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Abstract: Software-defined networking (SDN) has emerged in recent years as a form of Internet
architecture. Its scalability, dynamics, and programmability simplify the traditional Internet structure.
This architecture realizes centralized management by separating the control plane and the data-
forwarding plane of the network. However, due to this feature, SDN is more vulnerable to attacks
than traditional networks and can cause the entire network to collapse. DDoS attacks, also known as
distributed denial-of-service attacks, are the most aggressive of all attacks. These attacks generate
many packets (or requests) and ultimately overwhelm the target system, causing it to crash. In this
article, we designed a hybrid neural network DDosTC structure, combining efficient and scalable
transformers and a convolutional neural network (CNN) to detect distributed denial-of-service
(DDoS) attacks on SDN, tested on the latest dataset, CICDDoS2019. For better verification, several
experiments were conducted by dividing the dataset and comparisons were made with the latest
deep learning detection algorithm applied in the field of DDoS intrusion detection. The experimental
results show that the average AUC of DDosTC is 2.52% higher than the current optimal model and
that DDosTC is more successful than the current optimal model in terms of average accuracy, average
recall, and F1 score.

Keywords: software-defined networking; transformer; convolutional neural network; DDoS;
hybrid model

1. Introduction

With the complexity of network architecture and the rapid growth of the connection
requirements of Internet-connected devices, the traditional complex Internet architecture
(complex control, complex software, high line costs, and difficult expansion) cannot dy-
namically handle modern network applications. Therefore, modern network applications
require a scalable architecture which should be able to provide reliable and adequate
services based on specific traffic types [1]. Software-defined networking (SDN) [2] is a
new network structure that has emerged in recent years; its scalability, dynamics, and
programmability can simplify the complex traditional Internet architecture and its real-time
characteristics can meet high-availability requirements [3]. This kind of network structure
separates the control plane of the network from the data-forwarding plane, both to realize
programmable control of the underlying hardware through the software platform in the
centralized controller, and to realize the flexible deployment of network resources on
demand. However, this centralized management method [4] causes the SDN controller to
become a single compromise point for the entire network. Compared with the traditional
network structure, it is more vulnerable to attacks that cause the entire network to collapse.
A denial-of-service (DoS) [5] attack is a malicious attempt in which the attacker generates
a large number of data packets or requests, eventually overwhelming the target system.
Distributed denial-of-service (DDoS) [6] is a special form of a DoS-based denial-of-service
attack. Multiple attackers in different locations simultaneously launch attacks on one or
several targets, or one attacker controls multiple machines at different locations and uses
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these machines to attack victims simultaneously in a distributed and coordinated large-
scale attack [7]. However, it is difficult to detect DDoS attacks using bot devices, so the
detection of DDoS attacks by intrusion-detection systems has become a challenging task.

Recently, SDN has been widely used in various Internet of Things systems, and in
the realization of the Internet of Things, new-generation communication (5G) plays an
important role. The realization of 5G also needs SDN, which is a currently a developing
technology [8]. The reliability of its underlying network directly affects the overall reliability
of the system. The Internet of Things is very easily attacked via DDoS [9]. Further, the
nature of SDN increases the number of DDoS attacks [8]. Therefore, ensuring the security
of SDN is of great significance to the security of these systems, which is one of the main
issues often discussed in relation to the Internet of Things technologies.

In recent years, transformers [10] based on the attention mechanism have achieved
great success in text classification, dialogue tasks, and other natural language-processing
(NLP) fields. The main method is to pre-train on a large text corpus and then fine-tune
on a smaller task-specific dataset [11]. Due to the computational efficiency and scalability
of transformers, they have not only been used in the field of natural language processing
but also have a worthy role in the direction of image classification in the field of computer
vision [12].

Inspired by a transformer’s text classification and computer vision image classi-
fication in NLP, He et al. and Bikmukhamedo et al. applied a transformer to traffic
classification [13,14] and achieved good results.

