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Abstract: The implementation of control algorithms oriented to robotic assistance and rehabilitation
tasks for people with motor disabilities has been of increasing interest in recent years. However,
practical implementation cannot be carried out unless one has the real robotic system availability.
To overcome this drawback, this article presents the development of an interactive virtual reality
(VR)-based framework that allows one to simulate the execution of rehabilitation tasks and robotic
assistance through a robotic standing wheelchair. The virtual environment developed considers the
kinematic and dynamic model of the standing human–wheelchair system with a displaced center of
mass, since it can be displaced for different reasons, e.g.,: bad posture, limb amputations, obesity,
etc. The standing wheelchair autonomous control scheme has been implemented through the Full
Simulation (FS) and Hardware in the Loop (HIL) techniques. Finally, the performance of the virtual
control schemes has been shown by means of several experiments based on robotic assistance and
rehabilitation for people with motor disabilities.

Keywords: control algorithms; dynamic model; kinematic model; rehabilitation; robotic assistance;
standing wheelchair; virtual reality

1. Introduction

There are thousands of people worldwide with some type of physical disability, some
of them due to congenital or birth diseases and some others due to spinal injuries caused
by accidents or age-related problems. For years, people with motor disabilities have been
belittled by society, considered to be a burden [1,2]. Nowadays, we are more aware of the
limitations that people with disabilities face when performing actions or tasks of everyday
life, and different mechanical methods, techniques and devices that can facilitate this group
of people to integrate into society have emerged [3]. Depending on the degree of motor
disability that affects a person, the use of canes, walkers, chairs, among other manual
mechanisms, allow people to move independently. However, there is a group of people
with disabilities in lower and/or upper limbs, or with severe motor dysfunctions who
cannot manipulate conventional mechanical devices [1,2,4]. This group of people require
permanent assistance, i.e., they depend on a third person to manipulate the device, get
out of bed, use the toilet; in short, to carry out any type of daily activity, thus generating
dependence on their family, friends or caregivers [5].

Technology developed in the area of the rehabilitation of people with disabilities consid-
ers that technological development must create bio mechanisms capable of coexisting with
others aimed at performing tasks in changing work environments, for which control in their
manipulation and locomotion approaches has been analyzed by various researchers [4,6–9].
Currently, the fusion between mechanics, electronics and software has allowed the develop-
ment of robotic devices that facilitate a person to perform safe movements, and as well as
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providing a certain degree of autonomy to the person by offering motor assistance. These
systems are known as assistance robots [4,10,11]. Among the most common autonomous
or semi-autonomous robotic mechanisms for the assistance and rehabilitation of people
with motor disabilities, we can highlight the following: walkers, autonomous wheelchairs,
standing wheelchairs and exoskeletons, among others [9,11,12].

We find in the literature several studies focused on developing control strategies that
allow a person with a motor disability to maneuver a robotic wheelchair through: elec-
tromyography (EMG) signals that receive movement of the neck and arm muscles [13,14];
electrooculography (EOG) signals, where control depends on the user’s eye movement [15];
electroencephalography (EEG) signals which are used to define the movement of the robotic
wheelchair [10,14]; or even control via voice command [16]. The abovementioned works
are intended for allowing the user to move around in a partially structured environment.
On the other hand, according to the activities of daily living (ADL) that a person may
carry out, there is a need for the person with a motor disability to continuously change
their sitting position, and vice versa [3]. In this context, great interest has been generated
in the scientific community to develop prototypes of a robotic standing wheelchair, in
order to improve the quality of life of people with motor disabilities [4,10]. Thus, different
control algorithms are currently being proposed for the execution of autonomous or semi-
autonomous tasks in partially structured and unstructured environments, through the
standing human–wheelchair system. Autonomous care and rehabilitation are considered
among the most common tasks found in the literature, so the implementation of control
algorithms must ensure safe and reliable robotic systems for the user [4,17,18].

Therefore, the evaluation of the control algorithms requires a considerable number of
experimental tests, in order to correct possible errors in accuracy and precision. However,
this process cannot be easily carried out due to external factors, such as: (i) availability:
people with disabilities have limited movement, which leads to a time conflict in partici-
pating in the required experimental tests; (ii) accident risk: people with motor disabilities
who participate in experimental tests of any type of bio mechanism are exposed to possible
accidents since the reactions to avoid blows, injuries and fractures are reduced compared
to a person who does not have a motor disability; and finally, (iii) lack of bio mechanisms:
the high costs of either bio mechanisms or elements for their construction limit researchers
in carrying out experimental tests, as they are required to verify the correct operation of
the designed controls algorithms [19].

As explained in previous paragraphs, the simulation of robotic applications for the
assistance and rehabilitation of people with motor disabilities is an essential step prior
to the experimental implementation of new research proposals. The main objective of
the simulation is to recreate the real behavior of the patient when being subjected to
assistance and rehabilitation tasks, without putting at risk the integrity of the person and
the robotic system in the development stage. In addition, the implementation costs are
radically reduced by dispensing with the physical robotic system until the end of the
development process.

Main Contributions of the Study

For all the above, and to overcome the different factors that prevent the implemen-
tation of control algorithms in a real robotic system, we think it is essential to implement
different technological tools to solve this problem, in order to continue developing new
research proposals aimed at autonomous or semi-autonomous control of the robotic system
in the area of service robotics, specifically in the patient rehabilitation area. Therefore, in
this work, the development of an interactive and virtual system was oriented to simulate
advanced control strategies for rehabilitation tasks and robotic assistance for people with
motor disabilities through a robotic standing wheelchair. Unlike the works available in the
literature, the developed VR-based system considers the implementation of closed-loop
control algorithms, through the techniques of FS and HIL. After reviewing the literature
regarding the autonomous control of wheelchairs, it can be concluded that there are dif-
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ferent works to solve the trajectory tracking problem, where the desired speed is equal to
the derivative with respect to the time of the desired trajectory. In addition, we may find
works where control strategies are implemented to solve the trajectory tracking problem,
but when it comes to demonstrating the stability of the proposed controller, they consider
the desired speed of the robotic system constant. The proposals found in the literature for
the autonomous control of a standing chair are not the best. The movements of the chair–
man system must not depend exclusively on the desired trajectory, nor must the speed of
movement always be constant. Therefore, in this work, a control algorithm is proposed for
the autonomous control of rehabilitation and robotic assistance tasks are based on solving
the standing wheelchair path following problem defined in the axes with respect to the
inertial reference system. The proposed controller considers that the desired speed of the
standing wheelchair is variable and may depend on the parameters of the desired task or
the vital signs of the person, which differs from the works found in the literature. On the
other hand, the virtualized environment considers the kinematic and dynamic behavior
of the standing human–wheelchair system; therefore, a dynamic model is proposed that
considers the lateral displacement of the center of mass of the human–wheelchair system,
which differs from works found in the literature. The lateral displacement of the center
of mass can be generated by the bad posture of the person, amputation of limbs, or a
person with spinal injury, among others. In addition, the kinematic model and the dynamic
model consider as input signals the maneuverability velocities of the standing wheelchair,
in a similar way to commercial robots. Another relevant difference is that in this work,
the proposed virtual system considers the development of dynamic link libraries (DLLs)
that generate shared memory (SM) in RAM. The SM allows the exchange of information,
in real time, between the virtual system developed in the Unity 3D graphics engine and
the MatLab mathematical software (the MathWorks Inc., Natick, MA, USA), in which the
advanced control algorithm is implemented to simulate rehabilitation or robotic assistance
tasks. Finally, the robustness of the proposed control scheme is mathematically analyzed,
guaranteeing that the control errors are limited as a function of the velocity error. The
velocity error is generated by the friction force between the robotic wheelchair and the
selected surface in the virtual environment, thus resembling reality.

