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Abstract: Although some extended studies about the short-term behavior of NSM FRP strengthened
beams have been carried out, there is a lack of knowledge about the behavior of this kind of
strengthening under sustained loads and high service temperatures. Electromechanical impedance
method formulated from measurements obtained from PZT patches gives the ability for monitoring
the performance and changes experienced by these strengthened beams at a local level, which is
a key aspect considering its possible premature debonding failure modes. This paper presents
an experimental testing program aimed at investigating the long-term performance of a concrete
beam strengthened with a NSM CFRP laminate. Long term performance under different levels of
sustained loading and temperature conditions is correlated with EMI signatures processed using
Linear Mixed-effects models. These models are very powerful to process datasets that have a
multilevel or hierarchical structure as those yielded by our tests. Results have demonstrated the
potential of these techniques as health monitoring methodology under different conditions in an
especially complex problem such as NSM-FRP strengthened concrete structures.

Keywords: NSM-FRP strengthening; mixed effects model; structural health monitoring; PZT sensors;
electro-mechanical impedance; sustained load; temperature

1. Introduction

Strengthening of reinforced concrete (RC) beams using near surface mounted (NSM)
fiber-reinforced polymer (FRP) strips and bars has gained greater interest and increased
field applications in recent years. In comparison with the more extended methodology of
FRP strengthening based on externally bonded reinforcement (EBR), NSM FRP technique
presents several advantages such as better anchorage capacity and better protection from
accidental damage as those due to, for instance, vandalism and environmental effects [1–3].
Additionally, NSM FRP strengthening does not need much surface preparation except for
grooving. However, similarly to EBR FRP, premature debonding failure becomes a critical
point when designing NSM FRP strengthened RC structures. Therefore, the damage needs
to be detected in advance or in real time to ensure structural safety and to predict the
residual life of FRP composite RC structures in service.

Extensive studies about the short-term behaviour of NSM FRP strengthened beams
have been carried out [4,5]. However, little attention has been paid to its performance
under sustained load despite this action might affect its mechanical performance [6,7]. The
same limitations exist under high temperature conditions [8,9]. It is evident that there is a
lack of knowledge on the performance of this kind of strengthening and the experienced
changes under sustained loads and high temperatures and, therefore, more research work
needs to be developed.
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The application of smart piezoelectric transducers (PZT) for the structural health
monitoring (SHM) of FRP composite RC structures is a relatively innovative method since
some studies have been already developed in this area [10–14]. However, in the case of
NSM FRP technique, the number of studies is practically non-existent [15].

There are mainly two main detection approaches based on the use of PZTs, wave prop-
agation and electromechanical impedance (EMI). In wave propagation [16], the structure is
excited by one PZT which generates a stress wave. After propagating along the inspected
structure, the wave is captured by other PZT where is converted into an electrical signal. By
analyzing the signal, a diagnostic of the structure can be made. In the EMI technique [17],
the same PZT is used as actuator and sensor in such a way that the structure is excited with
the sensor using the converse piezoelectric effect and the mechanical response is captured
by the same PZT using the direct piezoelectric effect. The electrical impedance, measured
by an impedance analyzer, serves to evaluate the damage.

This paper aims to contribute to the study of the behavior of RC beams strengthened
with NSM FRP strips under the combined action of sustained loading and temperature
variations which, to the knowledge of the author, has not been carried out up to date. For
it, an experimental testing program aimed at investigating the long-term performance of
a concrete beam strengthened with a NSM CFRP laminate is performed. The program
has been implemented specifically to address the performance of NSM FRP strengthening
systems under different sustained load levels and at elevated temperatures. EMI method
will be used for monitoring the performance and changes of this strengthened beam.
The EMI signatures are recorded using FRP reinforcement and concrete surface bonded
PZT sensors. However, the correlation of the long term performance under different
levels of sustained loading and temperature conditions with EMI signatures is not easy,
considering the complexity of the captured experimental data and the coupling between
mechanical and temperature effects in the impedance measurements. A suitable analysis
tool should be used to get a successful interpretation of the data. Linear Mixed-effects
Models (LMMs) [18,19] as a tool defined from different statistic metrics such as root
mean square deviation (RMSD) and mean absolute percentage deviation (MAPD) [17]
will be used. Linear Mixed-effects Models (LMMs), also known as multilevel or random
effects models, are a statistical analysis tool for predicting scenarios and are of extended
application in fields such as meteorology, biology, psychological science and medical
sciences, etc. [20–22]. However, its application in structural monitoring is practically
inexistent [23], even although it might become the default approach in the future to analyze
quantitative data in this area. Because of it, another important contribution of this work is
the evaluation of the performance of this approach when applied to a complex structural
health monitoring problem in which mechanical and thermal effects are coupled.