This paper proposes a deep learning technology based on a transformer and a CNN
DDoS attack-detection model (DDosTC). We combine the CNN and the transformer to
apply DDoS attack detection. In addition, the control plane plays an important role in
SDN; it is the brain of the network, the south network control, and the north business
support. Consequently, this paper has implemented their detection module at the SDN
control plane. The architecture diagram and DDoS attack-detection module of SDN are
shown in Figure 1. Compared with the current optimal model, the model proposed herein
shows better performance in terms of accuracy, recall, F1 score, and AUC indicators.
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Figure 1. SDN architecture based on DDoS attack-detection module.

The main contributions of this work are as follows:

• We propose a transformer-based deep learning framework (DDosTC) that uses the
computational efficiency and scalability of a transformer, and the predictive ability of a
convolutional neural network, to detect distributed denial-of-service attacks on SDN;
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• In experiments, we use the newly released dataset, CICDDoS2019, which contains a
variety of DDoS attacks and bridges the gap in the existing current dataset, to evaluate
our model;

• We test several state-of-the-art deep learning frameworks in detecting DDoS attacks.
We evaluate our proposed model in terms of accuracy, recall rate, F1 score, and AUC.
The method we propose has the best performance;

• We further evaluate the performance of the model by randomly dividing the training
set and the test set.

The structure of the rest of the paper is as follows: Section 2 introduces related work;
Section 3 introduces our proposed technology; Section 4 introduces the new dataset and
the evaluation of our proposed model; and finally, Section 5 summarizes the paper and
proposes future work.

2. Related Work

Machine learning has been widely used in intrusion detection in SDN environments
in recent years. This section introduces the latest model methods used to detect DDoS
attacks in the SDN environment.

Early in [15], NN + biological danger theory was used to mitigate DDoS attacks in
SCN. The authors of [16] and [17] used RBF-SVM (a combination of nonlinear classifi-
cation (RBF) and linear classification (SVM)) for DDoS detection; the accuracy rates in
these studies reached 95.11% and 97.60%, respectively. The authors of [18] used multi-
ple linear SVM + SOM; the accuracy rate here reached 97.6% with a false positive rate of
3.85%. It can be seen that the detection effect of machine learning is more successful than
traditional methods.

As the performance of deep learning in many fields has far surpassed that of traditional
ML methods, and deep learning does not require feature engineering, good performance
can be achieved by directly inputting data into the network for analysis and processing.
Therefore, in the SDN environment, deep learning is already widely used in DDoS attack-
detection tasks. The authors of [19] proposed a DDoSNet framework that applied RNN
to the detection of DDoS attacks and achieved 99% accuracy with an AUC of 98.8%.
In addition, [20] used the deep CNN ensemble framework to detect DDoS attacks and
achieved 98% accuracy in the ISCX2012 dataset [21]. The use of a hybrid deep learning
model for intrusion detection was explored in [22], which used a hybrid model of LSTM,
CNN, and GRU applied to the CICIDS2017 dataset [23]; the highest accuracy obtained was
98.97% [24]. Using the SAE deep learning method to extract features for DDoS detection,
the 8-class and 2-class accuracy rates were 95.65% and 99.82%. This was also used in [4]
on the CICDDoS2019 [25] dataset to propose an SDN defense system against distributed
denial-of-service attacks and intrusion attacks, using GRU deep learning methods to
perform multidimensional (multistream feature) analysis to detect attacks on the SDN
controller. The average result in terms of accuracy, precision, recall rate, and F-measure rate
was 99.94%. The authors of [26] used GRU-RNN to test the NSL-KDD [27] dataset. The
authors of [28] proposed a deep learning-supported intrusion detection and prevention
system (DL-IDPS) using a deep learning model to achieve an accuracy of 98.3% against
DDoS attacks.

Due to their rapid development, [13] transformers were applied to the classification of
encrypted traffic and [14] also conducted experiments on network traffic classification. The
performance of the classifier was on average 4% higher than that of the integrated one.

Through the above review, we found that most of the studies in the literature used
earlier datasets to carry out experiments. In order to effectively realize the detection of the
latest types of attacks, in this article we used the CICDDoS2019 dataset, which contains the
latest various types of DDoS attacks. We found that there is still room for improvement in
the detection performance reported in the above-mentioned documents, so we included
the popular transformer framework to propose a new detection model to achieve effective
detection of DDoS attacks.
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3. Model Description

This section introduces our proposed DDosTC model and elaborates on the detection
process of this model against DDoS attacks.

