on delay for
the communication of NoC. The prime function for the scheduling and mapping of IPs
was the minimization of overall execution time. Murali and Micheli proposed a heuristic
approach based on a mapping algorithm for cores mapping on 2D mesh topology with
the restraint of bandwidth reservation in [18]. In [19], Lu et al. presented a clustering
algorithm based on simulated annealing for reducing the simulation time of an annealing
process of a large system. The process of clustering compromised the optimum results
but accelerated the computation time. In [20], Radu and Vintan proposed an optimized
simulated annealing (OSA) algorithm for 2D mesh mapping by optimizing the parameters
of the annealing process for producing the optimum outcomes with less time than the
conventional simulated annealing schemes. Ascia et al. [21] presented a multi-objective
GA for mapping of IP cores in a 2D mesh topology for optimizing the power consumption
and network performance. In [22], Jena and Sharma presented a heuristics search based
multi-objective GA for the mapping of IP cores on a 2D mesh topology for the optimization
of link bandwidth, the performance of the network and power dissipation. Sepulvada et
al. also presented a multi-objective adaptive immune algorithm (MAIA) for the problem
of application mapping of NoC architecture [23]. In [24], Harmanani and Farah proposed
an algorithm for assigning tasks to the nodes of a 2D mesh network based on simulated
annealing. Hu et al. proposed a task mapping technique for the NoC architecture with a
constraint of bandwidth [25]. This technique was energy aware and expedited the run-time
of the process of task mapping, but it shows trade-off in the network performance results.

Ye et al. derived the power models for connectivity wires, switch and inbuilt buffer
in [26]. In [27], the authors provided a well-accepted mathematical term for 2D NoC
interconnect energy models. Kahng et al. [28] and Ost et al. [29] created a practical power
model for 2D NoC as a follow-up to the one in [27]. In [28], the power model takes into
account architecture-level power as well as region modeling and router capacity for the
router. The power modeling in [28] was validated and checked by Ost et al. [29]. The
authors of [30] calculated the efficiency of mesh-dependent 2D and 3D NoCs based on the
comprehension of energy depletion between the cores and the routing area. The thesis by
Sahu and Chattopadhyay [31] takes advantage of a comprehensive review of framework
mapping techniques for NoC and examines various mapping methods proposed during
the last period. As per Sahu and Chattopadhyay [31], a heuristic-based mapping strategy
provided a better end result in terms of network output metrics optimization.

In [32], a simulated annealing (SA) algorithm is implemented as a metaheuristic
approach to create an efficient mapping with IP connectivity specifications as a restriction
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for 2D NoC. The authors of [33] implemented mapping by scheduling with an ant colony
optimization (ACO) approach for 2D NoC. In [34], a particle swarm optimization (PSO) is
used as a mapping technique on both 2D and 3D NoCs, with the connectivity metric as
the objective function. To tackle the problem addressed in [32], a power-aware mapping
technique for 2D NoC utilizing SA with the taboo quest (SAT) was proposed by Alagarsamy
and Gopalakrishnan [35]. In [36], a mapping technique for a 2D NoC is presented. The
foremost objective is to build a chain of linked cores that can be used to construct a new
mapping system. In comparison to similar ones, the authors of [36] attempted to use less
bandwidth. In [37], Tosun presented a heuristic approach for a mesh 2D NoC in which a
priority list based on overall and average communication bandwidth was established.

In [38], a reliability-aware technique is presented. The featured graph is divided into
two sub-graphs, which are used to reduce transmission flow. As a result, transmission
flow between the two sub-graphs is reduced, while traffic within every graph increases.
Niknam and Amiri presented a novel hybrid PSO-based approach to address the clustering
issue in [39]. For better performance, ACO and k-means techniques were used. The
presented approach was tested and validated on various publicly available datasets, and
the preliminary observations are optimistic. The suggested hybrid approach was shown
to coincide with an optimal solution in the majority of instances. Junior et al. [40] also
presented an ACO-based approach for finding and maximizing directions in a mesh-based
NoC. Routed optimization was achieved by reducing the total delay in packet transmission
between activities. The visionary conclusions showed the efficiency of the ACO-based
technique. In addition, Xie et al. proposed an online mapping protocol to refine task
mapping methodology for minimizing connection power consumption [41]. First, the
run-time interconnection point of applications was investigated. Secondly, this method
measured the mapping assignment and used real-time web mapping.