The article is organized as follows: Section 2 presents the state of the art, whereas
Section 3 deals with the formulation of the problem and describes the proposal to be
developed in this work. The kinematic and dynamic models featuring the robotic standing
wheelchair velocities as inputs are presented in Section 4, whereas the development of
the interactive and virtual environment is presented in Section 5. Section 6 deals with
the design of the control algorithm for the execution of rehabilitation and autonomous
assistance tasks, together with a robustness analysis of the proposed control scheme. The
experimental results are presented in Section 7 and discussed in Section 8. Finally, Section 9
presents the main conclusions together with future work.

2. Review of Literature

Nowadays, the development of software that allows one to simulate work environ-
ments is booming, due to the interaction that it offers to the user with diverse multidisci-
plinary systems of certain complexity [20–22]. The purpose of work environments is to
help and support the user during the fulfillment of a task, and also to evaluate the correct
functioning of the system [22]. The technological advances of the last decade have allowed
the expansion of the use of simulators in several areas, e.g., social sciences, engineering,
robotics, medicine and rehabilitation, among others [23,24]. In the rehabilitation area,
simulation software has become an ally because it allows the patient to perform a sequence
of exercises in a more interactive way, avoiding the frustration and boredom that can be
generated in the patient [25].
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A review of the literature shows that there are simulators oriented to robotic applica-
tions and simulators for rehabilitation applications. (i) Commercial robotics simulators:
among the commercial simulators applied to robotics are Gazebo, V-REP and Webots,
among others [26]. The programming language of these simulators is mainly based on
C++ and Phyton, and they are compatible with ROS (Robotic Operating System), which
allows for direct communication with the scientific programming software Matlab. How-
ever, they lack the possibility of introducing the behavior of a human in the form of an
avatar, a feature that is essential for research related to robotic assistance and rehabilitation;
(ii) simulators for rehabilitation: among the main simulators under development oriented
to rehabilitation tasks are: Development of Exergaming Simulator for Gym Training, a
prototype simulator combines various gym and rehabilitation equipment (treadmill, exer-
cise bike, etc.) with virtual environments, games, sports applications, immersive gaming
view and advanced motion controllers [27]. For the cognitive rehabilitation process, the
scientific community is developing different prototypes of robotic assistants that consider
virtual reality, augmented reality and mixed reality [28–30]. In [29], a simulator considering
a wheelchair for Parkinson’s tremor testing is presented. A rehabilitation process for the
restoration of lower limb gait is presented in [30]. In the works found in the literature, the
applications developed only consider the virtual environment as a 3D plotter, which does
not consider the dynamics of movement of the human–robot system, nor does it allow the
implementation of assistance or rehabilitation tasks autonomously.

Currently, Unity3D (Unity Software Inc., San Francisco, CA, USA) is one of the most
widely used 3D graphics engines for the development of simulators for robotic applications
and for physical–cognitive rehabilitation tasks [31]. The advantage of Unity 3D is the
compatibility with different formats, low latency of data exchange in real time, versatility
to interact with other software, integrated supports for video cards and support for VR
devices [32,33]. In this context, virtual environments can be designed to enable people
with motor disabilities to perform assistive and rehabilitative tasks considering activities of
daily living. Virtual environments developed for rehabilitation and robotic assistance ap-
plications for people with motor disabilities should be interactive environments that allow
implicit interaction and sensory immersion of the user, thus ensuring that the experience in
the virtual environment is as similar as possible to the experience in the real world [34,35].

3. Problem Formulation

The control algorithms for any developed standing wheelchair robot must be evalu-
ated through different experimental tests to verify their robustness, stability and efficiency.
To accomplish this, it is essential to have the standing wheelchair robot. In many cases, this
is a problem because the purchase or construction of the standing wheelchair represents
a high cost for universities, research centers or companies focused on the development
of assistance robots for people with physical disabilities. In addition, experimental tests
are considered risky, since people with physical disabilities are exposed to some kind of
accident. When evaluating the operation of the control algorithms, sudden movements can
occur that may lead to blows, falls and injuries, because people with physical disabilities
do not have the same reflexes and reaction skills to face these events as a person without
physical disabilities. Table 1 presents the four alternatives for the implementation and
evaluation of control schemes [32].
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Table 1. Implementation of closed-loop control algorithms.

Control System
Configuration Full Simulation (FS) Rapid Control

Prototyping (RCP)
Hardware in the Loop

(HIL)
Deployed System

(DS)

Control laws and signal
processing Simulated Simulated Deployed to target

hardware
Deployed to target

hardware

Robot, feedback, and
power converter Simulated Physical components Simulated Physical components

Primary benefits
Easy to develop and

make changes; full set
of analysis tools.

Easy to modify control
laws; full set of analysis

tools.

