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Abstract: We present a new architecture to address the challenges of speaker identification that arise
in interaction of humans with social robots. Though deep learning systems have led to impressive
performance in many speech applications, limited speech data at training stage and short utterances
with background noise at test stage present challenges and are still open problems as no optimum
solution has been reported to date. The proposed design employs a generative model namely
the Gaussian mixture model (GMM) and a discriminative model—support vector machine (SVM)
classifiers as well as prosodic features and short-term spectral features to concurrently classify a
speaker’s gender and his/her identity. The proposed architecture works in a semi-sequential manner
consisting of two stages: the first classifier exploits the prosodic features to determine the speaker’s
gender which in turn is used with the short-term spectral features as inputs to the second classifier
system in order to identify the speaker. The second classifier system employs two types of short-term
spectral features; namely mel-frequency cepstral coefficients (MFCC) and gammatone frequency
cepstral coefficients (GFCC) as well as gender information as inputs to two different classifiers
(GMM and GMM supervector-based SVM) which in total leads to construction of four classifiers.
The outputs from the second stage classifiers; namely GMM-MFCC maximum likelihood classifier
(MLC), GMM-GFCC MLC, GMM-MFCC supervector SVM, and GMM-GFCC supervector SVM
are fused at score level by the weighted Borda count approach. The weight factors are computed
on the fly via Mamdani fuzzy inference system that its inputs are the signal to noise ratio and
the length of utterance. Experimental evaluations suggest that the proposed architecture and the
fusion framework are promising and can improve the recognition performance of the system in
challenging environments where the signal-to-noise ratio is low, and the length of utterance is short;
such scenarios often arise in social robot interactions with humans.

Keywords: speaker recognition system; limited speech data; short utterances; social robots; social
human-robot interaction; two-stage classifier; fuzzy fusion

1. Introduction

Voice modality is central to most creatures, particularly in human interactions among
themselves. It is envisaged that it is also sensible that social robots communicate with
humans through voice. There are three related yet different challenges that researchers are
currently engaged towards realization of voice as a medium through which robots and
humans interact: Who is speaking? What is being said? Which language is being spoken?
This paper is concerned with the first question. Humans are better in person recognition
by face than voice [1]. However, in machines, voice modality provides unique features in
biometric person identification systems as opposed to face, fingerprint, gait, or iris. The
speech signal is captured dynamically over a period of few seconds; therefore, variation in
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speaker’s model can be monitored [2]. Another advantage of using speech signal is the
availability of numerous devices such as microphones, cellphone, and soundcards that
can be used to capture the speech signal [3]. Moreover, there are many scenarios of social
human–robot interactions where all the above mentioned biometric modalities are not
simultaneously available due to limitation of robot’s sensory system or the occlusion of
target person by static or dynamic objects such as furniture and other persons who share
the same environment with the social robot. These situations may arise in many social
settings like homes, hospitals, airports, etc.

Speaker recognition systems can be classified into text-dependent speaker recognition
and text-independent speaker recognition. The former system is employed when the
speaker is cooperative and willing to pronounce fixed utterances as an authentication
password or prompted by the system to pronounce pre-defined phrases that have been
already registered in the system during the enrolment process. This scenario is readily used
in speaker authentication systems where they extract signature(s) from a fixed utterance
pronounced by an unknown speaker and verify if this utterance corresponds to the claimed
identity. Even though the text-independent speaker recognition can be used as a speaker
verification system, the system demonstrates its advantages in other applications where the
speaker needs to be identified from unconstrained utterances as in the case of identifying
a speaker by a social robot in a social human–robot interaction scenario. Constrained
utterances used in text-dependent speaker recognition systems limit the functionality of
the system in some applications such as social robot, speaker diarisation, intelligent an-
swering machine with personalized caller greeting, and forensic investigation of telephone
conversations. A speaker identification system for social human–robot interaction, which
is the main motivation of this research, should be able to extract a voice signature from un-
constrained utterances while maintains its performance at challenging scenarios including
various low signal-to-noise ratio and short length of utterance as well as different types of
noise. However, most of the state-of-the-art speaker recognition systems, including those
based on deep learning algorithms, have achieved significant performance on verification
tasks which are not suitable for social human–robot interaction [4–6]. In speaker diarisation,
which is a key feature for social robots, also known as “who spoke when”, a speech signal
is partitioned into homogenous segments according to speaker identity [7]. Hence, the
speaker identity must be induced by extracting features from unconstrained utterances
that may be short and not have been used in the training stage.

The background speaker model is used in speaker recognition literature extensively
as a way to enhance the robustness and computational efficiency of speaker recognition
system [3]. Unlike other biometrics (such as face, fingerprint, iris, and hand geometry),
voice biometrics is prone to substantial variability. There are many factors contributing
to this variability including but not limited to changes in vocal tract and how a speaker
produces speech (intrinsic-based source of variations), variation of speech signal capturing
and transmission (external-based source of variations), and variation in languages and
dialects spoken that are used in conversation (conversation-based source of variation). In
situations referred to as within-speaker variability, the same person does not utter the
same words in the same way. These conditions could arise due to physiological reasons
(e.g., illness, being intoxicated, or aging), emotional states (e.g., anger, happiness, and
sadness), or a combination of both. In most cases, the physiological and emotional changes
happen naturally and not intended to circumvent the system. Within-speaker variability is
considered as one of the main challenges that must be addressed by speaker identification
systems that are prevalent in social robot applications such as a robot companion, a robot
caregiver, or a robot personal assistant. Additionally, a person may intentionally alter
his/her voice, an important factor contributing to within-speaker variability, to elude the
system [8]. In addition, the performance of a speaker recognition system is affected by
the technology used to capture, transmit, and save the speech signal. These scenarios
are referred to as the channel variation effects, and the environmental, or background
distortion. A significant research effort has been devoted to address this multifarious source
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of variations [9]. However, most of the research efforts focus on addressing the external-
based sources of variation; considerable progress has been achieved in addressing the
background noise (by using additive noise known as signal-to-noise ratio) and the channel
variations (by using channel compensation techniques) [10]. Most of the feature extraction
methods used in speaker recognition systems rely on spectral characteristic of the speech
signal which is highly affected by a person’s health, age, and emotional state; the intrinsic-
based source of variations. As such, this poses a huge challenge to speaker recognition
systems particularly those intended for social robots. Among the ideal features of a
speaker recognition systems are low discriminant power within-speaker variability, high
discriminant power between-speaker variability, robust against the aforementioned source
of variations (i.e., intrinsic-, external-, and conversation-based source of variations), easy
to extract, and difficult to impersonate [3]. A significant research effort has been devoted
to develop feature vectors that possess some of the above characteristics [11]. However,
to the best of the authors knowledge no particular feature extraction method is robust
against all sources of variations and all types of noises. In a parallel development, a large
body of research has aimed at developing different speaker modeling, normalization, and
adaption techniques that employ these feature vectors in order to increase the robustness
of the speaker recognition system against the aforementioned source of variations [3].

Motivated by the above challenges, particularly those related to social robot appli-
cations, and noting that there is no single speaker recognition model that is universally
applicable in different types of noise, different signal-to-noise ratios, and variable utterance
lengths scenarios, and the absence of a “crystal ball” for speaker modeling, normalization,
and adaptation, we propose a sophisticated architecture of speaker identification system
for social robots. The proposed architecture encapsulates heterogeneous classifiers that
employ prosodic and short-term spectral features in a two-stage classifier in order to in-
tegrate the advantages of using complementary features and different classifier models
(generative and discriminative) in developing a robust speaker recognition system for
social robots. The architecture utilizes gender information to cluster the population in the
dataset into two groups (male and female) as well as deriving a speaker model from the
gender-dependent model to provide strong coupling and improve recognition rate of the
base classifier. Additionally, the system exploits the knowledge based-system (IF-THEN
fuzzy rules), which is derived from the performance of the trained base classifier on lim-
ited size development set, to overcome the problem of limited size speech dataset which
contains short utterances distorted with different types of noise.