3. Sailfish Optimizer

In this section, the key inspiration for the SFO algorithm (SFOA) is discussed. The
suggested algorithm and mathematical models are then thoroughly explained.

Inspiration

Shadravan et al. [9] recently introduced a new metaheuristic technique called SFO,
which incorporates the action of both a predatory group of sailfish and a prey group of
sardines. The sailfish is known as a social predator since it attacks and catches its prey
in groups. Predators use various killing techniques in cooperative hunting. The class of
sailfish, for example, is distinguished by the alternation of attack techniques. It entails
that each member of the group attacks the school of prey (sardine) alone at a given time,
injuring or hunting some of them while the other group members conserve their strength.
Whenever a sailfish attacks a school of prey, it will update its location concerning them.
Furthermore, the sailfish will update their location to occupy vacant space around the
prey school and imitate circling the prey. When a member of the sardine group (prey) is
wounded, the sardine group changes direction to avoid the sailfish’s subsequent attacks.
The general procedure of the sailfish optimizer algorithm is defined in the subsections
that follow.

Group hunting is an intriguing illustration of collective activity in communities of
invertebrates, fishes, birds and mammals. Compared to hunting alone, predators do not
require a lot of power to kill their prey while hunting in groups.

Predators in the most basic type of group hunting aim to finish off the prey by step-by-
step planning of the attack, whereas predators under the more sophisticated class of group
hunting practice specialized positions to mob and capture the prey [42]. The alternation
of attacks is one of the most complicated group hunting techniques. This tactic allows
the hunter to save strength when other predators are injuring the prey. Sailfish hunting
in groups that alternate attacks on the schooling sardines is an illustration of this kind of
method [43,44].



Sensors 2021, 21, 5102 5 of 21

The most expeditious fish in the ocean, sailfish can attain speeds up to 62 miles per
hour. They hunt in clusters, herding schools of smaller fish, such as sardines, near the
surface. Sailfish find the sardines’ mobility and speed during the assault very difficult. The
sailfish either slashes multiple sardines with its rostrum or taps a single sardine, causing it
to become unstable. Sardines cannot float quickly enough to dodge the tip of the sailfish’s
rostrum and are incapable of responding to this community hunting because the sailfish
has one of the fastest accelerations ever observed in a floating creature. According to
sardine experimental action, wounded sardines would be isolated from the prey shoal and
unable to travel with the shoal, resulting in their capture by the sailfish [42].

The majority of sailfish attacks do not result in sardine deaths, and only a small
percentage of sardines are directly caught. However, as sailfish attacks become more
common, an increasing number of sardines are injured. Animals who hunt in groups,
such as wolves, are more likely to engage in this form of hunting. On the other hand,
these sailfish parties split up and regroup with new affiliates daily. During an assault,
a sailfish preserves its big back flipper and sacral flippers upright to maintain its body
strength. Often, right before an attack, they transform their body color from the usually
bluish-silver parallel edges deepening to nearly black. The purpose for the color change
is unclear, but it appears to be a form of communication between sailfish [42]. Sailfish
use shifts in their body to signal which should move first, allowing them to avoid being
injured by a companion. The attack-alternation technique of sailfish party hunting is the
key inspiration for the SFO algorithm. The natural actions of sailfish and sardines are
mathematically represented in the following subsection, and an optimization approach
based on this mathematical model is developed.

4. Mapping Using SFOA
4.1. Problem Formulation

An application is characterized by a directed graph of the network in NoC, which
is later scheduled by the scheduler using another directed core graph of the network on
the existing IP-cores. The directed core graph is transmuted and depicted via an effective
mapping method on the NoC topological architecture using an architecture graph.

Definition 1. Directed Task Graph (DTG): The task graph of the network is a directed acyclic
graph DTG(P, E), where every node of the graph symbolizes a task of the computational process of
the application. In addition, the directed edges or links represent the communication or data volume
among the tasks communicating.

DTG(P, E) (1)

where P and E are the sets of nodes, which correspond to the processes or tasks, and links
or edges, respectively, and pi ∈ P, ei,j ∈ E for i, j = 1, 2, 3, · · · .

Definition 2. Directed Core Graph (DCG): The core graph of the NoC architecture is a directed
graph DCG(C, D), where every node of the graph symbolizes the IP cores in the topology. The
directed edges represents the direct communication among the nodes (i.e., IP cores, di and dj).