Safely and quickly
validate deployed

control laws

Cost and reliability
appropriate for field

operation

Due to the aforementioned drawbacks, when implementing closed-loop control al-
gorithms with no possibility of having the robotic system, it is recommended to use a
technique that emulates the real behavior of a robot–human system. Therefore, and consid-
ering that a robotic system is not available for the implementation and evaluation of control
algorithms, this work proposes the implementation of control schemes based on the FS and
HIL techniques, respectively, in order to implement and evaluate control schemes for the as-
sistance and rehabilitation of people with motor disabilities via robotic wheelchairs. For the
two proposed implementation techniques, the emulation of the human–wheelchair system
in a 3D VR environment has been considered, as shown in Figures 1 and 2, respectively.
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Figure 1 shows the implemented control scheme considering the FS technique. The
implementation considers two main parts that make up a closed-loop control scheme,
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defined as: (i) Target Controller: this block is within the mathematical software that
allows the implementation of control algorithms, in charge of correcting control errors to
accomplish the desired task to be performed; (ii) Virtual Environment: this block fulfills
the function of simulating the behavior of a robotic system which interacts with a 3D
virtual environment. This block considers the mathematical modeling that represents the
kinematics and dynamics of the robotic system, including disturbances that affect the
system (e.g., friction between the robot and the environment, noise at the input and output
of the robotic system, among others).

Figure 2 details the three main parts that make up a closed-loop control scheme consid-
ering the HIL technique, defined as: (i) Target Controller: this contains the control algorithm
in charge of correcting possible errors between the reference signal and the output; (ii)
Real-time Simulation: this block fulfills the function of simulating the behavior of a robotic
system, considering the mathematical modeling that represents both the kinematics and
dynamics of the robotic system. In addition, this block can include disturbances that may
affect the system and the sensor in charge of receiving the output signal; and (iii) Bilateral
Communication: this is the communication channel in charge of communicating the real
part of the process with the simulation part in real time.

FS and HIL techniques offer advantages in the process of implementing the control
scheme, such as: reduced development times, evaluation of the robustness of the control
algorithm against disturbances in the system, reliability in system data and analysis in
the implementation of security protocols (essential for an assistance robot), among others.
These techniques require the knowledge of both the kinematic and dynamic behavior of the
robot–human system. Therefore, mathematical models are one of the main requirements
to validate the correct operation of the control techniques to be implemented. It should
be noted that the simulation of the robot–human system evolves in real time, through a
system of differential equations, identified and validated with a real system.

4. Robotic Standing Wheelchair Modeling

This section describes the modeling of the standing wheelchair (see Figure 3) in order
to be implemented in the 3D simulator proposed in this work. This work considers the
kinematic modeling of the wheelchair, as well as the dynamic model of the robotic system
with displacement of the center of mass.
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4.1. Kinematic Modeling

This work is based on a non-holonomic mobile platform with standing. A robotic
standing wheelchair is a differential drive mobile robot (DDMR) that can rotate freely
around its vertical axis and move independently on the vertical axis. It is assumed that
the human–wheelchair system with standing moves on (X, Y, Z) axis of a reference system
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< R >. The kinematic model of robot is confirmed by a set of three velocities represented
at the spatial frame <Wsw >. The displacement of the robot is guided by a linear velocity
u, and two angular velocities ωψ and ωφ, as shown in Figure 4.
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In other words, the Cartesian motion of the standing wheelchair robot at the inertial
frame < R >, is defined as


.
ηx.
ηy.
ηz.
ψ

 =


cos ψ −a sin ψ− b sin ψ + b cos φ sin ψ b sin φ cos ψ
sin ψ a cos ψ + b cos ψ− b cos φ cos ψ b sin φ sin ψ

0 0 b cos φ
0 1 0


 u

ωψ

ωφ


.
ηsw(t) = J(ψ, φ)µ(t)

(1)

where a and b are distances;
.
ηx,

.
ηy,

.
ηz and

.
ψ are the point interest velocities (whose position

is being controlled) with respect to the inertial frame < R >; J(ψ, φ) ∈ Rm x n represents the
Jacobian matrix that defines a linear mapping between the velocities vector

.
ηsw(t) ∈ Rm

with m = 4 and of the standing wheelchair maneuverability velocities vector µ(t) ∈ Rn

with n = 3.

4.2. Standing Wheelchair Dynamic Model

In this subsection, the dynamic modeling of the standing wheelchair robot is presented,
for which a separate analysis is considered. For the dynamic model of the wheelchair without
standing, it is assumed that the human–wheelchair system moves on a planar horizontal
surface, where the vertical disturbances have been neglected, whereas for the dynamic model
of standing, only linear motion about the Z axis is considered, as shown in Figure 5.

The dynamic model of a robotic system can be obtained through the force equilibrium
approach established by Newton’s second law, or its equivalent for rotational movements,
the so-called Euler’s law [4]. However, in this work, a simple and systematic conceptualiza-
tion is considered through the kinetic and potential energy balance approach established
by the Lagrange formulation [36].
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The Lagrange formalism is used to derive the dynamic equations of the human–
wheelchair system. In the case of the dynamic model of the wheelchair without standing
the potential energy P(q) = 0, because the trajectory of the wheelchair is constrained to
the horizontal plane. Thus, the kinetic energy is given by,

L = K =
1
2
(mw + mh)v2 +

1
2

Iω2
ψ (2)

where m = mw + mh represents the human–wheelchair system mass, in which mh is the
human mass and mw is the wheelchair mass; v2 =

.
η

2
xp
+

.
η

2
yp

is the velocity of the wheelchair
on the X −Y plane; I is the inertia moment of the wheelchair–human system.

On the other hand, for the dynamic model of standing, the Lagrangian equation is
defined as,

L =
1
2

mh
.
η

2
z −mhg(hz + b sin(φ)) (3)

where
.
ηz(t) = ωφ(t)b cos φ(t), hz is the constant height of the wheelchair seat.

Therefore, it is possible to obtain a dynamic model that considers both linear velocity
and angular velocities as input signals, as commercial robots have [37].

[
µrefp(t)2x1
ωφre f (t)1x1

]
=

[
Mp(ς)2x2 02x1

01x2 Mb(φ, ϕ)1x1

][ .
µp.
ωφ

]
+

 Cp

(
ς,µp

)
2x2

02x1

01x2 Cb

(
φ,

.
φ, ϕ,

.
ϕ
)

1x1

[ µp
ωφ

]
+

[
02x1

g(φ)1x1

]
µref(t) = M(φ, ϕ, ς)

.
µ+ C

(
φ,

.
φ, ϕ, ς,µ

)
µ+ g(φ)

(4)

where M(φ, ϕ, ς) ∈ Rnxn with n = 3 represents the inertia matrix of the standing human–
wheelchair system; C(ς,µ) ∈ Rnxn represents the centripetal and Coriolis forces; g(φ) ∈ Rn

represents the gravitational vector; µ = [ u ωψ ωφ ] ∈ Rn is the vector of system’s
velocity; and µref = [ ure f ωψre f ωϕre f ] ∈ Rn is the vector of velocity control signals
for the standing human–wheelchair system; and ς = [ ςp ςb ] ∈ Rl with l = lp + lb =
22 is the vector of dynamic parameters, which contain the physical, mechanical and
electrical parameters of the human–wheelchair system. For more details on the dynamic
model, see Ortiz’s proposal in [37]. Appendix A shows the dynamic parameters of the
standing wheelchair.