The rest of the paper is organized as follows: in Section 2, we review the relevant
literature and underscore the current state-of-the-art in speaker recognition systems. We
also highlight the main challenges in speaker recognition. We present the detailed archi-
tecture of the proposed system in Section 3. The proposed methodology is evaluated via
simulation studies in Section 4. The paper is concluded with a summary of the findings
and the main characteristics of the present method in Section 5.

2. Related Works

Humans have the ability to recognize another person’s voice seamlessly without
conscious effort. It is understood that various aspects of a person’s voice characteris-
tics are implicitly and explicitly involved in the recognition process including spectral
characteristics, prosody (syllable stress, intonation patterns, speaking rate and rhythm),
and conversation-level features (lexicon and language). Analogous to humans, automatic
speaker recognition systems employ various voice proprieties to recognize a person from
his/her voice. These can be categorized into (1) short-term spectral features; (2) voice-
based and prosodic features; (3) high-level features. The short-term spectral features are
computed based on short frames in the range of 10–20 ms and can be seen as descriptors
of vocal tract characteristics. Since this category of features require a small amount of
data to be extracted, they fit well with real-time applications as in the case of speaker
identification in social settings [11]. In social human–robot interactions, fast response
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which is prone to some degree of error is considered better than accurate but delayed
response (i.e., humans prefer fast response with some level of error better than accurate but
delayed response) [12]. Additionally, short-term spectral features are easy to extract and
are text and language independent. Most of the automatic speaker recognition systems that
have been developed in the last two decades employ short-term spectral features including
mel-frequency cepstral coefficients (MFCC), linear predictive cepstral coefficients (LPCCs),
line spectral frequencies (LSFs), perceptual linear prediction (PLP) coefficients, and gam-
matone frequency cepstral coefficients (GFCC), to name a few [11]. However, none of these
features are robust to the above multifarious source of variations and background noise
but may cooperate and complement each other [13,14]. A new feature extraction method
has been proposed to construct features that have the advantages of cochleagram robust-
ness and mel-spectrogram voiceprint richness [15]. mel-spectrogram and cochleagram are
combined in two ways to construct two features, named MC-spectrogram and MC-cube.
MC-spectrogram is constructed by superimposed mel-spectrogram and cochleagram on
each other while MC-cube is constructed by mapping mel-spectrogram and cochleagram
to a cube as harmonic mean. Several research studies suggest extension of MFCC features,
which is based on mel-spectrogram, for speaker recognition system. The recognition rate
has been improved by 4% by including delta derivatives of MFCC namely delta MFCC
and delta-delta [16]. The best performance achieved was 94% recognition rate with MFCC
feature vector having 18 coefficients. In [17], the 18 MFCC feature vector has been modified
by adding two features. Observing and tracking spectral maxima in the energy spec-
trum of the speech signal were the key factor in calculating the two additional features.
Adopting the modified MFCC feature vector has improved the recognition accuracy by
2.43% approximately. A huge research effort has been devoted to developing speaker
modeling, including Gaussian mixture model (GMM) [18], GMM supervector with support
vector machine (SVM) [19], and i-vector system [20,21], deep learning systems [6,22,23],
normalization [24,25] and channel compensation techniques [26], and adaptation tech-
niques [27,28] to reduce the effect of these variations on the performance of the speaker
recognition system. Impressive progress has been achieved in addressing external-based
source of variations, particularly channel variations and environmental and background
distortion [9]. However, the performance of the state-of-the-art speaker recognition systems
dramatically deteriorates when short utterances are used for training/testing particularly
with low SNR [29,30]. In spite of the fact that deep neural networks (DNNs) provide a
state-of-the-art tool for acoustic modeling, DNNs are data sensitive, and limited speech
data as well as data-mismatch problems can deteriorate their performance [4,5,31].

In the last five years, deep learning methods have been demonstrated to outperform
most of the classical speech and speaker recognition systems such as GMM-Universal
Background Model (UBM), SVM, and i-vector [32,33]. However, deep learning systems
require huge speech databases to be labeled and trained; theses databases also need
to include phonetically rich sentences or at least phonetically balanced sentences [31].
In addition, most of speaker recognition systems that were developed based on deep
learning techniques have been applied to text-dependent speaker verification tasks [4].
Hence, training deep learning systems on limited data is a difficult task and may not
necessarily lead to speaker recognition systems with state-of-the-art performance. The
above-mentioned challenges which are frequently encountered in some of the social robot
applications such as social robots for people with developmental disabilities, elderly
care housing and assisted living, nursing robots [34–36] hinder the direct application of
deep learning systems. In such scenarios, collecting large databases is time-consuming,
strenuous, inconvenient, expensive, and may be an impossible task as in the case of peo-
ple with speech impairments. The key advantage of deep learning systems that they
can recognize a large number of subjects may not justify their adaptation for speaker
recognition for social robots as social robots need to interact with a limited number
of persons.



Sensors 2021, 21, 5097 5 of 30

Some research studies suggest that the performance of GMM-UBM system is close
to i-vector based system in short duration utterance and over perform it in very short
utterances (less than 2 s) [37]. Another challenge that needs more work to address is
intrinsic-based source of variations [9] and synthesis and conversion spoofing attacks [38];
voice conversion and statistical parametric speech synthesizers that may use spectral-
based representation similar to the one used in speaker recognition systems that employ
spectral features.

The high-level features use a speaker’s lexicon (i.e., the kind of words that a speaker
frequently uses in his/her conversations) to extract a signature that characterizes a speaker.
Some research studies show that this category of features is robust against channel variation
and background noise, but it requires substantial computational cost and is difficult to
extract [3,39]. Additionally, this category is language and text dependent, needs a lot of
training data, and is easier to impersonate. The pros and cons of the prosodic features
category sit in the middle of the scale between high-level feature and short-term spectral
feature. Researchers suggest that the prosodic features carry less discriminant power
than short-term spectral features but are complementary [3]. However, due to the nature
of prosody, which reflects the differences in speaking styles such as rate, rhythm, and
intonation pattern. This category shows more resistance to voice synthesis and conversion
spoofing attacks, but it is valuable to human impersonation. Employing this feature in
speaker recognition systems provides robustness to adversarial attacks to which most deep
speaker recognition systems are prone to [40]. One can argue that a speaker recognition
system that employs short-term spectral and prosodic features is more robust than those
systems that employ only one type of these features. A reasonable research effort has
been devoted to fuse prosodic and spectral features in order to improve the accuracy and
robustness of the recognition of a speaker age, gender, and identity [41–43]. However, most
of these systems adopt either fusion at score level for prosodic-based system and spectral-
based system or fusion at feature level by stacking prosodic-based feature representation
with spectral-based feature representation. Fusion at score and feature level has been
demonstrated in [44]; the fusion at score level was presented as a fusion of the outputs of
two prosodic-based classifiers and the output of one cepstral-based classifier while fusion
at feature level was performed by stacking cepstral i-vector with a combination of the
two prosodic i-vector representation. Some prosodic features, particularly pitch frequency
F0, have demonstrated excellent performance in gender classification tasks [45]. Gender
information can be used to enhance the GMM-based speaker recognition system in two
ways. First, adaptation of speaker-dependent GMM from gender-dependent GMM-UBM is
computationally efficient and demonstrates stronger coupling than adaptation of speaker-
dependent GMM from gender-independent GMM-UBM [27]. Second, Reynolds et al. [46]
demonstrated that increasing the population size degrades the recognition accuracy of
GMM-based speaker identification systems. Therefore, exploiting gender information to
cluster speaker population into two groups reduces the population size and consequently
improves the recognition accuracy of GMM-based speaker identification systems [47].
Constructing cluster-based GMM for speaker populations improves the performance of
speaker recognition systems as demonstrated in [48]. A combination of prosodic features
are exploited to cluster speaker populations into male and female groups to enhance
the performance of emotional speech classification systems [49]. Adopting a gender-
dependent parameterizations approach to construct a GMM-based speaker recognition
system improves the performance of the system, namely equal error rate and half total
error rate.