DCG (C, D) (2)

where C is the set of IP cores or processing elements and D denotes the set of links or edges
with communication directions in the architecture graph. Elements in C and D are defined
as ci ∈ C and di,j ∈ D for i, j = 1, 2, 3, · · · .

4.2. SFOA for NoC Mapping

The initial sailfish and sardine populations are generated using the initial mapping
and weight of the task graph given at time t = 0. Considering the settings of parameters
of the proposed algorithm, the fitness value, which is the communication cost (CC) of the
best sailfish (i.e., mapping solution), is computed. (For CC, refer to Equation (8) which
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is defined in Section 5). Later, the positions of sailfish and sardine are updated in in
consideration of attack power (AP). (For position updates of sailfish and sardine, refer
to Equations (21) and (27), respectively. For AP, refer to Equation (24) in Section 5). After
updating the positions, the optimized result of mapping (sailfish) can be obtained.

4.3. Parameters Setting for SFOA

The proposed algorithm requires the setting of a few basic parameters to verify
the efficiency of group hunting. In the proposed algorithm, the fitness function under
consideration is the cost for communication, which is denoted by CC. The population size
is 300, the number of iteration is equal to 150 and pp is the rate between the sailfish and
sardine (where pp is defined as the fraction of the sardine population which forms the initial
sailfish population), which is set to 0.1; these values are set for the application mapping
on 2D NoC. These values are set based on the number of iterations run and optimization
acquired for deducing an optimal solution. They also differ as per the properties of the
application considered for mapping.

For the analysis of the performance parameters of an NoC such as energy, power and
communication cost computation along with latency and average throughput, two models
are used in this work. These two models are named the Bit Energy model and CMOS
cell library model, and their mathematical expressions are explained in detail and in the
next section.

5. Models Used for Analysis of Metrics

For analyzing the performance metrics of an NoC, two models are considered in the
presented work [25,43]. An effective trade-off between the faster mapping over 2D mesh
and performance metrics of NoC is presented by SFOA in this study.

5.1. Bit Energy Model

For the estimation of consumption of power of the router in the network, an energy
model [25] is considered as follows:

EB = ESB + ELB, (3)

where EB is the energy used up for transferring 1 bit of data from the source node to
the destination node, which comprises the energy of the switch (ESB) and energy of the
link (ELB) of the NoC network. The average network energy consumption EB(pi ,pj)

for
transferring 1 bit of data from a source node pi to the destination node pj is calculated by
the following equation:

EB(pi ,pj)
= Hcount × ESB + ( Hcount − 1)× ELB, (4)

where Hcount is the Manhattan distance between the source node (ai, aj) and the destination
node (bi, bj), which is obtained by

Hcount = |ai − bi|+
∣∣aj − bj

∣∣. (5)

Therefore, the total energy consumption of the network (ET) is calculated by using the
average network energy and the link bandwidth, BW(pi ,pj)

, between nodes pi and pj.

ET = ∑
i,j
(EB(pi ,pj)

× BW(pi ,pj)
) (6)

Substituting Equation (4) into Equation (6), ET can be rewritten by

ET = ∑
i,j

[
(Hcount × ESB + (Hcount − 1)× ELB)× BW(pi ,pj)

]
. (7)
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Moreover, the cost of communication is defined by

CC = ∑
i,j

Hcount × BW(pi ,pj)
. (8)

Different mapping results generate different energy and cost values. The prime
concern is to obtain a mapping function that provides minimal cost for the whole network.
The communication cost of the applications of NoC is considered the performance measure
for distinct applications in this research work.

5.2. CMOS Cell Library Model

The proposed SFO algorithm utilizes the standard CMOS cell library model [43] for
the calculation of network power, latency, energy consumption of packets and throughput
of an NoC system. For the computation of average latency of the network via this model,
the following equation is used:

Latavg =
1
N

N

∑
i=1

(
1
Ni

Ni

∑
k=1

(
Lat(i,j)

))
, (9)

where N is the total number of processor or cores in the network, Ni is the total numbers of
received packets by the core i and Lat(i,j) is the latency of packet j at destination node i.

The average throughput of the network, TPavg, is evaluated as follows:

TPavg =
1

N(TS − TW)

N

∑
i=1

Ni, (10)

where TW is the warm-up time of the simulation and TS is the simulation time.
The network average power, PNavg, is computed by

PNavg =
1
N

N

∑
i=1

Ni

∑
k=1

[
α(i,k)PN(act,k) +

(
1− α(i,k)

)
PN(inact,k)

]
(11)

where α(i,k) is the active probability of component k in router i after TW . Moreover, PN(act,k)
and PN(inact,k) are the post-layout active and inactive power of the component k.