5. Virtual Environment

Virtual environments intended for rehabilitation should consider a virtual environ-
ment that allows robot–human interaction with every day, real-life situations. Therefore,
this section describes the development of a 3D virtual simulator that allows people with
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motor disabilities to perform autonomous rehabilitation and assistance tasks. The virtual
environments developed are related to everyday tasks in a person’s real life, with the aim
of evaluating the performance of closed-loop control algorithms in a more realistic way.

The implementation scheme of the Virtual Standing Human–Wheelchair System
simulator (VSWHS), is presented in Figure 6, which consists of external graphic resources
that are executed on a Unity3D graphic engine. The proposed scheme consists of four main
blocks: (i) external resources, which consider the development of 3D objects to be included
in the virtual environment; (ii) 3D graphics engine, which contains the implementation
of external resources and programming scripts that allow the simulation of robot–human
interaction in a virtual environment; (iii) virtual devices, which allow user immersion and
interaction with the virtual environment; and finally (iv) control algorithm, which allows
the implementation of closed-loop control algorithms, in order to carry out rehabilitation
or autonomous assistance tasks for people with motor disabilities.
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5.1. External Resources

External resources are essentially made up of three groups: (i) virtualized scenario,
referring to scenarios related to ADL, to evaluate rehabilitation and autonomous assistance
tasks for people with partial or total motor disabilities; (ii) virtualized robot, related to
3D modeling of the standing wheelchair and its assembly (it is carried out in the Solid
Works (SolidWorks Corp., Waltham, MAassachusetts, USA) CAD software). This process is
based on the dimensions and physical characteristics of a real wheelchair; and (iii) avatar,
which represents the person or user who will be participating in the use of the simulator,
and whose character is modeled in the Autodesk Maya software taking into account the
anthropomorphic dimensions of the average individual (see Figure 7).
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5.2. Graphics Engine

Unity has been considered as a 3D graphics engine. Unity is a multiplatform video
game engine created by Unity Technologies. Unity is available as a development platform
for Microsoft Windows, Mac OS, and Linux [32]. We separated the virtual environment
development process into two main parts: 3D scene development and programming of the
virtual environment control scripts, respectively.

5.2.1. Virtual Scene

This subsection describes the 3D scenes developed for applications aimed to sim-
ulate rehabilitation proposals and robotic assistance. In addition, the proposed system
considers the implementation of a user interface, which allows one to define the simulation
parameters, e.g., desired task, virtual environment to execute the desired task and physical
characteristics of the avatar, among others.

(a) User Interface (UI). This was developed to allow easy and intuitive interaction
with the program to start up the virtual control scheme and allow the user to visualize
the evolution of the system, as well as the data represented as variables of the states
of the robot–human system. An important feature is that, depending on the dynamic
disturbance data of the controller, the height and weight of the avatar can be modified to
simulate in a more reliable and credible way the real behavior of the robot–human system.
Another important detail is the development of a real-time graphics system that allows the
visualization of the control errors evolution locally in the graphics engine without the need
to pay attention to the scientific programming software (see Figure 8).

(b) Realism and Rendering. The development of 3D scenes is a fundamental process to
create realistic virtual environments that are capable of deceiving the user’s senses. Thus,
when importing external resources, it is necessary to make some virtualized environment
and robot configurations.

The Meshing stage considers the data of the vertices and faces of the objects aimed
at taking the geometry from the Mesh Filter and renders it at the position defined by the
GameObject’s Transform component. The Material stage defines the textures, material
properties, and the Lighting and Lightmapping components of the imported external
resources. In order to optimize the graphic rendering performance in the Shaders stage,
each external resource is customized through specialized scripts that contain mathematical
algorithms that calculate the color of each rendered pixel based on the lighting input and
the material configuration. Finally, these settings are stored in “Prefabs” for later use.
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5.2.2. Scripting Stage

One of the functionalities defined as a set of the most relevant public classes when
implementing a 3D virtual environment that allows one to emulate the behavior of a robot–
human system, is the kinematic and dynamic modeling block of the robotic system. It
should be noted that the proposed dynamic model (Equation (4)) allows one to modify the
avatar weight and considering external disturbances, which can be generated by sliding on
smooth surfaces, or by the noise generated at the inputs of the maneuverability commands
and at the outputs of the robot, for example. The sliding of the wheels is affected by the
friction forces that are generated according to the type of soil in the virtual environment
where the wheelchair performs the desired task. Figure 9 shows the model block of the
robotic system considered in this work, where both the mathematical models representing
a wheelchair and the actual robotic system consider the same input and output signals.
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On the other hand, the scripts contain the code blocks with the necessary instructions
that determine the functionality of a set of tools, data and components that make up the
3D virtual simulator. In this layer, the dedicated libraries (SDK—Software Development
Kit) of the virtual input and output devices are managed, which allow communication and
interaction with each other. In addition, these blocks manage the components involved in
the scene, such as the robotic system model, the audio controller, cameras, lighting, user
interface (UI) and the generation of fictitious forces that, together, simulate real conditions
which robots are subjected to during operation (see Figure 10).
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Through the dynamic modification of the mesh of the avatar model in its masculine
and feminine version, it is possible to modify the physical appearance representing the
accumulation of fat based on the configured weight. In the same way, it is also possible to
modify the height, maintaining an anthropomorphic proportion of the human body. At this
stage, animation of the movement of the robotic wheelchair is also performed based on the
workspace that is defined by the control algorithm. In a similar way, the animation frames
of the avatar are synchronized according to the state variables of the standing wheelchair.