The contribution of this study within this context is presentation of a novel architecture
of a speaker identification system for social robots that employs prosodic features as well
as two types of spectral-based features (MFCC and GFCC) in order to enhance the overall
recognition accuracy of the system. The system works in two stages; in the first stage, a
binary classifier exploits the superiority of prosodic features to infer gender information
and reduce the size of gallery set by clustering the speaker population into two groups. In
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the second stage, the outputs of four classifiers are fused in a novel way to improve the
overall performance of the system; particularly in the case of short duration utterances and
low SNR which is a common condition in speaker identification in social settings.

3. Overview of the Proposed Architecture

The proposed architecture of the speaker recognition system consists of two classifiers
working in a quasi-parallel fashion. The overall architecture of the system is depicted in
Figure 1. The upper section represents the enrollment process (training path), whereas the
lower part elaborates the recognition process (testing path). The function of the feature
extraction module is to transform the speaker’s utterances into feature vectors that contain
his/her specific characteristics. As shown in Figure 1, the feature extraction module is
common to both enrolment process (training) and identification process (testing). In the
enrolment process, the speaker’s model is trained by the feature vectors that were extracted
from speech utterances by a target speaker and labeled accordingly. The recognition process
is performed by extracting feature vectors from an unknown speaker’s utterance which in
turn is used to build the unknown speaker model. This model is subsequently matched to
one of the labeled speaker models that were constructed during the enrolment process. One
may infer that the feature extraction processes for both classifiers are initiated in parallel
and at the same time. However, the second classifier requires gender information as well
as MFCC and GFCC feature vectors in order to complete the identification process. The
first classifier is a binary SVM classifier that uses prosodic feature to determine the gender
of the speaker. The second classifier, which is a combination of GMM-based classifier and
GMM supervector-based SVM classifiers, employs MFCCs and GFCCs feature as well
as gender information to determine the identity of the speaker. In order to compute the
GMM supervectors for both types of feature vectors (i.e., MFCCs and GFCCs supervectors),
speaker’s gender must be known. As shown in Figure 1, a binary SVM relies upon prosodic
features to determine the gender of the speaker who utters a speech.

The proposed speaker identification system works in two stages: first, the prosodic fea-
ture vector is used to determine if an utterance originated from a male or a female speaker.
A binary SVM is trained using a prosodic feature vector to classify the utterance into two
classes (males and females). The proposed architecture incorporates the outcome of the first
stage (gender classification) into the second stage where MFCCs and GFCCs feature vectors
that are extracted from the same utterance are used to derive speaker-dependent GMM
from a pre-trained gender-dependent GMM-UBM. The gender-dependent GMM-UBM is
trained by utterances originating from specific gender groups of speakers (male or female
group). The speaker-dependent GMM derived from gender-dependent GMM-UBM shows
excellent coupling to the gender-dependent GMM-UBM and requires low computational
power and less time as compared with the model derived from gender-independent GMM-
UBM (i.e., the GMM-UBM is trained by utterances from male and female speakers). The
resultant speaker-dependent GMMs are used to create GMM-supervectors by stacking
the mean vectors of the speaker-dependent GMMs. As shown in Figure 1, four classifiers
were developed by employing GMMs and GMM-supervectors. Two of these classifiers are
generative-based classifier. The first one is a maximum likelihood classifier (MLC) that
employs GMMs trained by MFCC feature vectors and the second classifier is an MLC that
employs GMMs trained by GFCC feature vectors. The third and the fourth classifiers are
discriminative-based classifiers; namely, SVM that employs GMM-supervectors derived
from GMM trained by MFCC and GFCC feature vectors, respectively.
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Figure 1. The architecture of the proposed speaker recognition system.

Fusion at score level was adopted to combine the outputs of all the aforementioned
classifiers into a single score, namely the weighted Borda count method (please see: https://
en.wikipedia.org/wiki/Borda_count, accessed on 12 July 2021). In this study, the weighted
Borda count method is a plausible choice as it does not require transforming all the scores
of the base classifier into a common domain (i.e., no normalization process). Additionally,
the fusion system exploits the classes ranking information of the base classifiers on the
development set to compute the weights for the base classifiers (more details in Section 3.3).
Borda count method uses the match scores of the base classifiers to arrange the classes in
descending order. Then, for each class, the Borda count is represented as the sum of the
number of classes ranked below it by the respective classifier. The higher the magnitude
of Borda count for a class, the greater the degree of agreement by the base classifiers
that the test sample belongs to that class [49]. We propose a novel way to account for
the Borda count for each classifier by a Mamdani fuzzy inference system [50]. Since we
know that certain classifiers are more likely to outperform others at specific conditions, the
weight factors are computed via Mamdani fuzzy inference system to exploit the individual
classifier capabilities at those conditions.

The fuzzy inference system employs the knowledge about the recognition rate trend
of the aforementioned classifiers when they are evaluated on development set. This
information is used to derive a set of rules in the form of IF-THEN fuzzy rules based on
Mamdani fuzzy inference engine in order to compute the weighting factors for all the
aforementioned classifiers such that the overall recognition rate is improved. Here, we
employed the recognition rate of each classifier as a function of length of utterance and the
signal-to-noise ratio (SNR). Then, for each combination of the length of utterance and the
SNR, a respective rule is derived taking into consideration that each classifier is weighted
by a factor proportional to its recognition rate. Additionally, the fuzzy rules consider the

https://en.wikipedia.org/wiki/Borda_count
https://en.wikipedia.org/wiki/Borda_count
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selected classifiers to be combined to complement each other from the perspectives of
feature types and classifier model with priority to feature type.

In the testing path, the feature extraction modules of all feature vectors used by the
two classifiers (i.e., speaker’s gender and identity classification) are initiated at the same
time. Thus, there is no noticeable delay caused by this architecture (i.e., the second classifier
needs the output of the first classifier (i.e., male or female) as one of its inputs in order to
identify a speaker).

3.1. Feature Extraction Modules

The proposed system exploits two groups of voice-based features to identify a speaker,
namely prosodic features and spectral features. The GFCC and MFCC features are adopted
as spectral features. The modular representation of GFCCs and MFCCs feature extraction
methods are depicted in Figures 2 and 3, respectively. As shown in these figures, both
MFCCs and GFCCs share the same stages except the type of the filter-banks that are ap-
plied to the resultant frequency domain signal from fast Fourier transform (FFT) and the
compression operation. The MFCCs feature extraction method applies mel filter-bank
after FFT stage and followed by logarithmic compression and discrete cosine transform
(Section 3.1.1). On the other hand, in the GFCCs feature extraction method, the gammatone
filter-bank is applied to the resultant frequency domain signal from FFT before loudness
compression and discrete cosine transform take place (Section 3.1.2). The prosodic feature
vector characterizes four areas of prosody including pitch, loudness, voice quality, and
formant. Pitch and loudness information were represented as statistical measure of funda-
mental frequency (F0) and energy, respectively. Harmonics-to-noise ratio (HNR), jitter, and
shimmer represent voice quality measurements while the first three formants characterize
the fourth category of prosodic information. The complete details about prosodic feature
vector are discussed in Section 3.1.3.
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3.1.1. MFCCs Feature Extraction Module

MFCCs feature vector is determined in accordance with the notion that the frequency
range of human spoken words is generally limited to 1000 Hz. Therefore, MFCCs employ
linearly spaced filters at below this threshold frequency and logarithmic spaced filters
at above this frequency. This implies that the filter-bank selected the most appropriate
frequency range of interest, i.e., more filters in the narrow bandwidths below 1000 Hz and
fewer number of filters at outside this range as shown in Figure 4.
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Figure 2 demonstrates that the first step in the extraction process is to boost the input
speech signal as:

Y(n) = X(n)− a× X(n− 1) (1)

where X(n) is the input speech signal, Y(n) is the boosted speech signal. The interval of the
pre-emphasized factor is selected within the range [0.95, 0.98]. Subsequently, we apply a
smooth window function (hamming windows) to the pre-emphasized speech signal Y(n):

W(n) = 0.54− 0.46× cos
(

2πn
N − 1

)
, 0 ≤ n < N − 1 (2)

We then transform the resulting time-domain signal to frequency domain via the ubiq-
uitous fast Fourier transform (FFT). As expected, the FFT process generates a fluctuating
spectrum. Thus, in order to ensure that the FFT spectrum extracts the most relevant infor-
mation for speaker recognition, we design the filter-bank based on the mel scale. Figure 5
shows the output of the mel-frequency filter-banks. Here, we apply logarithmic compres-
sion and discrete cosine transform as in (3) to obtain the MFCCs. The main objective of the
discrete cosine transform is to transform log mel spectrum into time domain.