Finally, the network average energy consumption by every packet is given by

EPavg =
TS − TW
NNpack

N

∑
i=1

Ni

∑
k=1

[
α(i,k)PN(act,k) +

(
1− α(i,k)

)
PN(inact,k)

]
(12)

where N is the total number of cores available in the network. Npack

(
= ∑N

i=1 Ni

)
is the

total number of packets injected in the network. For a certain number of experiments,
N remains the same, and Npack can be changed by increasing or decreasing the packet
injection rate.

6. The Proposed Algorithm: SFOA

The proposed SFOA takes the inputs, directed task graph, DCG, and directed network
graph, DNG, and effectively performs the mapping of the task onto the cores of the 2D
NoC topological architecture.

6.1. Empirical Base for Initial Mapping

To create the empirical base for the initial mapping, the following five steps of the self-
adaptive chicken swarm optimization (SCSO) algorithm [44] are considered. Furthermore,
Figure 1 shows the flowchart for initial mapping procedure.
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• Step 1: From DCG, randomly select the IP-Core

Rand(ci), for ci ∈ C (13)

• Step 2: Use the DC matrix to find the presence of direct connection of the selected core
with each core.

DC =

{
1 ; if (ci, cj) = dij ∈ D
0 ; otherwise

(14)

• Step 3: Calculate the average CC (Ai) and weight (Wi) for each core (ci) as follows:

Wi = ∑
dij∈D

wij (15)

Ai = ∑
dij∈D

wij

|N(ci)|
, (16)

where wij is the weight between cores ci and cj and N(ci) is the open neighborhood of ci.

Figure 1. Flowchart for initial mapping.

For the identification of neighbors, use the following equation:

N(ci) =
{

ci ∈ C
∣∣ (ci, cj

)
= dij ∈ D

}
(17)

• Step 4: For the identification of hop counts among the source node ci and sink node cj,
use the following matrix:

H =
[
Hij
]

(18)

where
[
Hij
]

means that (i, j) element of matrix H is given by Hij. Matrix H indicates
the minimum probable links for communication between the source and sink nodes.
Considering d(ci, cj) is the shortest path between the cores ci and cj, N(ci, cj) is the number
of hops in the shortest path.

Hij = min
(

N
(
ci, cj

))
(19)
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• Step 5: Using the shared K-nearest neighbor clustering approach, form a diverse
cluster. If ci and cj have each other in their closest K-nearest neighbors list, then an
edge exists between them. The strength of this edge is evaluated using:

str
(
ci, cj

)
= ∑ (K + 1− o)× (K + 1− p) (20)

where K is the size of the neighbor’s list, o is the position of shared near-neighbor in ci
list and p is the position of shared near-neighbor in cj list. Hence, cio, i.e., the shared
near-neighbor in ci list, is equal to cjp, that is the shared near-neighbor in cj list.

After Step 5, an empirical base is created with clustered DCG. Figures 2–4 show the
standard NoC video object plane decoder (VOPD) benchmark, clustering of VOPD task
graph and its initial mapping on a 4× 4 mesh, respectively.

Figure 2. Standard NoC VOPD benchmark.

Figure 3. Clustering of VOPD task graph.
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Figure 4. Initial mapping of VOPD task graph on 4× 4 mesh.

6.2. Video Object Plane Decoder

Video object plane decoder (VOPD) is an application comprising several sub-tasks:
run-length decoder, downsampler, quantizer, etc. These sub-tasks require communication
among themselves at the rates specified in MBs on the edges between them. Figure 5
represents the architectural diagram of the VOPD, while Figure 2 illustrates the graphical
representation of the VOPD tasks. VOPD consists of 16 sub-tasks having 21 edges labeled
with distinct communication bandwidth.

For the initial phase of mapping, a random procedure is adopted as a mapping
strategy. The outcome of this initial mapping is considered the input for the proposed
SFOA to minimize the consumption of power and communication cost of 2D NoC. Figure 6
represents the flowchart for SFOA.