5.3. Inter-Process Communication—Shared Memory

The exchange of information between memory segments is a feature of operating
systems, that enables one to share information. Taking into account the information
provided by [27], in this work, we implemented the shared memory method, since it is an
easy technique to apply, with short delays and low computational cost because no third
party functions are used. Figure 11 presents the data exchange scheme based on shared
memory, proposed in this work. For the FS technique, data exchange is considered between
the 3D simulator that is developed in the Unity graphics engine, and the mathematical
software in which the wheelchair control algorithm is implemented. On the other hand,
for the HIL technique, data exchange is considered between Unity and the target hardware
in which the wheelchair control algorithm is implemented.
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Figure 12 contains scripts that allow the exchange of information between the virtual
environments with mathematical software, through the use of a dynamic link library (DLL)
that generates a shared memory in RAM (SM) for the exchange of data between different
software packages. By means of the SM, the control actions calculated in the destination
controller are injected into the mathematical model of the robotic system. The model
of the robotic system calculates its position and velocity outputs, which are sent to the
mathematical software, thus closing the control loop through the feedback of the robot’s
output states.
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6. Control Algorithm Design

The proposed control algorithm for the execution of rehabilitation and autonomous
assistance tasks must be implemented according to the technique to be used. That is, for
the FS technique, a different mathematical software hosted on the same computer as the
virtual environment is considered. Regarding the HIL technique, a hardware of a different
kind than the computer where the 3D virtual environment is hosted is considered. On the
other hand, with the aim of executing autonomous rehabilitation or robotic assistance tasks
for people with motor disabilities, an advanced control algorithm is proposed to solve the
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problem of following the desired path P(s) ∈ R3, not parameterized in time, defined on
(X ,Y ,Z) axis of a inertial reference frame < R >.

Figure 13 shows the wheelchair path-following problem, where Pd = [ Px Py Pz ]∈
R3 defines the closest point between the standing wheelchair and the desired path P(s). In
addition, it is considered that the desired velocity of the wheelchair can be variable, which
differs from works found in the literature, in which it is considered that the desired velocity
is constant. In this work, the velocity can be defined according to the characteristics of the
desired task, i.e., υd(t) = f (υmax,P ,η). The proposed control algorithm will consider a
non-linear control law based on the kinematic model of the robotic standing wheelchair
(see Figure 14).
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The proposed controller considers the saturation of the µmin < µref(t) < µmax velocity
commands, and receives as input signals P(s)|s ∈ [s0, s f ], which describe the desired
motion task of the standing wheelchair, respective to the inertial frameR(X ,Y ,Z). The
problem of control to deal with—often called the inverse kinematics problem—is finding
the control vector of maneuverability µref(t)|t ∈ [t0, t f ]. to achieve the desired operational
motion. The corresponding evolution of the whole system is given by the actual generalized
motion q(t)|t ∈ [t0, t f ]. Hence, the control error is defined as η̃(t) = Pd(s)− η(t), and
consequently, the control aim is expressed as lim

t→∞
η̃(t) = 0∈ Rm. The desired velocity of

the standing wheelchair will depend on the task, the control error, the angular velocity, etc.
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In this case, it is considered that the reference velocity depends on the control errors and
the angular velocity. It is defined as [4]:

|υd| =
vmax

1 + kη̃‖η̃‖+ kΓ‖ΓP‖
(5)

where vmax is the desired maximum velocity on the desired path P(s); kη̃ and kΓ are
positive constants that are control error and radius of curvature of P(s), respectively. The
radius of curvature is defined as [38],

ΓP (t) =
‖

.
P ×

..
P‖

‖
.
P‖

3 . (6)

The proposed control scheme considers the kinematics of the standing wheelchair
represented by Equation (1), without considering the variation of the orientation, since
due to its mechanical configuration, the wheelchair is oriented tangentially to the desired
path profile: .

ηx.
ηy.
ηz

 =

 cos ψ −a sin ψ− b sin ψ + b cos φ sin ψ b sin φ cos ψ
sin ψ a cos ψ + b cos ψ− b cos φ cos ψ b sin φ sin ψ

0 0 b cos φ

 u
ωψ

ωφ


.
η(t) = Jsw(ψ, φ)µ(t)

(7)

Thus, the following control law is proposed for the standing wheelchair robot:

µref(t) = J−1
sw

(
υd(t) + Γtanh

(
Γ−1κη̃(t)

))
(8)

where J−1
sw is the inverse Jacobian matrix of Jsw(ψ, φ); κ and Γ are the definite positive

diagonal matrices that weigh the control error η̃(t) = Pd(s)− η(t). In order to include an
analytical saturation of velocities in the standing wheelchair robot, the tanh(.) function,
which limits the control errors η̃(t) is proposed. The expressions tanh(.) denote a compo-
nent by component operation. Additionally, υd(t) represents the desired velocities vector
on the desired path:

υd(t) =

 vx
vy
vz

 =

 |υd| cos(β) cos(α)
|υd| cos(β) sin(α)
|υd| sin(β)

. (9)

The vector |υd| represents the modulus of the desired velocity; vx, vy and vz are the
projections of υd on the direction of the X , Y and Z axes, respectively, while α represents
the orientation of the projection of γ on the X −Y plane measured from the X axis of the
< R > reference system; and β is the angle between the tangent vector γwith the X −Y
plane The angles are determined by:

α(t) = tan−1

( .
Py
.
P x

)
and β(t) = tan−1

 .
P z

‖
( .
P x,

.
Py

)
‖

. (10)

Robustness Analysis

The behavior of the control error of the interest point of the standing wheelchair is
analyzed considering errors in velocity tracking, i.e., ε(t) = µ̃(t) = µref(t)− µ(t). The
velocity error can be caused by unwanted disturbances on the robotic chair. Therefore, by
substituting Equation (8) in (7), the close loop equation is obtained:

υd(t) =
.
η(t)− Γtanh

(
Γ−1κη̃(t)

)
+ Jswµ̃(t). (11)
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Remember that the desired velocity vector υd(t) is different from the time derivative
of the desired path. Now, defining difference signal γ(t) as γ(t) = d

dtP(s)− υd(t) and

remembering that
.
η̃(t) = d

dtP(s)−
.
η(t) Equation (11) can be written as:

.
η̃(t) = γ(t)− Γtanh

(
Γ−1κη̃(t)

)
+ Jswµ̃(t) (12)

Remark 1. The desired velocity vector υd(t) is tangent to the desired path P(s) and is collinear to
the vector of the derivative of the desired path. Then, γ(t) is also a collinear vector to υd(t) and
d
dtP(s).