Cn =
M

∑
m
[log S(m)] cos

[
πn
M

(
m− 1

2

)]
(3)

where S(m), m = 1, 2 . . . ., M is the output of an M-channel filter-bank, n is the index of the
cepstral coefficient. For the purpose of this project, we retained the 12 lowest Cn excluding
the 0th coefficient.
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3.1.2. GFCCs Feature Extraction Module

The GFCCs feature vector is computed in the same way as MFCCs feature vector
as shown in Figure 3. The key difference between the GFCCs and MFCCs is that the
GFCCs feature extraction uses a bio-inspired gammatone filter-bank to extract the most
discriminant information from FFT spectrum, which was originally designed to model
the human auditory spectral response, particularly modeling the auditory processing
at the cochlea. Like MFCCs, the speech signal is pre-emphasized first and followed by
Windowing and FFT stages. Then, the gammatone filter-bank is applied to the resultant FFT
spectrum. The impulse response of each filter in gammatone filter-bank can be represented
as in (4) [51].

g(t) = atn−1e−2πbt cos(2π fct + ϕ) (4)

Since a is constant, n and ϕ are fixed for the entire filter-bank. The frequency selectivity
of gammatone filter-bank is mainly defined by central frequency, f , and the filter’s band-
width b. A suggested method to compute the central frequency and the filter’s bandwidth
is by using an approximation to the bandwidth of human auditory filter at the cochlea.
Equivalent rectangular bandwidth (ERB), which represents the bandwidth of series rectan-
gular filters that are used to model the human cochlea, can be used to compute the filter’s
bandwidth and its central frequencies. Moore [52] modeled the human auditory system
using ERB as:

ERB( fc) = 24.7 + 0.108 fc (5)

The idea of ERB is adopted by Patterson et al. [53], to estimate the bandwidth and
the center frequencies of the gammatone filter. It has been suggested that the two param-
eters of gammatone filter (the bandwidth, b, and order of the filter, n) should be set as
b = 1.019 ERB and n = 4 in order to attain a filter with good match to human auditory filter.
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As suggested by Moore [52], the center frequencies of the gammatone filter are equally
spaced on the ERB frequency scale. The relationship between the number of ERBs to the
center frequencies, fc, can be expressed as:

number o f ERBs = 21.4 log10(0.00437 fc + 1) (6)

The ERB scale, which is approximately logarithmic, is defined as the number of ERBs
below each frequency. This scale correlates the center frequencies with 1

f distribution of
frequency energy of speech signal. In other words, the frequency-dependent bandwidth of
gammatone filter produces a narrower filter at low frequencies and a broader filter at high
frequencies as shown in Figure 6 (fourth-order gammatone filter-bank with 32-channel
outputs). In this study, the fourth-order gammatone filter-bank with 64-channel outputs
is used to extract the GFCCs feature vectors. The GFCCs feature vectors are obtained
by applying a cubic root operation (loudness-compression) and then de-correlating the
feature components by applying a discrete cosine transform. Additionally, we retained the
22 lowest coefficients excluding the 0th coefficient. The gammatone filter-bank response
(termed the cochleagram) and typical spectrogram in response to a sample of speech signal
from TIDIGITS are depicted in Figure 7.
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3.1.3. The Prosodic Feature Extraction Module

It has been documented that 90% of speaker recognition systems have employed
short-term spectral features such as MFCC, LPCC, and GFCC which have been found to
carry high power discriminant information for the speaker recognition task [11]. While the
short-term spectral features span short frames of about 10–30 ms and contain information
correlating to timber and resonance proprieties of vocal tract, the prosodic features span
longer frames of about 10 to hundreds of milliseconds and correlate with non-segmental
aspect of speech such as intonation, stress, rate and rhythmic organization of the speech.
Since prosodic features span over long segments like syllables, words, and utterances, it
is believed to contain complementary information and have more robustness for channel
and background distortion. Different combinations of the prosodic parameters have been
used widely for language and emotion identification, age and gender classification, and
speaker authentication. The fundamental frequency (F0) is the most important parameter
among these prosodic parameters. Here, selection of prosodic features from previous works
of [42,54,55] was adopted as feature vectors for first-stage classifier (gender classification).
Particularly, various statistical measures of fundamental frequency (F0), spectral centroid
(SC), spectral flatness measure (SFM), Shannon entropy (SE), harmonics-to-noise ratio
(HNR), jitter and shimmer, and the first three formants were adopted to construct one
prosodic feature vector. Individually, these features are correlated with pitch accents and
boundary tones, the approximate location of formants, the flatness of the spectrum, the
degree of randomness of spectral probability density, the amount of noise in the speech
signal, the overall periodicity of speech signal, variability of fundamental frequency, voice
pathologies, and psychological characteristics of vocal tract (length, shape, and volume),
respectively. HNR and the first three formant frequencies are calculated with the VoiceSauce
feature extraction tool [55]. SC, SFM, and SE are computed with MIR toolbox [56]. Absolute
jitter and shimmer measurements were extracted by using Praat voice analysis software [57].
The complete list of features and the corresponding statistical measures that were applied
to construct the prosodic feature vector are listed in Table A1 (Appendix A).
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3.2. Speaker Modeling (Classification Algorithms)

In this section, for the sake of completeness of the paper, we consider popular classifi-
cation algorithms that are widely used in speech recognition and speaker identification.

3.2.1. Gaussian Mixture Model

The well-known GMM approach was adopted to construct the first two classifiers;
namely GMM-MFCC MLC and GMM-GFCC MLC. We extracted the feature vectors for
the MFCC and GFCC from the speech data of all speakers in training data (gallery set).
For each of these feature vectors, two speaker-independent world models (a well-known
UBM) were created; the first UBM is trained by the feature vector extracted from female
speakers and the second UBM is trained by the feature vector that is extracted from
male speakers. The UBM is estimated by training M-component GMM with the standard
expectation–maximization (EM) algorithm [28]. The UBM represents speaker-independent
distribution of the feature vectors. In this study, we employ 256-compnenent GMM to build
the UBM. The UBM is represented by a GMM with 256-compnents, denoted by λUBM, that
is characterized by its probability density function as:

p
(→

x |λ
)
=

M

∑
i=1

wi pi

(→
x
)

(7)

The model is estimated by a weighted linear combination of D-variate Gaussian
density function pi(

→
x ), each parameterized by a mean D× 1 vector, µi, mixing weights,

which are constrained by wi ≥ 0,
M
∑

i=1
wi = 1, and a D× D covariance matrix, Σi as:

pi

(→
x
)
=

1

2πD/2|Σi|1/2 exp
{

1
2
(x− µi)

′(Σi
−1) (x− µi)

}
(8)

The training of UBM is to estimate the parameters of 256-component GMM,
λUBM = {wi, µi, Σi}M

i=1, from the training samples. Subsequently, for each speaker in
the gallery set, we apply maximum a posteriori (MAP) to estimate the specific GMM from
UBM-GMM. Since the UBM represents speaker-independent distribution of the feature
vectors, the adaptation approach facilitates the fast-scoring as there is a strong coupling
between speaker’s model and the UBM. Here, the gender-dependent UBMs were con-
structed to provide stronger coupling and faster scoring than that of gender-independent
UBM. It should also be noted that all or some of GMM’s parameters (λUBM = {w , µ, Σ}
can be adapted by a Maximum A Posteriori (MAP) approach. Here, we adapted only the
mean µ to represent specific speaker’s model. Now, let us assume a group of speakers
s = 1, 2, 3, . . . , S represented by GMMs λs = λ1, λ2, λ3, . . . , λS. The goal is to find the
speaker identity ŝ whose model has the maximum a posteriori probability for a given
observation Xk = {x1 , . . . , xT} (MFCC or GFCC feature vector). We calculate the posteriori
probability of all observations Xk = X1, X2, X3, . . . , XK in probe set against all speaker
models λs = λ1, λ2, λ3, . . . , λS in gallery set as (9). As sandk vary from 1 to number of
speakers in gallery set and number of utterances in probe set, respectively, the result from
(9) is S× K matrix.