6.3. SFOA Algorithm
6.3.1. Initialization

The first step of SFOA comprises initialization of the sailfish and sardine populations.
The population generation/initialization is random. Variable position vectors represent
that the sailfish can search in multiple dimensions. In this algorithm, the candidate solution
considered is sailfish and the positions of sailfish in the search space are the variables of the
problem. Firstly, the sailfish and sardine populations are randomly initialized as XSFitr

i and
XSitr

j , which are the position of sailfish and sardine populations where the subscripts i and
j are the indices of sailfish and sardine from the initialized population and the superscript
itr denotes the index of iteration.
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Figure 5. Architectural representation of VOPD.

Figure 6. Flowchart for proposed SFOA.

6.3.2. Aristocracy

A sailfish hunts the sardine while exploring the search region and updating its loca-
tion/position to find a better solution. While updating the location of the sailfish, which is
the search agent in this algorithm, better solutions may be lost. There is the possibility that
the updated positions can be worse than the previous positions, thus elitism/aristocracy
is applied.
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Aristocracy involves finding the best search agent via the best sailfish fitness value
and, for the sardines, the best fitness value of injured sardine and replicating the unchanged
best solutions to the next generation. The best position of the search agent (sailfish) is kept
in every iteration and measured as an Elite. The best or the fittest sailfish acquired until
now is the Elite sailfish. It would be the one affecting the maneuverability and speeding up
of sardines during the attacking. The location of any injured sardine is also saved in every
iteration, which the sailfish will consider for group hunting as the best target selected.

Secondly, the fitness of each sailfish and sardine in the population is calculated using
the fitness function (i.e., CC in the proposed algorithm). Based on this, Elite (i.e., the best
sailfish) and injured sardine are acquired. The best sailfish is the one having the smallest
fitness function value at iteration itr.

XSFitr
best = {XSFitr|sailfish with the smallest fitness value}

Similarly, the injured sardine is the one which has been attacked and injured by the
sailfish and having the smallest value of CC.

XSitr
inj = {XSitr|sardine injured by the best sailfish}

6.3.3. Attack-Alternation Technique

Sailfish promote the success rate of hunting their prey with the help of attacking
in coordination technique. Sailfish chase their prey and herd them, change their own
position conferring to the position of the other hunting sailfish, without even directly
communicating with each other. Through this attack-alternation technique, sailfish injure
more sardines during the first phase of hunting, which leads to a higher rate of success in
capturing the prey at advanced phases of group hunting.

Afterward, the termination condition is checked. If the condition is not satisfied, the
position of sailfish is updated with the following equation:

XSFitr
new = XSFitr

best − δitr ×
(

ϕ×
(

XSFitr
best + XSitr

inj

2

)
− XSFitr

old

)
. (21)

The symbols in the above update equation are defined as follows: XSFitr
new is the

updated position of sailfish, XSFitr
best is the position of best sailfish, δitr is the coefficient

at iteration itr, ϕ is a random number between 0 and 1, XSitr
inj is the position of injured

sardine and XSFitr
old is the current position of sailfish.

δitr = 2× ϕ× P. (22)

where P denotes the prey density.
The prey density represents the quantity of prey at each iteration. It is an important

factor when updating the position of sailfish because the number of prey (i.e., sardines)
will decline in group hunting as follows:

P = 1−
(

nSF
nSF + nS

)
(23)

where nSF and nS denote the numbers of sailfish and sardine, respectively, in each iteration.
After using Equation (21) for updating the position of sailfish, the attacked power of

sailfish, AP, at iteration itr is calculated with

AP = C× (1− (2× itr× ε)), (24)

where C and epsilon are the coefficients for linearly decreasing AP.
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6.3.4. Hunting Prey

The observation of a complete massacre of sardine is very sporadic at the beginning of
the group hunting. In more than 90% of the cases, the scales of sardines would be removed
after the sailfish strikes their bodies. At the start of the hunting phase, the energy level
of sailfish for hunting and catching its prey is higher, and the sardines are also not really
drained and injured. This is the reason that sardines have excessive escape speed and
high maneuverability. Sailfish’s attacking power would decline steadily over the time
of hunting.

The position of every sardine in the population is also updated based on the current
position of sailfish and AP at every iteration. The following formula is used for updating
the position of sardine:

XSitr
new = ϕ1 ×

(
XSFitr

best − XSitr
old + AP

)
, (25)

where XSitr
new and XSitr

old are the updated and previous positions of sardine and ϕ1 is a
random number between 0 and 1.