For the robustness analysis, the following Lyapunov candidate function is considered:
V(η̃(t)) = 1

2 η̃
Tη̃. Its time derivative on the trajectories of the system is,

.
V(η̃(t)) = η̃Tγ−

η̃TΓtanh
(
Γ−1κη̃

)
+ η̃TJµ̃(t). A sufficient condition for

.
V(η̃(t)) to be negative definite is,∣∣∣η̃TΓtanh

(
Γ−1κη̃

)∣∣∣ > ∣∣∣η̃T(γ+ Jswµ̃(t))
∣∣∣ (13)

For large values of η̃(t), the condition in the Equation (13) can be reinforced as,
‖η̃T‖‖Γtanh

(
Γ−1κη̃

)
‖ > ‖η̃T‖‖γ+ Jswµ̃(t)‖. Then,

.
V(η̃(t)) will be negative definite only

if Γ > ‖γ+ Jswµ̃(t)‖/tanh
(
Γ−1κη̃

)
. Hence, the control errors η̃(t) decrease, while for

small errors values of η̃(t), the error is ultimately bound by:

‖η̃‖ < κaux‖Jswµ̃(t) + γ(t)‖
ςλmin(κ)tanh(κaux)

; with 0 < ς < 1 (14)

If the velocity errors are bound, then, it can be concluded that the control error is also
ultimately bound by Equation (14). The velocity error is generated by the frictional forces
between the wheelchair and the surface where the desired task is being performed. The
friction forces change according to the coefficient of friction between surfaces; therefore,
the velocity error is different from zero, but it is bound ‖µ̃(t)‖ < kµ̃, with kµ̃ being a
positive constant.

7. Experimental Results

This section presents the results obtained from the developed virtual environment and
the proposed control scheme. This section is divided into four parts. First, we introduce
the virtual simulator with the interactive windows that allow the configuration of the VR
environment and the physical characteristics of the avatar. Second, we present the results
obtained from the implementation of the advanced control algorithms for autonomous
rehabilitation and robotic assistance tasks (HIL and FS simulation techniques are considered
in the tests). Third, we present the hardware performance and computational cost of the
computer when running the developed virtual environment. Finally, the results of a
usability test are presented, for a group of 20 people who experimented with the developed
virtual system.

7.1. Virtual Human–Wheelchair System Simulator

This subsection presents the user interface (UI) developed in this work. In addition, the
configuration of the virtual simulator for the execution of rehabilitation tasks and robotic
assistance for people with motor disabilities is shown. The UI allows one to navigate
through a series of windows that allow one to modify and store information about the
executed task.
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Figure 15 shows the configuration scene of the informative data of the avatars that
are used in the execution of the virtual desired tasks, e.g., name, gender, age, height and
weight. The configuration of all the data enables the customization of the appearance
of the avatar, with options including skin, hair, eyes, underwear, shirt and pants; each
one with the possibility of modifying the type of material that determines the texture and
color of the object. In addition, the configuration scene allows one to select the virtualized
scenario where the experiment will be carried out. For this project, four available scenarios
were developed.
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Figure 15. Scene configuration of the simulator environment for robotic assistance (initial scene).

Different virtual scenarios showing for the activities of daily living were developed to
carry out autonomous assistance tasks. Figure 16 shows the virtualized scenarios, for which
two types of visual art were considered: (i) High Definition Render Pipeline (HDRP), in
which advanced visual optimization and lighting techniques were implemented to emulate
the visual stimuli as faithfully as possible, as perceived in the real world; and (ii) Low poly
style, which uses a small number of polygons in 3D models, with the purpose of seeking
the abstraction of the elements and that the form takes over the design in such a way that a
minimalist appearance is generated that encourages the user’s creativity to a certain extent
during the execution of the experiment.
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7.2. Control Scheme Implementation

This subsection shows the behavior of the implemented control schemes (based on
the FS and HIL techniques described in Section 3 through experimental tests. In the
implementation, the real-time interaction between human–wheelchair and the virtual
environment was considered. The mathematical modeling of the human–wheelchair
system presented in Section 4 and the development of the virtual environment presented
in Section 5 were taken into account for virtual interaction. The control algorithm proposed
in Section 6 was implemented in the target Hardware, according to the aforementioned
techniques (HIL or FS).
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7.2.1. Experiment 1

The first experiment considers the implementation of the FS technique, aimed at
executing an autonomous assistance task. A male avatar was configured with an age of
35 years, a height of 1.75 (m), and a weight of 100 (kg). This information was included in
the dynamic model of the standing wheelchair–human system represented by Equation (4).
Additionally, the HDRP virtual environment representing a neighborhood environment
was considered (see Figure 16c). For this experiment, the aim was to follow a desired
path that allowed the autonomous displacement of the human–wheelchair system from an
initial position Po to a final position Pd. The desired task was selected since the transfer
of a person between two points is a common action of daily life. Figure 17 shows the
desired path for the human–wheelchair system, obtained from the virtual scenario through
a non-linear regression that determines the values of the parameters associated with the
best fit curve.
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Figure 17. Autonomous assistance task: movement of the standing human–wheelchair system from
a house located in Po to another house located in point Pd.

Once the desired path was obtained, the desired path vectors were defined ηdx and ηdy
with respect to theX −Y plane of the inertial reference systemR(X ,Y ,Z). A constant pos-
ture was considered for the movement of standing on the Z axis, defined by ηdz = 0.5 [m],
the value representing the distance from the point of interest of control to the ground,
i.e., a value that corresponds to the status of the avatar sitting in the wheelchair while
executing the desired task. For the autonomous task execution, the control law proposed
in Equation (8) was implemented, where the controller parameters were defined as: initial
conditions of the robot ηo = [ −54 −3 0.85 ][m]; desired path ηd = [ ηdx ηdy ηdz ];
weight matrix of control errors Γ = diag(1.8, 1.8, 1) and κ = diag(1.1, 1.1, 0.5). A sam-
pling time of T0 = 0.1 [s] was set.

The evaluation of the autonomous assistance task was carried out through the analysis
of the response curves of the proposed control algorithm. Figures 18–21 show the results
of the first experiment. Figure 18 shows the virtual stroboscopic movement of the robot–
human system, based on real data.
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Figure 21. Velocity commands to the standing wheelchair µref(kT0) =
(
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.

Figure 19 shows that the control errors η̃
(
η̃x, η̃y, η̃z

)
∈ R3 converge to values close

to zero asymptotically, i.e., achieving final feature errors max|η̃(t)| < 0.04 [m], since the
velocity errors are bounded and different from zero µ̃(t) = µref(t)− µ(t) 6= 0 ∈ R3, as
shown in Figure 20.

Figure 21 shows the control actions injected into the standing wheelchair robot during
the experimental test. From the results obtained, the adequate performance of the proposed
controller was verified.