Pr(λs|Xk) =
p(Xk|λs)

p(Xk)
Pr(λs)

∣∣∣∣ 1 ≤ s ≤ S
1 ≤ k ≤ K

(9)

Assuming equal prior probabilities of a speaker, the terms Pr(λs) and p(Xk) are con-
stant for all speaker, thus both terms can be ignored in (9). Since each subject in the probe
set is represented as Xk = {x1 , . . . , xT}, thus by using logarithmic and assuming indepen-
dence between observations, calculation of posteriori probability Pr can be simplified as
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(10). The outputs of the two GMM-based classifiers (GMM-MFCC MLC and GMM-GFCC
MLC) were computed using (10).

Pr(λs|Xk) =
T

∑
t=1

log p(xt
k
∣∣λs)

∣∣
1 ≤ s ≤ S
1 ≤ k ≤ K

(10)

3.2.2. GMM Supervector and Support Vector Machine

One of the challenges of exploiting information in voice modality is that the utterances
are manifested with varying time durations. The dimension of feature vectors depends
on the time duration of these utterances; hence the resultant feature vectors from feature
extraction modules (i.e., MFCC, GFCC, prosodic) have variable dimensions. Since most
of the discriminant classifiers including SVM require fixed length feature vector as input,
the speaker recognition research community has discovered a way to represent these time-
varying utterances as a fixed-length feature vectors. The method relies upon using the
parameters of speaker-dependent GMM. A speaker can be modeled as M-component GMM
either by adapting a specific speaker model from UBM-GMM using MAP or by training
M-component GMM with EM algorithm independently from UBM-GMM. Deriving a
speaker-dependent model by adaptation approach provides a good coupling between
a speaker model and UBM-GMM. Since the UBM-GMM represents a distribution of all
speakers in the galley set, this coupling is desirable. Additionally, the adaptation approach
reduces the computational cost of building a speaker-dependent model and facilitates
real-time response.

In speaker recognition literature, supervector refers to a fixed length feature vector
constructed by combining many smaller-dimensional vectors into a higher-dimensional
vector. In this study, GMM supervector is constructed by concatenating d-dimensional
mean vector of the M-component speaker-dependent model that is adapted from pre-
trained UBM-GMM. The resultant GMM supervector with M ∗ d dimension is fed to
SVM. The dimension of the MFCC-GMM supervector is 3072 (d = 12 and M = 256) and
the dimension of the GFCC-GMM supervector is 5632 (d = 22 and M = 256). Principal
component analysis is applied to reduce the dimension of thesesupervector before being fed
to SVM. We refer to the two classifiers that were trained by MFCC-GMM supervector and
GFCC-GMM supervector as MFCC-GMM supervector SVM and GFCC-GMM supervector
SVM, respectively.

SVM is one of the most powerful discriminative classifiers with excellent general-
ization performance to classify any unseen data. Basically, SVM is a supervised binary
classifier that aims to separate the two classes by modeling a decision boundary as hyper-
plane; hence, adopting SVM to solve speaker verification is sensible. In speaker verification,
the task is to determine if a given utterance matches or does not match a target model
(claimant identity). In the training stage, all training feature vectors that are extracted from
the target speaker’s voice samples are represented as one class and the second class is
represented by all training feature vectors that are extracted from the background “impos-
tor” speaker’s voice samples. SVM maps the training vector to high-dimensional space
and finds an optimum hyperplane that separates the two classes (i.e., target speaker and
impostor) with maximum margin. Since speaker identification is a multiclass classification
problem, the well-known method One-Vs-All (OVA) SVM is adopted to extend the binary
SVM to accommodate the multiclass classification task. Adopting the OVA approach,
which requires constructing as many binary SVM classifier as the number of classes, fits our
framework of integrating the outputs of various classifiers. The output of SVM should be
represented as score vector that can be interpreted either as the degree of match between a
given utterance and every speaker’s voice signature in gallery set or as the probability that
a given utterance originates from every speaker in the gallery set. The outputs of multiclass
SVM that are constructed by the OVA approach can be expressed as probabilistic outputs;
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hence, the OVA is adopted to construct multiclass SVM classifier. The probabilistic outputs
are used to rank the classes and compute the Borda count value for each class.

In the proposed speaker recognition system, there is no need to unify and transform
the outputs of the base classifiers to common domain. However, the outputs of the base
classifiers should be expressed as scores (represent the degree of support) that are used to
rank all the classes in descending order. The outputs of SVM, which are mostly expressed
as a label for the predicted class that a test sample is assigned to (for example, the output of
binary classifier is either +1 or −1), are not compatible with our fusion system. Therefore,
the method suggested by Platt [58] is used to estimate probabilistic outputs for SVM
classifier. The discriminative function of binary SVM can be expressed as (11) [59]:

f (x) =
N

∑
i=1

αiyik(x, xi) + d (11)

where yi is either +1 or− 1, and represents ideal output, xi is support vector, d is bias,

k(x, xi) is kernel function, α is weight,
N
∑

i=1
αiyi = 0 and αi > 0. The kernel function satisfies

the Merce condition, so that k(x, y) can be expressed as (12):

k(x, y) = Φ(x)TΦ(y) (12)

where Φ(x) is a mapping from input space (feature vector space) to high-dimensional
space. Here, a radial basis function is selected as SVM kernel function and 3-fold cross
validation was adopted to find best parameters for it. Mapping input feature vectors to
high-dimensional space by using “kernel trick” which implicitly transforms the input
vectors to high-dimensional space without explicit computation of dot product in high-
dimensional space. Hence, all the dot products in SVM computations are replaced with
kernel function k(x, y). This implies that SVM optimizes a decision boundary (hyperplane)
between the two classes in high-dimensional space without explicit computation of Φ(x).
For more information about adopting SVM in speaker recognition, the reader may refer
to [60], and to [59,61] for more in-depth information about the SVM and kernel functions.

3.3. Fusion System

A large number of biometric authentication systems have adopted fusion of informa-
tion at the score level to improve the overall performance of authentication systems. These
systems employ various biometric modalities, different classification architectures, and
feature extraction approaches. The key is not only to generate a set of feature vectors that
complement each other but also to develop classifiers with satisfactory performance in
diverse and challenging conditions. Here, the scores of the four classifiers (GMM-MFCC
MLC, GMM-GFCC MLC, GMM-MFCC supervector SVM, and GMM-GFCC supervector
SVM) are integrated using weighted Borda count method. It is worth noting that these clas-
sifiers represent both generative and discriminative approaches which intuitively can be
seen as highlighting similarities and differences between classes, respectively. The weight
factors are computed on the fly using a Fuzzy rule-based inference engine. The knowledge
base of the fuzzy inference system is represented as IF-THEN fuzzy rules. These rules are
derived by studying the recognition rate of the aforementioned classifiers as a function of
SNR and the length of utterance.