Considering the value of AP, if the attack power of sailfish is less than 0.5, only S
number of sardines positions will be updated. Otherwise, all the sardines’ positions will be
updated. Here, S is determined by

S = nS× AP. (26)

Next, the fitness value (i.e., CC) of all the sardines and sailfish is recalculated as per their
updated positions and population is sorted.

6.3.5. Catching Prey

Alongside the reducing attacking power of sailfish, the energy levels of sardines
would be decremented because of the recurrent powerful attacking of sailfish. The attacks
also affect the maneuverability as it reduces the prey’s ability to detect the directional
information regarding the position of sailfish. This will result in pulling away the sardines
from the school after being slashed by the sailfish’s rostrum, and they would be quickly
captured then.

In the last phase of hunting, the pulled away sardines are quickly captured by the
sailfish. In this algorithm, it is considered that, if any sardine becomes fitter than the
sailfish, it is removed from its population. The sailfish will update to the position of the
corresponding sardine as follows:

XSFitr = XSitr, i f CC(Sitr) < CC(SFitr), (27)

where CC(Sitr) and CC(SFitr) denote the fitness values (i.e., CC values) of sardines and
sailfish at iteration itr.

Thereafter, the position of best sailfish and injured sardine is also updated at every iteration.

6.3.6. Deducing Optimal Sailfish

The injured sardine that pulled away from the school would quickly be captured. In
SFOA, it is considered that, when a sardine becomes weak, its respective sailfish catches its
prey. The hunted sardine’s position replaces the sailfish’s position, elevating the probabili-
ties of new prey’s hunting. After satisfying the termination condition, the best sailfish is
acquired along with its fitness value, that is CC.

7. Results and Discussion

This section presents the results of the performance analysis of SFOA for 2D NoC
for six standard NoC benchmarks, as shown in Table 1. Network size is standard 4 × 4
for all considered benchmarks. For a fair comparison with previous state-of-the-art archi-
tectures, the network size is the same. VOPD application consists of 16 sub-tasks. These
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sub-tasks can be mapped on a 4 × 4 mesh network. However, in the case of MPEG4,
MWD, MP3encMP3dec, 263encMP3dec and 263decMP3dec 4, 4, 3, 4 and 1 routers are
idle, respectively.

Table 1. Standard NoC benchmarks details with mesh sizes.

Benchmark Nodes Edges 2D Mesh Size

VOPD [35] 16 21 4× 4
MPEG4 [31] 12 26 4× 4
MWD [35] 12 13 4× 4

MP3encMP3dec [31] 13 14 4× 4
263encMP3dec [31] 12 12 4× 4
263decMP3dec [31] 14 15 4× 4

7.1. Experimental Setup

To evaluate the performance of the proposed SFOA, different standard NoC bench-
marks were considered and various experiments were conducted. The proposed algorithm
was verified for 2D NoC with other nature-inspired algorithms such as ACO, PSO, GA,
SA and CSO. The code for the proposed SFOA algorithm was written in Python and
implemented on NoC Tweak Simulator [43]. All experiments were run on a PC Intel(R)
Core (TM) i7-16GB RAM, 2.30 GHz processor. Table 2 depicts the details of the NoC Tweak
platform for simulation.

Table 2. Simulation environment description.

Network Type 2D Mesh

Type of Platform EMBEDDED

Embedded applications VOPD, MPEG4, MWD, MP3encMP3dec,
263encMP3dec, 263decMP3dec

Mapping algorithm SFOA, CSO, ACO, PSO, SA

Type of Router WORMHOLE-PIPELINE

Routing algorithm XY DIMENSION-ORDERED

Arbitration Policy VIRTUAL CHANNEL ARBITRATION

Packet delivery type WITHOUT ACK

Packet distribution EXPONENTIAL

Sending ACK policy SEND ACK OPTIMALLY

Packet length (fixed) 10 (flits)

Injection rate (flit) 0.1 (flits/cycle/node)

Output channel selection XY-ORDERED

Buffer size 8 (flits)

Inter-route link length 10,000 (µm)

Pipeline type 8

Pipeline stages 4

Input clock frequency 1000 (MHz)

Operating clock frequency 1000 (MHz)

Warm-up time 20,000 cycles

7.2. Average Power Dissipation Analysis

To evaluate the efficiency of the proposed algorithm, power minimization analysis
was also performed. It shows that SFOA outperformed other existing mapping techniques
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and the average percentage of improvement on power minimization with other nature-
inspired algorithms.