3.1. Convolutional Neural Network

A convolutional neural network (CNN) [29] is a feed-forward neural network in which
artificial neurons can respond to surrounding units, and it has achieved good results in
image classification and face recognition. Convolutional neural networks mainly include
three network structures:

• A convolutional layer to extract features;
• A pooling layer, used for feature dimensionality reduction;
• A fully connected layer, mainly used for classification.

The data features are extracted through the convolutional layer, and then the dimen-
sionality is reduced through the features of the pooling layer. The number of data and
parameters are compressed, over-fitting is reduced, and the fault tolerance of the model is
improved. The features obtained through the previous convolution and pooling layers are
classified in the final fully connected layer.

3.2. Transformer

The transformer network architecture was proposed by Ashish Vaswani et al. in
the article “Attention Is All You Need” [8]. It achieved good results in NLP applications.
The encoder and decoder of this network architecture did not use network architectures
such as RNN or CNN. They used an architecture that completely relied on the attention
mechanism [30] and the network also introduced a multi-head attention mechanism.

A transformer is mainly composed of an encoder and decoder. Each encoder block has
two layers: multi-head attention and feed-forward. A decoder has three layers: multi-head
attention, multi-head attention (encoder-decoder attention), and feed-forward.

The encoder input was changed into three parts: query, key, and value through input
embedding. First, positional encoding was used to address the fact that an attention
mechanism itself cannot capture position information. The transformer’s unique multi-
head attention mapped the query and key to high dimensions. The similarity was calculated
in different subspaces (β1, β2, . . . , βn) of space β so that the expressiveness of each layer of
attention could be enhanced without changing the number of parameters, and the output
of the feed-forward layer was passed to the decoder.

The decoder conversion result, corresponding to the encoder, was also converted into
three parts: query, key, and value as input. After positional encoding, masked multi-head
attention, feed-forward, and the output structure from the encoder were jointly input to
multi-head attention and then passed through feed-forward, which first output the space,
and then finally output the probability distribution through the dense layer. For each block,
the transformer added the normalization layer, which contained the residual structure and
layer normalization to standardize the optimization space and accelerate convergence.

3.3. The Transformer-Based Network Attack Detection Hybrid Mechanism

In this paper, we combine the transformer and CNN to form a new hybrid model,
DDosTC, which can achieve better performance than traditional deep learning algorithm
models and traditional hybrid models. A structural diagram of the DDosTC model is
shown in Figure 2.

We divide the DDosTC model into three parts as a whole: the transformer Layer, CNN
layer, and dense layer. A flow chart is shown in Figure 3.



Sensors 2021, 21, 5047 5 of 15

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16 
 

 

3.3. The Transformer-Based Network Attack Detection Hybrid Mechanism 
In this paper, we combine the transformer and CNN to form a new hybrid model, 

DDosTC, which can achieve better performance than traditional deep learning algorithm 
models and traditional hybrid models. A structural diagram of the DDosTC model is 
shown in Figure 2. 

 
Figure 2. DDosTC overall architecture. 

We divide the DDosTC model into three parts as a whole: the transformer Layer, 
CNN layer, and dense layer. A flow chart is shown in Figure 3. 

 
Figure 3. DDosTC flow chart. 

Figure 2. DDosTC overall architecture.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16 
 

 

3.3. The Transformer-Based Network Attack Detection Hybrid Mechanism 
In this paper, we combine the transformer and CNN to form a new hybrid model, 

DDosTC, which can achieve better performance than traditional deep learning algorithm 
models and traditional hybrid models. A structural diagram of the DDosTC model is 
shown in Figure 2. 

 
Figure 2. DDosTC overall architecture. 

We divide the DDosTC model into three parts as a whole: the transformer Layer, 
CNN layer, and dense layer. A flow chart is shown in Figure 3. 

 
Figure 3. DDosTC flow chart. Figure 3. DDosTC flow chart.