In order to study the recognition behavior for individual classifiers as a function of
SNR and the length of utterance, the TIDIGITS corpus [62] was divided into three equal
sets; training set, development set, and testing set. The training set was used to train
individual classifiers independently. All utterances in development set and testing set
were distorted by three types of noise: white Gaussian noise, pink and street noise with
SNR range from −5 to 50 dB, in increments of 5 dB. Additionally, all utterances in the
development set were categorized into three groups (short, medium, long) based on the
length of utterance. Then, the recognition rates of these trained classifiers were computed
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on each group and depicted as a function of SNR and rank. Each group (i.e., short, medium,
long) contains utterances with range of time duration. Additionally, the estimation of SNR
is prone to error. Thus, we fuzzified SNR and length of utterance by designing membership
functions for each of them empirically as depicted in Figures 8 and 9, respectively. The
SNR and length of utterance represent inputs of the fuzzy inference system and the weight
factors represent the outputs of the fuzzy inference system as shown in Figure 1. The
statistical measures of time duration of all utterances (i.e., min, max, mean) in each group
were used to facilitate determining the parameters of membership function of length of
utterance. The SNR membership function parameters were determined empirically based
on the performance of the base classifiers on different noise levels. For each type of noise,
a set of parameters was selected relying upon the performance of the base classifiers.
The knowledge base, which is represented as IF-THEN fuzzy rules, is derived from the
performance of the base classifiers on the development set that categorized into three
groups and distorted with three types of noise (white, pink, street). The performance
of base classifiers on a combination of the three types of noise with three categories of
length of utterance (i.e., total of nine groups from the development set) are depicted in
Figures 10–18. For each type of noise, a set of IF-THEN rules are derived relying upon
the performance of the base classifiers shown in Figures 10–18. These figures depict the
relationship between the recognition rate of the system and SNR at various ranks. Since
each of the base classifiers return a ranked list of candidates based on their match scores,
recognition rate of each classifier can be calculated at different rank. When recognition rate
is calculated considering the top ranked candidate (i.e., the candidate with best score is
the correct class), it is called rank-1 recognition rate. Additionally, when recognition rate
is calculated considering the first and second top ranked candidates (i.e., the correct class
is among the two top candidates), it called rank-2 recognition rate and so on. The Borda
count method uses ranking information to determine the winner class, thus, change in
recognition rates of the base classifiers with respect to rank (rank axis in Figures 10–18) is
exploited in deriving IF-THEN rules. The rules are derived such that more weight is given
to the base classifier that demonstrates a big improvement in recognition rate with respect
to rank axis. For example, by studying the performance of the base classifiers on utterances
distorted with white noise (Figures 10–12), we can derive the following rules:

• If the length of utterance is short and signal-to-noise ratio is very low (i.e., SNR range
from −5 to 5), then the weight of GMM-MFCC MLC is high and the weight of GMM-
GFCC MLC is very high and the weight of GMM-MFCC supervector SVM is very low
and the weight of GMM-GFCC supervector SVM is low.

• If the length of utterance is medium and signal-to-noise ratio is very low (i.e., SNR
range from 5 to 15), then the weight of GMM-MFCC MLC is very high and the weight
of GMM-GFCC MLC is low and the weight of GMM-MFCC supervector SVM is high
and the weight of GMM-GFCC supervector SVM is very low.

• If the length of utterance is short and signal-to-noise ratio is low (i.e., SNR range from
5 to 15), then the weight of GMM-MFCC MLC is low and the weight of GMM-GFCC
MLC is very high and the weight of GMM-MFCC supervector SVM is very low and
the weight of GMM-GFCC supervector SVM is high.
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Considering five membership functions for input 2 (signal-to-noise ratio) and three
membership functions for input 1 (length of utterance), 15 IF-THEN rules are derived for
each type of noise. One of the shortcomings of this approach is that for each type of noise,
a set of IF-THEN fuzzy rules need to be derived.

4. Experimental Results

The TIDIGITS database was used in this research study. TIDIGITS is a speech dataset
which was originally collected at Texas Instruments, Inc., Dallas, TX, USA. The corpus was
collected in a quiet environment and digitized at 20 kHz. The TIDIGITS corpus contains
326 speakers categorized into four groups (111 men, 114 women, 50 boys and 51 girls)
each pronouncing 77 digit sequences. Only men and women groups were used in the
experiments. Speech signals of 40 speakers (20 males and 20 females) out of 225 were
randomly chosen in this study. The database was selected to emphasize that the proposed
system was trained on limited speech data and that is not necessary to have phonetically
rich utterances and at the same time is easy to pronounce. The main point is to facilitate
collection of a similar database in social robot environments, such as robots working with
speech impairment person or robots working with people with developmental disability
as well as robots working in assisted living and hospitals [35,63,64]. Additionally, the
choice of the number of speakers was selected to emulate social human–robot interaction
tasks where social robots interact with a limited number of persons [65]. The speech
samples were divided equally into three sets; namely training, development, and testing
sets. The training set was used for speaker modeling and training base classifiers while the
development set was used to study the recognition rate as a function of SNR and length
of utterance. Consequently, we derived the relevant IF-THEN rules. The testing set was
used to test the proposed systems under different noisy conditions. The testing set was
composed of unseen data, not used in the development sample set of the system. It is
worth noting that the training set was composed of clean speech signals while the speech
signals in development and testing set were distorted with different noises at different
SNR levels. At the test time, prior knowledge about the type of noise is assumed. The
CASA-based approach presented in [66] was adopted to estimate the SNR of speech signal.
The performance of the proposed speaker identification system was evaluated on three
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different noises (white, pink, street) at range of SNR (−5–65 dB). The overall recognition
rates of the proposed system (fusion) and the recognition rates of the base classifiers were
computed for the aforementioned types of noise. The rank-1 recognition rates of the fusion
system were plotted as a function of SNR as shown in Figures 19–21. Additionally, the
rank-1 recognition rates of the base classifiers when they are used within the proposed
system (two-stage) are depicted in the same figures. The performance of the base classifiers
when they are used within the proposed system were compared with that of the same base
classifiers when they are used independently without first stage classifier (i.e., without
gender classification) [19,27,67] as shown in Tables 1–3.

Discussion

The results suggest that the recognition rates of the base classifiers that are used within
the proposed architecture (i.e., exploiting the gender information in the first-stage classifier)
outperform that of the same classifiers when they are used independently (without the first-
stage classifier). However, the recognition rates of these base classifiers and consequently
the overall recognition rate of the proposed system is highly affected by the performance
of the first classifier (gender classification). Additionally, the outcome of fusing all the base
classifiers within the proposed architecture outperforms the performance of the best of the
base classifiers at low SNR and matches the performance of the best of the base classifiers
at high SNR. The proposed fusion system exploits the knowledge about the strengths and
the weaknesses of the base classifiers in order to improve the overall performance of the
system. The knowledge about the strengths and the weaknesses of each base classifier at
different combinations of SNR and length of utterance is used to increase the contribution
of the strong classifier and to reduce the contribution of the weak classifier, consequently
improving the overall performance of the system. For instance, when the speech signals are
distorted with white noise, the GMM-GFCC classifier outperforms all other base classifiers
at low SNR and short utterance. On the other hand, at low SNR and long utterance the
GMM-MFCC MLC classifier is superior to all other base classifiers. Thus, more weights are
given to these classifiers when they encounter similar conditions at test time. The weight
factors are governed by fuzzy rules that are derived relying upon the performance of the
base classifiers as discussed in Section 3.3. The proposed fusion approach considers the
two base classifiers that were combined such that they complement each other (i.e., the
selected base classifiers need to use different features or different models given priority
to the base classifier that uses different feature vectors) whenever it is possible—in the
light of their performance. For instance, considering street noise, the GMM-MFCC MLC
classifier was selected to be combined with GMM-GFCC MLC classifier at low to medium
SNR (approximately in the range of −3–12 dB) and short utterance even though GMM-
GFCC supervector SVM has better performance than that of GMM-MFCC MLC classifier.
However, the fuzzy inference system assigns most of the weight to GMM-GFCC MLC
classifier as its performance is superior to the rest of the classifiers at this specific condition.
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street noise.

Table 1. Comparison of recognition rates for the base classifiers when they are used within the proposed system (blue) with
that of the same base classifiers when they are used independently (red) on utterances distorted with white noise.