Table 3 shows the results for total power consumption in watts (W) of 2D 4× 4 mesh
for six standard NoC benchmarks. From the results in Table 3, it is evident the average
improvement of power minimization of our proposed algorithm SFOA is 3.63%, 23.7%,
18.70%, 22.14%, 27.25%, 18.66%, 12.08% and 4.73% over ILP, ACO, PSO, SAT, SA, GA, BA
and CSO, respectively.

Table 3. Total Power (W) for 2D NoC 4× 4 Mesh for standard NoC benchmarks.

Mapping Algorithm VOPD MPEG4 MWD MP3encMP3dec 263encMP3dec 263decMP3dec
ILP 1.528 1.137 1.012 1.228 1.286 1.211

ACO 1.920 1.423 1.218 1.498 1.599 1.738
PSO 1.841 1.357 1.112 1.507 1.445 1.561
SAT 1.856 1.370 1.236 1.524 1.563 1.624
SA 1.971 1.478 1.256 1.590 1.697 1.877
GA 1.843 1.356 1.109 1.507 1.445 1.561
BA 1.634 1.247 1.110 1.486 1.323 1.313

CSO 1.518 1.219 1.023 1.228 1.286 1.198
Proposed Algorithm 1.311 1.201 1.015 1.228 1.286 1.148

7.3. Communication Cost and Computation Time Analysis

The execution analysis of the proposed SFOA compared to other present nature-
inspired mapping algorithms is presented in this section. Table 4 depicts the evaluation
of average communication cost (Hcount × BW) from Equation (8) for VOPD [34] and
MPEG4 [30] standard NoC benchmarks for two-dimensional NoC.

As ILP [8] is regarded as one of the most competent algorithms in the exact mapping
method for communication cost estimation, our proposed SFOA esd explicitly compared
with ILP as well, along with other algorithms. SFOA provides the same results for com-
munication cost, as shown by the results in Table 4. The values of a few parameters are
missing in Tables 4–6 for some benchmarks as they were not provided by the authors in
the base papers of ACO [33] and SA [32].

Table 4. Estimation of communication cost for 2D NoC.

Mapping Algorithm Communication Cost (Hops × Bandwidth) in MB/s

VOPD MPEG4

ILP [8] 4119 3567
ACO [33] - 3633
PSO [34] 4119 3567
SA [32] 4231 3567
GA [21] 4218 3772
BA [45] 4119 3567

CSO [44] 4119 3567
Proposed Algorithm 4119 3567

The percentage deviation from the exact mapping method based on ILP over heuristic-
based mapping techniques for 2D NoC is shown in Table 5. However, the proposed SFOA
gives the best results compared with other nature-inspired algorithms, as specified by the
results in Table 6. In comparison with other existing mapping techniques, the proposed
SFOA takes 69% less computation time. Table 6 represents the estimations for computation
time in seconds and communication cost in MB/s of two-dimensional 4× 4 mesh for six
standard NoC benchmarks.
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Table 5. Percentage deviation over ILP based mapping techniques.

Mapping Algorithm Percentage of Communication Cost Deviation

VOPD MPEG4

ACO - 1.9
PSO 0.0 0.0
SA 2.7 -
GA 2.4 5.7
BA 0.0 0.0

CSO 0.0 0.0
Proposed Algorithm 0.0 0.0

Table 6. Communication cost and computation time of 2D NoC 4× 4 mesh for standard NoC benchmarks.

Mapping Algorithm VOPD MPEG4 MWD

Communication
Cost (Hops ×
Bandwidth)

in MB/s

Computation
Time in
Seconds

Communication
Cost (Hops ×
Bandwidth)

in MB/s

Computation
Time in Seconds

Communication
Cost (Hops ×
Bandwidth)

in MB/s

Computation
Time in Seconds

ILP 4119 4679.341 3567 22.340 1120 210.021
ACO - - 3633 18.652 - -
PSO 4119 3.785 3567 3.465 1120 3.432
SA 4231 3878.527 3567 - 1451 197.541
GA 4218 3.925 3772 3.234 1321 3.420
BA 4119 2.231 3567 2.925 1122 2.894

CSO 4119 2.231 3567 2.010 1122 1.996
Proposed Algorithm 4119 1.98 3567 1.96 1120 1.886