3.3.1. Transformer Layer

In the transformer layer of the DDosTC model, we retain the original structure of the
transformer, and the encoder includes multi-head attention, feed-forward, and add and
norm. The decoder includes multi-head attention, multi-head attention (encoder-decoder
attention), add and norm, and feed-forward. However, the input data are different from
those used in the field of natural language processing, so we set the input and output in
the encoder and decoder to the same input, with the preprocessed data used as the input.
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After embedding, the input is divided into three parts—query, key, and value—and the
attention mechanism is supplemented by positional encoding because it cannot capture
the position information by itself. Then, it is output to multi-head attention; to improve
performance, we set all multi-head attention to two heads. Then, in the encoder module,
the output of the two-head attention layer and the feed-forward network are controlled
by the output of the two-head attention layer and the feed-forward network. This is sent
to two add and norm layers for processing to ensure the stability of the data and feature
distribution, and to accelerate the optimization speed of the model.

For the decoder module, after the multi-head attention and add and norm, the output
result of the encoder is combined and input into a layer of multi-head attention, through
space transformation of FFN after two layers of add and norm optimization, and finally
output through the dense layer. The activation functions used in the transformer layer are
all ReLU functions, defined as

f (x) = max(0, x) (1)

3.3.2. CNN Layer

In the CNN layer, we retain the convolutional layer and the pooling layer; we enter
the output results from the transformer layer into the convolutional layer for data feature
extraction, then reduce the dimensionality of the pooling layer features, and finally obtain
the features. For the fully connected layer, we replace it with global-average pooling
(GAP) [31] because GAP does not require a large number of training or tuning parameters,
reduces spatial parameters, has a better anti-overfitting effect, and converts between the
feature map and the final classification. It is simpler and more natural.

3.3.3. Dense Layer

We established a total of three dense layers (Units = 64, 32, 1), and passed the output
results of the CNN layer through two dense layers. The activation functions were all ReLU.
In the last dense layer, the activation function used by our model was the Sigmoid function,
defined as

S(x) =
1

1 + e−x (2)

4. Results and Evaluation

This section introduces the results of experiments with DDosTC and compares our
proposed method’s performance with that of the detection methods that have appeared
in recent years—recurrent neural network (RNN), gated recurrent unit (GRU), convolu-
tional neural network (CNN), long short-term memory (LSTM), hybrid deep learning
(LSTM + GRU), and bidirectional long short-term memory (bidirectional GRU)—in terms
of accuracy, recall rate, F1 score, AUC, and other aspects of our proposed model.

In this paper, we used the CICDDoS2019 dataset, which contained the latest common
DDoS attacks and was a real dataset that was similar to real-life attacks. There were
different modern reflective DDoS attacks in this dataset including PortMap, NetBIOS,
LDAP, MSSQL, UDP, UDP-Lag, SYN, NTP, DNS, and SNMP. This dataset contained data
for two days. The first day was 12 January 2019, which was used as the training day; this
dataset contained 12 different DDoS attacks. The second day was used as the test day; this
dataset contained six different types of DDoS attacks.

4.1. Evaluation Metrics

We used various indicators to evaluate our proposed model, such as accuracy, recall
rate, precision, and F1 score, to conduct systematic benchmark analysis against other
related methods. These indicators are commonly used in intrusion-detection systems and
are defined as follows:
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Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Recall =
TP

TP + FN
(5)

F1_score =
2 × Precision × Recall

Precision + Recall
(6)

where true positive (TP) and true negative (TN) represent the values that are correctly pre-
dicted. In contrast, false positives (FP) and false negatives (FN) indicate misclassified events.

To test our model’s ability to recognize samples at a certain threshold, we used the
ROC curve (receiver operator characteristic curve) [32] and evaluated it by calculating the
AUC (area under the ROC curve). The larger the AUC the better, as this value suggested
that the diagnostic value of the model was higher.

(1) AUC ≈ 1.0: The most ideal inspection index;
(2) AUC 0.7–0.9: High test accuracy;
(3) AUC 0.5: The test had no diagnostic value.