SNR
(dB)

Success Recognition Rate of Base Classifiers (%)

GMM-MFCC MLC GMM-MFCC Supervector
SVM GMM-GFCC MLC GMM-GFCC Supervector

SVM

Indep. Two
-Stage |%∆| Indep. Two

-Stage |%∆| Indep. Two
-Stage |%∆| Indep. Two

-Stage |%∆|

−5 22.63 33.6 48.46 20.37 26.98 32.48 15.06 36.38 141.62 10.79 23.67 119.35

0 24.57 38.96 58.55 20.19 28.59 41.59 35.74 53.61 50 22.52 38.06 69.05

5 25.01 41.17 64.62 20.76 31.06 49.57 54.08 76.56 41.57 45.32 60.31 33.07

10 26.94 43.52 61.51 22.31 35.00 56.85 74.35 93.52 25.78 71.67 82.59 15.25

15 35.74 50.56 41.45 31.2 46.67 49.55 85.93 98.70 14.87 84.26 90.56 7.47

20 44.44 57.22 28.75 50.56 60.00 18.68 91.94 100 8.76 88.8 90.74 2.19

25 58.06 69.44 19.62 67.22 75.74 12.67 96.67 100 3.45 91.02 92.41 1.53

30 69.17 80.74 16.73 77.78 86.48 11.19 96.76 99.26 2.58 92.5 91.67 0.90

35 80.37 88.89 10.6 87.31 93.70 7.32 98.06 99.63 1.61 92.04 92.04 0.0

40 85.56 92.22 7.79 93.24 95.74 2.68 98.8 99.81 1.03 91.11 92.22 1.22

45 91.39 95.93 4.96 95.56 98.15 2.71 99.17 100 0.84 91.3 92.22 1.01

50 94.72 98.52 4.01 96.67 98.15 1.53 99.35 100 0.65 91.48 92.04 0.61

55 96.39 99.26 2.98 97.41 98.15 0.76 99.54 99.81 0.28 91.76 91.67 0.1

60 96.94 99.26 2.39 97.5 97.96 0.47 99.44 99.81 0.37 91.85 91.67 0.2

65 97.41 99.63 2.28 97.5 97.78 0.28 99.54 99.81 0.28 91.67 92.04 0.4
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Table 2. Comparison of recognition rates for the base classifiers when they are used within the proposed system (blue) with
that of the same base classifiers when they are used independently (red) on utterances distorted with pink noise.

SNR
(dB)

Success Recognition Rate of Base Classifiers (%)

GMM-MFCC MLC GMM-MFCC Supervector
SVM GMM-GFCC MLC GMM-GFCC Supervector

SVM

Indep. Two
-Stage |%∆| Indep. Two

-Stage |%∆| Indep. Two
-Stage |%∆| Indep. Two

-Stage |%∆|

−5 46.22 61.27 32.58 40.91 53.79 31.49 39.86 56.23 41.05 25.94 46.13 77.85

0 47.18 63.80 35.23 41.46 53.97 30.17 68.89 82.03 19.07 56.47 70.05 24.05

5 50.74 65.72 29.54 44.87 55.25 23.14 84.23 92.26 9.54 75.38 85.76 13.77

10 56.94 73.70 29.43 53.15 66.11 24.39 93.06 98.15 5.47 88.15 92.59 5.04

15 65.56 76.85 17.23 65.09 75.37 15.79 97.31 99.81 2.57 91.76 93.33 1.72

20 73.06 83.89 14.83 78.33 85.93 9.69 98.89 99.81 0.94 92.87 92.96 0.1

25 79.07 87.96 11.24 86.11 91.30 6.02 99.07 99.81 0.75 93.24 92.78 0.5

30 83.06 90.56 9.03 91.67 93.70 2.22 99.54 100 0.47 93.15 91.85 1.39

35 87.04 93.70 7.66 93.61 97.22 3.86 99.63 100 0.37 92.13 91.67 0.5

40 91.02 95.56 4.98 95.19 97.04 1.95 99.54 100 0.47 91.57 91.85 0.3

45 94.81 97.41 2.73 96.20 97.59 1.44 99.44 100 0.56 91.30 92.04 0.81

50 96.20 98.70 2.6 96.67 97.96 1.34 99.54 100 0.47 91.67 91.67 0.0

55 97.04 99.26 2.29 97.13 97.96 0.86 99.44 99.81 0.37 91.85 91.67 0.2

60 97.04 99.63 2.67 97.22 97.78 0.57 99.54 99.81 0.28 91.76 91.67 0.1

65 97.41 99.63 2.28 97.50 97.78 0.28 99.54 99.81 0.28 91.67 92.04 0.4

Table 3. Comparison of recognition rates for the base classifiers when they are used within the proposed system (blue) with
that of the same base classifiers when they are used independently (red) on utterances distorted with street noise.

SNR
(dB)

Success Recognition Rate of Base Classifiers (%)

GMM-MFCC MLC GMM-MFCC Supervector
SVM GMM-GFCC MLC GMM-GFCC Supervector

SVM

Indep. Two
-Stage |%∆| Indep. Two

-Stage |%∆| Indep. Two
-Stage |%∆| Indep. Two

-Stage |%∆|

−5 13.14 20.02 52.32 9.14 12.19 33.33 9.66 19.67 103.6 6.96 14.27 105

0 13.76 20.73 50.65 10.45 13.4 28.21 34.4 40.92 18.96 27.07 39.85 47.19

5 16.79 22.93 36.56 13.27 15.89 19.73 63.56 68.07 7.1 57.6 65.54 13.79

10 22.31 25.93 16.18 17.87 21.30 19.17 81.48 88.52 8.64 78.8 85 7.87

15 31.57 34.63 9.68 28.43 29.63 4.23 89.81 95.56 6.39 87.96 90.19 2.53

20 44.63 43.52 2.49 42.22 43.52 3.07 93.43 97.96 4.86 91.67 92.96 1.41

25 56.76 57.41 1.14 55.19 57.04 3.36 96.3 98.15 1.92 92.5 92.04 0.5

30 66.85 66.67 0.28 68.89 70.93 2.96 98.43 98.52 0.09 92.5 92.41 0.1

35 74.72 75.74 1.36 81.67 82.22 0.68 99.44 99.81 0.37 92.69 92.22 0.5

40 82.31 86.85 5.51 87.31 90.37 3.5 100 100 0 91.85 91.67 0.2

45 89.26 92.04 3.11 92.31 95.74 3.71 99.72 100 0.28 91.76 91.48 0.3

50 94.17 96.85 2.85 95.93 97.41 1.54 99.63 99.81 0.19 91.94 91.67 0.3

55 96.39 98.89 2.59 97.04 97.96 0.95 99.63 99.81 0.19 91.85 91.48 0.4

60 97.04 99.26 2.29 97.22 97.78 0.57 99.54 99.81 0.28 91.67 91.67 0

65 97.41 99.63 2.28 97.5 97.78 0.28 99.54 99.81 0.28 91.67 92.04 0.4

5. Conclusions

In the absence of a unique robust speaker identification system that demonstrates
superior performance for applications where the system is expected to perform in chal-
lenging scenarios such as different types of environmental noise, at different levels of
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environmental noise (low SNR to high SNR), and with only access to short utterances (at
test time), the plausible contention is to integrate the advantages of using a multi-feature
speaker recognition system with a multi-classifier speaker recognition system. In this study,
two types of speech-based features (short-term spectral and prosodic features) and three
powerful classifier systems (SVM, GMM, and GMM supervector-based SVM classifiers)
are incorporated within an elegant architecture to identify the speaker and his/her gender
as a byproduct. Exploiting prosodic features to cluster the population into two groups
reduces the population size and builds a strong coupling between the speaker-dependent
model and the UBM. The reduction in population size as well as deriving the speaker-
dependent model from the gender-dependent model, improves the recognition rates of the
base classifiers and reduces the computational cost. The recognition rates of the base classi-
fiers (namely GMM-MFCC MLC, GMM-GFCC MLC, GMM-MFCC supervector SVM, and
GMM-GFCC supervector SVM), were improved by maximum (64.62%, 141.62%, 56.85%,
and 119.35%), (35.23%, 41.05%, 31.49%, and 77.85%), and (52.32%, 103.60%, 33.33%, and
105%) when evaluated on short utterances distorted with white noise, pink noise, and street
noise, respectively. Moreover, combining the base classifiers at score level by assigning
weights proportional to their performance at different conditions (combinations of SNR
and length of utterance), improve the overall recognition rate of the proposed speaker
recognition system particularly at low SNR and short utterance.
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Appendix A

Table A1. Prosodic feature vector.