Mapping Algorithm MP3encMP3dec 263encMP3dec 263decMP3dec

Communication
Cost (hops ×
bandwidth)

in MB/s

Computation
Time in
Seconds

Communication
Cost (hops ×
bandwidth)

in MB/s

Computation
Time in Seconds

Communication
Cost (hops ×
bandwidth)

in MB/s

Computation
Time in Seconds

ILP 17.021 1435.012 230.407 193.035 19.823 4897.210
ACO 17.231 1196.856 - - - -
PSO 17.021 3.194 230.407 3.185 19.823 3.188
GA 17.133 3.194 230.698 3.185 19.911 3.174
BA 17.834 2.653 231.450 2.345 19.936 2.350

CSO 17.021 1.785 230.407 1.527 19.823 1.511
Proposed Algorithm 17.021 1.585 230.407 1.227 19.823 1.011

7.4. Average Network Latency Analysis

For the analysis of the performance of the proposed SFOA, the impact of average
network latency was also scrutinized with different types of traffic patterns on mesh
topological architecture. The considered distinct types of traffic patterns are a uniform
random traffic pattern and tornado traffic pattern. These traffic patterns are a method for
defining the communication between the IP-cores of the NoC.

In the case of uniform random traffic patterns, it distributes the traffic uniformly,
balances the load and each source is equally likely to communicate with each destination.
In the case of tornado traffic patterns, it is devised as a combatant for torus topologies.

The performance analysis of the considered 4× 4 mesh-based NoC architecture was
done using the XY-routing algorithm via the NoCTweak simulator [43]. The average
network latency of the proposed algorithm, i.e., SFOA, was evaluated for the above-
considered two types of traffic patterns compared with other existing nature-inspired
heuristics algorithms.

Figure 7 depicts the graphical results of the average network latency in contrast to
different rates of injection load under uniform random traffic patterns. It is evident from
this graph that SFOA outperformed PSO, GA, BA and CSO by 11.23%, 16.40%, 8.65% and
4.42%, respectively, for uniform random traffic pattern. Furthermore, Figure 8 illustrates
the graphical results of the average network latency compared to different injection load
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rates under tornado traffic patterns. It can be seen from this graph that SFOA outperformed
PSO, GA, BA and CSO by 24.06%, 25.45%, 13.89% and 5.82%, respectively, for tornado
traffic patterns.

SFOA gives the best latency in comparison with other existing nature-inspired al-
gorithms considered such as PSO, GA, BA and CSO using minimum hops count map-
ping technique.

Figure 7. Average network latency for uniform random traffic patterns.

Figure 8. Average network latency for Tornado traffic patterns.
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The mapping results of the proposed SFOA clearly indicate that it is more efficient
than other existing nature-inspired algorithms. The results in figures and tables show
the improvement in performance analysis parameters. It indicates the reduction in aver-
age network power consumption, computation time, communication cost and average
network latency.

8. Conclusions

This paper presents a state-of-art nature-inspired metaheuristic algorithm, i.e., SFOA,
which mainly comprises two advantages. The first advantage is high-speed convergence by
strengthening the searching process used for the best sailfish group. The second advantage
is robust optimization by strengthening the search space intended for the diversity of
the sardine population. SFOA is used for the optimized mapping of the application task
graph on a two-dimensional NoC with mesh topology. The efficiency of the proposed
approach was assessed based on the results of the performance analysis parameters for
six standard NoC benchmarks. The evaluation of the proposed SFOA proficiency was
done via multiple experiments on alternative heuristic algorithms such as ACO, PSO, SA,
GA, BA and CSO. The results shown in the previous section indicate that the average
improvement of power minimization of the proposed algorithm SFOA is 3.63%, 23.7%,
18.70%, 22.14%, 27.25%, 18.66%, 12.08% and 4.73% over ILP, ACO, PSO, SAT, SA, GA, BA
and CSO, respectively. In contrast to other existing mapping techniques, the proposed
SFOA takes 69% less computation time. It is evident from the average network latency
graphs that SFOA outperformed PSO, GA, BA and CSO for two distinct standards of
traffic patterns for NoC by 11.23%, 16.40%, 8.65% and 4.42% for uniform random traffic
patterns and 24.06%, 25.45%, 13.89% and 5.82% for tornado traffic patterns, respectively.
The experiments results reveal that SFOA outperformed other nature-inspired algorithms
to minimize power consumption, computation time, communication cost and latency.
Moreover, this work can be continued in various ways, e.g., some hybrid algorithms can be
introduced to reduce computation time further. This algorithm can also be implemented
on 2D and 3D NoC architectures with different topologies.
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