AUC =
∑k posttiveClass ranki −

M(1+M)
2

M × N
(7)

where M is the number of positive samples and N is the number of negative samples.

4.2. Experimental Environment

Our experimental operations were conducted on a Linux 64-bit operating system, an
Intel Xeon E5-2680 processor, and an NVIDIA GeForce RTX 3080, with 64GB of memory.
The experimental environment language was Python, the deep learning framework was
TensorFlow, and the main packages used were Numpy, Pandas, Tensorflow, Keras, Sklearn,
Pydot, and Matplotlib.

The used BATCH_SIZE was 64, EPOCHS was 20, and the LEARNING RATE was 0.1.

4.3. Data Preprocessing

The CICDDoS2019 dataset we used contained 87 extracted IP flow feature data, as
shown in Figure 4. Before training, we needed to preprocess the data:

• We first removed the features of the source and destination IP, source and destina-
tion port, timestamp, and flow identification, because we only needed to train the
model through packet characteristics. We also removed infinite data and (NaN) data.
The final input feature number was 76, and then the data of the remaining features
were formatted;

• We coded the tags, coding all DDoS attack tags to 1 and normal traffic tags to 0.

4.4. Experimental Tests and Results

In reality, attack scenarios and attack types change daily. To show the performance of
our proposed framework, we divided the dataset into a training set and test set as follows:

(1) Training set/test set = 8:2 (randomly selected 80% of the data on the training day and
20% of the data on the test day);

(2) Training set/test set = 7:3 (randomly selected 70% of the data on the training day and
30% of the data on the test day);

(3) Training set/test set = 6:4 (randomly selected 60% of the data on the training day and
40% of the data on the test day).
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We analyzed the accuracy, precision, F1 score, and recall, and the results are shown
in Figure 5. When we reduced the training set/test set ratio, we found that, in the caes of
the accuracy, F1 score, and recall, their performances decreased, while the performance of
precision increased. We found that the more data in the training set, the more effective the
training. It can be observed that when the ratio of the training set to the test set was 8:2,
the highest accuracy was 0.9982. It is not difficult to see that the average performance was
the most successful when the training set/test set ratio was 7:3. In addition, we changed
the number of iterations of the model, the number of epochs, the hidden layer activation
function, and the number of hidden layers, and found that when the epoch number was
20, the performance was most successful when the hidden layers (except the CNN layer
and the transformer layer) contained three layers. When the number of epochs was 20, as
the number of hidden layers increased, the amount of model training increased but the
accuracy did not change significantly. In addition, we changed the learning rate of the
model and found that the best performance was obtained when the learning rate was 0.1.
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To verify the superior performance of our model, we compared it with transformer
(T), transformer + LSTM + CNN (TLC), and transformer + LSTM (TL) for different training
set/test ratios. Details are shown in Table 1.

Table 1. Detailed technical description of hybrid algorithms based on transformers.

Hybrid Algorithm Test Size Epochs Learning Rate Batch Size

DDosTC
0.2

20 0.1 640.3
0.4

Transformer
0.2

20 0.1 640.3
0.4

Transformer + LSTM
0.2

20 0.1 640.3
0.4

Transformer + CNN +
LSTM

0.2
20 0.1 640.3

0.4

From Figures 6–8, we can see that as the complexity of the model continued to increase,
all evaluation indicators dropped significantly. When we only used the transformer model,
the performance was inferior to that of DDosTC and TL. For the two hybrid models
DDosTC and TL, we also found that the average performance of our model remained
slightly higher than that of the TL model. In this sense, the performance of our model was
more convincing.
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Next, we analyzed the accuracy, precision, F1 score, and recall rate of our model and
other models (Table 2). Figures 9–11 show the results for different training/testing set ratios
and comparisons of the accuracy, precision, F1 score, and recall rate with other models on
the same dataset.

From Figures 8–10 and Table 1, we can see that the accuracy of DDosTC with a training
set/test set ratio of 8:2 was 0.9982; with a training set/test set ratio of 7:3 was 0.9978; and
with a training set/test set ratio of 6:4 was 0.9970, which was the most successful when
compared with the other models.
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Table 2. A detailed comparison of DDosTC and other models. The bold numbers are our work.