7.2.2. Experiment 2

The second experiment considers the implementation of the HIL technique. A fe-
male avatar was configured with an age of 21 years, a height of 1.6 (m) and a weight of
67 (kg). This information was included in the dynamic model of the human–wheelchair
system represented by Equation (4). In addition, we used the virtual environment that
represents a house (Figure 19). The experiment considered a task applied to autonomous
rehabilitation routines, in which the standing movement is performed sinusoidally. The
desired movement was considered a low frequency of movement, in order not to cause
abrupt movements to the patient or unwanted injuries. For people with motor disabilities
in their lower extremities, standing physical exercises are performed with the purpose
of not losing muscle mass, reducing spasticity, preventing the appearance of ulcers, and
it is even fundamental for physiological and social reasons, and to guarantee the correct
development of the hip joint during childhood. Therefore, standing upright is key to
avoid motor impairment in the case of neurological injuries or physical disability [39]. The
desired task, desired velocity and initial conditions for the controller are defined in Table 2
for the experiment.

Table 2. Desired task and initial parameters.

Initial Conditions Desired Task

η0x −10 [m] u0 0 [m/s] ηdx 2 cos(0.05t)−10.58 [m]
η0y −11 [m] ωψ0 0 [rad/s] ηdy 2 sin(0.05t)−11.12 [m]
η0z 0.5 [m] ωφ0 0 [rad/s] ηdz 0.2 sin(0.3t)+0.21 [m]
η0ψ 0 [rad] - - vmax 0.32 [m

s
]

Unlike the first experiment, the movement of standing in the Z axis was variable,
while the displacement was executed with respect to the X − Y plane of the inertial
reference system R(X ,Y ,Z). For the autonomous task execution, the same control law
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proposed in Equation (8) was implemented, where the controller parameters are defined
as: the weight matrices of control errors Γ = diag(1.8, 1.8, 1) and κ = diag(1.1, 1.1, 0.5);
the gain constants to define the desired velocity based on the desired task kη̃ = 1.4 and
kΓ = 1.3. Finally, a sampling time of T0 = 0.1 [s] was set. Figure 22 shows the virtual
stroboscopic movement of the robot–human system, based on real data.
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Velocity errors are caused by wheel slippage and by frictional forces between the
wheelchair and the surface where the tests are being run (virtual environment). Therefore,
the velocity errors are limited. In this experiment, the bound of the maximum velocity error
is max‖µ̃(t)‖ < 0.1. Figure 25 shows the control actions applied to the standing wheelchair
robot during the experimental test.
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7.3. Hardware Performance

The experimental results presented in Section 7 were implemented on the target
hardware, according to the mentioned techniques (HIL or FS). For the development of
the experiments, a computer with advanced features was used (AMD Ryzen 5 3500×,
NVIDIA® GeForce® GTX 1060 video card, 16 GB of RAM, 64-bit Windows 10 operating
system), sound sources, and HCT VIVE pro VR glasses.

Figure 26 shows the computational performance of the graphics processing unit (GPU)
when running the developed virtual simulator. The computational performance of the
GPU briefly reaches 42% of the nominal performance. The moderate consumption of the
computational capacity of the graphics card is attributed to the optimization of the graphics
resources considered in the external resources design stage detailed in Section 5.
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Figure 27 shows the performance of the central processing unit (CPU) when running
the virtual simulator. The CPU performance is around 83% of computational capacity
during the simultaneous execution of the Unity and MatLab software when implementing
the control algorithms going forward during the experimental tests.
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From the results shown in Figures 26 and 27, it can be concluded that the used
computer supports the execution of the developed virtual simulator. The computational
performance of the computer is below the maximum performance threshold of the compo-
nents that make up the hardware. The computational performance of the computer has a
direct relationship with the execution time of the proposed control schemes.

It is important to mention that the computational performance of the computer has
a direct relationship with the execution time of the proposed control schemes. Therefore,
Figure 28 shows the execution time of the control scheme implemented with the FS tech-
nique for each sampling time. The machine time in each sampling period is between 10
and 11 (ms). Therefore, it is possible to conclude that the virtual simulator developed
allows the execution of autonomous control tasks for a sampling period greater than the
machine time.
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Finally, Figure 29 shows the execution time of the control scheme implemented with
the HIL technique for each sampling time. The peaks observed in the figure correspond
to the delay time in the wireless communication between the control unit and the virtual
environment developed. It should be noted that for the HIL technique, a Raspberry Pi
(Raspberry Pi Foundation, Cambridge, England) as target controller was considered in this
work. For the implementation of the HIL technique, it is recommended that the sampling
period be T0 ≥ 0.5 [s], since the machine time considers the wireless communication
between the control unit and the virtual environment. For service robotics applications,
specifically in the area of rehabilitation and assistance of person, the velocity of movement
of the robot–human system must be low; therefore, considering the Nyquist–Shannon
sampling theorem, the sampling time can be greater than T0 ≥ 0.5 [s].
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7.4. Usability of the Simulated System

The usability of the system was analyzed with the help of group of 20 people. The
activities of all the participants began with the installation of the developed virtual applica-
tion. Before the experiments, all participants were trained to navigate VR environments,
aimed at leveling the experience in the use of immersive VR environments. In the training,
no autonomous control tasks were considered for rehabilitation or robotic assistance. After
finishing the experiments, the experimental group completed a usability test to measure
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the level of acceptance of the system’s features. To measure the degree of usability of the
developed application, we used the System Usability Scale (SUS) [40], which is probably
the most popular questionnaire to measure the usability attitudes of a system [41]. The total
average SUS score obtained was 82.5%, which indicates an excellent degree of usability for
our simulator. The designed application, besides being as simple as possible, must also
have a high degree of usability.

8. Discussion

In this work, a VR-based framework to simulate different control schemes through a
robotic wheelchair was developed. The framework also allows the simulation of robotic
assistance tasks and the implementation of motor rehabilitation exercises for people with
motor disabilities. The latter can be extended to home-based environments, thus favoring
tele-rehabilitation. Therefore, people with reduced mobility or motor disabilities can take
advantage of this framework, making everyday life easier for them.

Unlike other simulators oriented to the research of robotic systems applied to physical
rehabilitation that we can find in the literature, the action of standing and the ability to
move while simulating real scenarios has been scarcely explored. In most cases, VR-based
physical rehabilitation is performed statically. That is to say, the patient remains in the
same place in the rehabilitation session. Although this may be somewhat favorable to
maintain the integrity of the person and the robotic system, it has been shown that the
sensation of movement can generate rewards that motivate the user to not abandon the
training sessions [42]. In addition, one of the most relevant features of the framework deals
with the fact that no simulator has explored the range of movements that has direct impact
on the patient while performing the movements. This feature is not possible in commercial
simulators that do not have the ability to simulate human movements, so this process is
essential before, during and after the assistance and rehabilitation. This idea has been
considered in the developed simulator, because it allows the avatar to change the position
according to the user’s position in real time through cameras or motion capture sensors in
the actual implementation of the project.