Name Statistic Measure

Fundamental frequency (F0) Median, Max, and Min.
Spectral centroid (SC) Mean and Std.

Spectral flatness measure (SFM) Mean and Std.
Shannon entropy (SE) Mean and Std.

Harmonics-to-noise ratio (HNR) Mean and Std.
Jitter Median

Shimmer Median
The first three formant (F1,F2,F3) Median
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44. Kockmann, M.; Ferrer, L.; Burget, L.; Černockỳ, J. iVector Fusion of Prosodic and Cepstral Features for Speaker Verification.
In Proceedings of the INTERSPEECH 2011: 12th Annual Conference of the International Speech Communication Association,
Florence, Italy, 27–31 August 2011.

45. Hu, Y.; Wu, D.; Nucci, A. Pitch-Based Gender Identification with Two-Stage Classification. Secur. Commun. Netw. 2012, 5, 211–225.
[CrossRef]

46. Reynolds, D.A.; Zissman, M.; Quatieri, T.F.; O’Leary, G.; Carlson, B.A. The Effects of Telephone Transmission Degradations
on Speaker Recognition Performance. In Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal
Processing, Detroit, MI, USA, 9–12 May 1995; Volume 1, pp. 329–332. [CrossRef]

47. Togneri, R.; Pullella, D. An Overview of Speaker Identification: Accuracy and Robustness Issues. IEEE Circuits Syst. Mag. 2011,
11, 23–61. [CrossRef]

48. Apsingekar, V.R.; De Leon, P.L. Speaker Model Clustering for Efficient Speaker Identification in Large Population Applications.
IEEE Trans. Audio Speech Lang. Process. 2009, 17, 848–853. [CrossRef]

49. Mazaira-Fernandez, L.M.; Álvarez-Marquina, A.; Gómez-Vilda, P. Improving Speaker Recognition by Biometric Voice Decon-
struction. Front. Bioeng. Biotechnol. 2015, 3, 126. [CrossRef] [PubMed]

50. Mamdani, E.H.; Assilian, S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man. Mach. Stud. 1975, 7,
1–13. [CrossRef]

51. Patterson, R.D.; Nimmo-Smith, I.; Holdsworth, J.; Rice, P. An Efficient Auditory Filterbank Based on the Gammatone Function.
1988. Available online: https://www.pdn.cam.ac.uk/system/files/documents/SVOSAnnexB1988.pdf (accessed on 15 July 2021).

52. Moore, B.C.J. An Introduction to the Psychology of Hearing, 4th ed.; Academic Press: San Diego, CA, USA; London, UK, 1997.
53. Patterson, R.D.; Holdsworth, J.; Allerhand, M. Auditory Models as Preprocessors for Speech Recognition. In The Auditory

Processing of Speech: From Sounds to Words; Mouton de Gruyter: Berlin, Germany; New York, NY, USA, 1992; pp. 67–89,
ISBN 9783110879018.

54. Murphy, P.J. Periodicity Estimation in Synthesized Phonation Signals Using Cepstral Rahmonic Peaks. Speech Commun. 2006, 48,
1704–1713. [CrossRef]

55. Shue, Y.-L. The Voice Source in Speech Production: Data, Analysis and Models; University of California: Los Angeles, CA, USA, 2010.
56. Lartillot, O.; Toiviainen, P. A Matlab Toolbox for Musical Feature Extraction from Audio. In Proceedings of the International

Conference on Digital Audio Effects, Bordeaux, France, 10–15 September 2007; pp. 237–244.
57. Boersma, P.; van Heuven, V. Speak and Unspeak with Praat. Glot Int. 2001, 5, 341–347. [CrossRef]
58. Platt, J. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In Advances in

Large Margin Classifiers; MIT Press: Cambridge, MA, USA, 1999; pp. 61–74.
59. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods; Cambridge

University Press: Cambridge, UK, 2012.
60. Campbell, W.M.; Campbell, J.P.; Reynolds, D.A.; Singer, E.; Torres-Carrasquillo, P.A. Support vector machines for speaker and

language recognition. Comput. Speech Lang. 2006, 20, 210–229. [CrossRef]
61. Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000; ISBN 978-1-4757-3264-1.
62. Leonard, R.G.; Doddington, G. TIDIGITS LDC93S10. Web Download. Philadelphia: Linguistic Data Consortium. 1993. Available

online: https://catalog.ldc.upenn.edu/LDC93S10 (accessed on 15 July 2021).

http://doi.org/10.1007/s12369-013-0220-0
http://www.ncbi.nlm.nih.gov/pubmed/25152779
http://doi.org/10.1016/j.specom.2014.10.005
http://doi.org/10.1016/j.csl.2021.101199
http://doi.org/10.1186/1687-4722-2013-8
http://doi.org/10.1016/j.compeleceng.2016.06.002
http://doi.org/10.1002/sec.308
http://doi.org/10.1109/ICASSP.1995.479540
http://doi.org/10.1109/MCAS.2011.941079
http://doi.org/10.1109/TASL.2008.2010882
http://doi.org/10.3389/fbioe.2015.00126
http://www.ncbi.nlm.nih.gov/pubmed/26442245
http://doi.org/10.1016/S0020-7373(75)80002-2
https://www.pdn.cam.ac.uk/system/files/documents/SVOSAnnexB1988.pdf
http://doi.org/10.1016/j.specom.2006.09.001
http://doi.org/10.1097/AUD.0b013e31821473f7
http://doi.org/10.1016/j.csl.2005.06.003
https://catalog.ldc.upenn.edu/LDC93S10


Sensors 2021, 21, 5097 30 of 30

63. Lee, M.K.; Forlizzi, J.; Rybski, P.E.; Crabbe, F.; Chung, W.; Finkle, J.; Glaser, E.; Kiesler, S. The Snackbot: Documenting the Design
of a Robot for Long-term Human-Robot Interaction. In Proceedings of the 4th ACM/IEEE International Conference on Human
Robot Interaction, La Jolla, CA, USA, 9–13 March 2009.

64. Gross, H.; Schroeter, C.; Mueller, S.; Volkhardt, M.; Einhorn, E.; Bley, A.; Langner, T.; Merten, M.; Huijnen, C.; van den Heuvel, H.; et al.
Further Progress towards a Home Robot Companion for People with Mild Cognitive Impairment. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetic, Seoul, Korea, 14–17 October 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 637–644.

65. Kozhirbayev, Z.; Erol, B.A.; Sharipbay, A.; Jamshidi, M. Speaker Recognition for Robotic Control via an IoT Device. In Proceedings
of the 2018 World Automation Congress (WAC), Stevenson, WA, USA, 3–6 June 2018.

66. Narayanan, A.; Wang, D. A CASA-Based System for Long-Term SNR Estimation. IEEE Trans. Audio Speech Lang. Process. 2012, 20,
2518–2527. [CrossRef]

67. Islam, M.A.; Jassim, W.A.; Cheok, N.S.; Zilany, M.S.A. A Robust Speaker Identification System Using the Responses from a Model
of the Auditory Periphery. PLoS ONE 2016, 11, e0158520. [CrossRef]

http://doi.org/10.1109/TASL.2012.2205242
http://doi.org/10.1371/journal.pone.0158520

	Introduction 
	Related Works 
	Overview of the Proposed Architecture 
	Feature Extraction Modules 
	MFCCs Feature Extraction Module 
	GFCCs Feature Extraction Module 
	The Prosodic Feature Extraction Module 

	Speaker Modeling (Classification Algorithms) 
	Gaussian Mixture Model 
	GMM Supervector and Support Vector Machine 

	Fusion System 

	Experimental Results 
	Conclusions 
	
	References