Data Set
Division Algorithms Accuracy Precision F1 Score Recall

Train/Test = 8:2

DDosTC 0.9982 0.9988 0.9992 0.9996
GRU 0.9955 0.9970 0.9979 0.9987
CNN 0.9775 0.9786 0.9892 0.9912

B-GRU 0.9876 0.9897 0.9941 0.9984
RNN 0.9942 0.9967 0.9972 0.9978

LSTM + GRU 0.9939 0.9968 0.9971 0.9974
LSTM 0.9949 0.9972 0.9976 0.9981

Train/Test = 7:3

DDosTC 0.9978 0.9989 0.9989 0.9989
GRU 0.9945 0.9971 0.9973 0.9975
CNN 0.9777 0.9782 0.9890 0.9892

B-GRU 0.9922 0.9942 0.9962 0.9983
RNN 0.9946 0.9965 0.9974 0.9983

LSTM + GRU 0.9948 0.9968 0.9975 0.9982
LSTM 0.9952 0.9970 0.9976 0.9983

Train/Test = 6:4

DDosTC 0.9970 0.9998 0.9984 0.9970
GRU 0.9944 0.9969 0.9972 0.9976
CNN 0.9775 0.9781 0.9889 0.9892

B-GRU 0.9940 0.9959 0.9971 0.9983
RNN 0.9935 0.9969 0.9968 0.9966

LSTM + GRU 0.9948 0.9967 0.9975 0.9983
LSTM 0.9950 0.9969 0.9976 0.9983
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with a training set/test set ratio of 7:3.

The precision for a training set/test set ratio of 8:2 was 0.9988; for a training set/test
set ratio of 7:3 was 0.9989; and for a training set/test set ratio of 6:4 was 0.9998. It was
evident that this performance was superior to that of the other models.

The F1 score for a training set/test set ratio of 8:2 was 0.9992; for a training set/test set
ratio of 7:3 was 0.9989; and for a training set/test set ratio of 6:4 was 0.9984, which were
more successful values than those achieved by other models.

In terms of recall rate, the DDosTC model was not optimal when the train/test
ratio was 6:4; B-GRU, LSTM, and LSTM + GRU achieved 0.9983, exceeding DDosTC.
However, for train/test ratios of 8:2 and 7:3, it was obvious that DDosTC far exceeded the
other models.
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In general, our model, DDosTC, was superior to the other tested algorithm models.
To further verify that our model was more successful than other models, we tested the
AUC of the model; we still divided the dataset into three parts, and the results are shown
in Figures 12–14.
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When the training set/test set ratio was 8:2, DDosTC’s AUC score was 99.95%; among the
other models, LSTM was greatest at a value of 97.94%, so our model’s score was 2.01% greater.

When the training set/test set ratio was 7:3, the AUC score of DDosTC was 99.86%;
among the other models, GRU was greatest at a value of 97.99%, so our model’s score was
1.87% greater.

When the training set/test set ratio was 6:4, the AUC score of DDosTC was 99.90%;
among the other models, the greatest value was 97.95% for LSTM, so our model’s score
was 1.95% greater.

From all of our experimental results, we can see that, compared with the two models
LSTM and GRU, which had the best average performance for intrusion detection, based on
the AUC, our model’s average performance was 2.52% and 2.85% greater, respectively.

5. Conclusions and Future Work

In the SDN environment, due to the very aggressive nature of DDoS attacks and the
constant changes in these attacks, a highly accurate and adaptable intrusion-detection
model is required. In this article, we proposed a transformer-based DDosTC model based
on the latest DDoS attack dataset, CICDDoS2019, and we simulated the constantly changing
randomness of this type of attack. This model and the latest existing DDoS attack-detection
model achieved the highest performance in accuracy, precision, and F1 score. Although
our model was not optimal in terms of recall rate when the train/test ratio was 6:4, after
a comprehensive evaluation, our model’s performance was far superior to that of other
models, and our model’s AUC scores were greater, showing its high evaluation ability. In
future work, we will try to apply the model to multilabel classification and our model to
other datasets for testing.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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