Within the areas of robotic assistance and rehabilitation, one can define ADL tasks
assisted autonomously by a robotic system [43,44]. For this purpose, a robotic standing
wheelchair has been considered for the autonomous control of movements of the robot–
human system. The work presented in this article falls under the scope of service robots,
which work autonomously or semi-autonomously to perform tasks that are useful for
the well-being of people [10,45]. In particular, the specific scope is the development of
wheelchair prototypes (especially electric wheelchairs) with varying degrees of autonomy
designed for people who cannot move their lower and/or upper extremities. Wheelchairs
can improve the quality of living for people with motor disabilities, so that people can
perform everyday tasks and see the world with other possibilities [11,17].

We find in the literature that different control algorithms have been implemented
for the execution of autonomous or semi-autonomous tasks in each prototype developed.
The tasks have been developed through vision sensors, audio signals, electromyographic
signals (EMGs), electroencephalogram signals (EEGs) and gestural signals, among other
signals [10,13,14]. In order to design and implement control algorithms, the physical robotic
system is required in order to experimentally evaluate the developed control proposals.
To overcome this drawback, different simulation software oriented to robotic systems
have been commercially developed [46,47]. However, when considering robotic systems
for the rehabilitation area, there is no commercial software or free software that allows
one to simulate the behavior of robotic systems oriented to the execution of assistance
or rehabilitation tasks. Therefore, the development of new interactive and 3D simulators
applied to the area of service robotics is a new trend in the scientific community, whose
implementation has been accelerated by the COVID-19 pandemic [4,43,48].

In fact, it is important to mention that the development of this work has been motivated
and influenced by the COVID-19 pandemic, which has generated mobility restrictions,
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making it more difficult for people to attend hospitals, rehabilitation centers, institutes
or laboratories to develop experimental tests on robot–human systems. This is why the
possibility of being able to simulate rehabilitation and/or robotic assistance tasks in safe
conditions prior to their application with patients becomes even more important. The
set made up of the standing wheelchair and the framework that we have developed
constitutes a very useful rehabilitation technology created in the pandemic. There are other
technological developments that have been recently created in different areas of knowledge
as a result of the COVID-19 pandemic [49,50]. We firmly believe that these technological
developments are likely to last once the pandemic is over [37,51].

The developed VR environment considers both the kinematic and dynamic models of
the standing wheelchair. The dynamic model considers the displaced center of mass, which
can be caused by poor posture of the person, amputation of the limbs, or spinal injury, etc.,
which differs from the literature works [4,37]. In addition, the dynamic model considers as
input signals the maneuvering velocities of the robotic standing wheelchair, in a similar
way as commercial robots do. A trajectory tracking algorithm has been proposed for the
autonomous control of the robotic system. The proposed controller design is based on the
standing wheelchair kinematic model, in which analytical saturation is implemented in
order to limit the maneuverability commands of the robotic system. As far as the trajectory
tracking is concerned, we have considered that the desired velocity may depend on the
rehabilitation task or robotic assistance. This consideration differs from other works found
in the literature, which consider that the desired velocity is constant [9,14,52]. The studies
found in the literature have solved the trajectory tracking problem, by choosing the desired
velocity equal to the derivative with respect to the time of the desired trajectory [53], which
is not logical in autonomous tasks that transport a person with some degree of motor
disability. Furthermore, no works were found implementing path-following strategies for
standing wheelchairs. We only found works for wheelchairs without the standing degree
of freedom [10,52]. Lyapunov’s theory helped us to show that control errors converge to
values close to zero, if velocity errors are bound, which confirms that the proposed control
scheme works correctly. Therefore, the movements of the standing wheelchair meet the
objectives of an autonomous rehabilitation task or robotic assistance.

The experiments carried out in our study showed the performance and versatility of
the proposed controller. Furthermore, the obtained usability test results demonstrated a
high degree of usability for the developed virtual application [40,54]. Another interesting
feature of our system lies in the exchange of information in the bilateral communication
between the 3D graphic engine and the mathematical software, whose time is in the
microseconds range [37]. Therefore, this fact leads us to consider that our simulator is
a real-time simulator, considering that for assistive robotics the sampling period can be
greater than 0.05 (s).

The developed framework opens doors to the creation of customized rehabilitation
plans with the help of medical experts, as they have the clinical criteria to plan the rehabili-
tation tasks aimed at every single person with motor disabilities. It is worth mentioning
that there is a high risk of muscle injuries when a rehabilitation plan is incorrectly exe-
cuted, since inadequate movements or abrupt movements may result in muscle injuries,
for example [51].

9. Conclusions

The framework developed in this work has demonstrated its ability to simulate
robotic assistance and motor rehabilitation tasks through a standing wheelchair prior to
its implementation with human beings. The simulation techniques used for autonomous
control have proven to meet the necessary requirements that these tasks need for a safe
operation. Therefore, future work deals with the development and implementation of an
autonomous neurorehabilitation plan for people with lower/upper limb motor disabilities.
We will take advantages of the benefits of virtual environments for patient rehabilitation as
well as the benefits of using sensors. In this sense, we plan to track a person’s movement
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through the “3 Space Mocap” sensors (YEI Technology, Portsmouth, OH, USA) [55,56].
The conjunction of both technologies will allow the patient to have a good immersive
and interactive experience within the virtual environments developed in this work. Our
research will also be focused on the development of new control strategies based on the
dynamic model of the standing human–wheelchair system for the robotic assistance of
people with motor disabilities.
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Appendix A

Standing Wheelchair Dynamic Model[
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Dynamic parameters of the standing wheelchair.
ς1 = 0.0987; ς2 = 0.0046; ς3 = 0.0986; ς4 = −0.00014; ς5 = 0.0987; ς6 = −0.0001;

ς7 = 0.0987; ς8 = 0.0032; ς9 = 0.9214; ς10 = 0.0986; ς11 = −0.0019; ς12 = 0.9582; ς13 = 0.1885;
ς14 = 0.0214; ς15 = −0.0001; ς16 = 1.00; ς17 = 0.0003; ς18 = −0.0085; ς19 = −0.0004;
ς20 = 0.0229; ς21 = 0.0005; and ς22 = −0.0038.
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