2. EMI Method

In the EMI technique, the same PZT is used as actuator and sensor in such a way
that the structure is excited with the sensor using the converse piezoelectric effect and the
mechanical response is captured by the same PZT using the direct piezoelectric effect. The
mechanical impedance of the host structure (Zs) and that of PZT sensor (Za) can induce an
electrical impedance of PZT, which is the reciprocal of the admittance (Y). EMI technique
was firstly developed by Liang et al. [24] who proposed the PZT’s theoretical admittance
model as shown below

Y(ω) = G(ω) + jB(ω) = jω
wl
h

(
εT

33 −
Zs(ω)

Zs(ω) + Za(ω)
d2

3xŶE
xx

)
(1)

where the admittance is a function of the conductance (G) and the susceptance (B) with
its imaginary unit (j) and depends on the PZT sensor dimensions (width, w, length, l, and
height, h), the electrical permittivity (εT

33 = εT
33(1 − δj)), a piezoelectric coefficient (d31)

and the complex dynamic Young’s modulus ŶE
xx; δ is the dielectric loss factor.
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By quantifying the variations of the electrical impedance with respect to a baseline
signature, a diagnosis of the structural health can be made. For it, three different statistical
models, RMSD (root mean square deviation), CCD (correlation coefficient deviation), and
MAPD (mean absolute percentage deviation) can be used.

RMSD(%) =

√√√√∑N
i=1[Re(Z1(ωi))− Re(Z0(ωi))]

2

∑N
i=1 Re(Z0(ωi))

2 ·100 (2)

CCD(%) = 100 −
{

1
NσZ0σZ1

N

∑
i=1

[(
Re(Z1(ωi))− Re

(
Z1(ωi)

))][(
Re(Z0(ωi))− Re

(
Z0(ωi)

))]}
(3)

MAPD(%) =
1
N

N

∑
i=1

∣∣∣∣Re(Z1(ωi))− Re(Z0(ωi))

Re(Z0(ωi))

∣∣∣∣ (4)

where Z0(ωi) is the baseline impedance spectra, Z1(ωi) is the spectra corresponding to the
different stages of the structure, and N is the number of frequency data points in the EMI
spectra; Z and σ represent the mean and the standard deviation, respectively. The real part
of the impedance is regularly used because it is more sensitive to the changes experienced
by the structure.

3. Experimental Programme
3.1. Test Set-Up

To characterize the behavior of the NSM-FRP strengthening system under sustained
loading and different conditions of temperature, a reinforced concrete specimen strength-
ened with this system was used. The beam was loaded with a four-point bending test.

The material properties of the concrete, the reinforcement steel, and the FRP were
the following: (a) Concrete: fc = 30 MPa, Ec = 26 GPa, fct = 3 MPa; (b) Steel: fy = 500 MPa,
Es = 210 GPa; (c) CFRP: ffu = 2500 MPa, Ef = 170 GPa.

The test set-up and instrumentation are shown in Figures 1 and 2. One LVDT was
put in the middle section of the beam to measure its vertical deflection and one electrical
resistance strain gage was glued to the center of the compressed concrete surface. Likewise,
the beam was instrumented with three FBG sensors, FBG1, FBG2, and FBG3, bonded to
the NSM-FRP laminate at both sides of the middle section of the specimen, such as shown
in Figure 1. FBG sensors were connected to a Micron Optics sm130-700 Optical Sensing
Interrogator and the strain gages were connected to the strain gage data logger. As in the
FBG sensors the peak Bragg wavelength shifts proportionally with the variations of axial
strain and temperature, these optical sensors can be utilized as a temperature or strain
sensing unit. Because of it, a temperature compensation FBG sensor, FBG4 in Figure 1, has
been also mounted on the FRP bar. This type of sensor is packaged such that it is isolated
from mechanically induced strain when properly mounted on a specimen. In this way, it is
ideal for temperature compensation of other optical strain gages.
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For the EMI tests, eight PZT patches (PZT1 to PZT2 and PZT5 to PZT9 according to
Figure 1) were bonded in different locations of the specimen to be analyzed. Inner sensors
were directly bonded to the FRP laminate. PZT1 and PZT2 are sensors of type P-876.A12
(61 mm × 35 mm× 0.5 mm), while sensors PZT3 to PZT9 are sensors of type P-876.SP1
(16 mm × 13 mm × 0.5 mm). All of them are provided by Piceramic [25].

During the EMI tests, the impedance analyzer excites each bonded PZT patch using a
voltage of 1 V with a frequency range between 10 kHz and 100 kHz and a frequency step of
12.5 Hz. The response of each PZT’s impedance is recorded with the same Agilent 4294A
Impedance Analyzer, which is connected to a computer with a data acquisition software
implemented in VEE. Five frequency sweeps were conducted for each sensor at each test,
resulting in five impedance signals that were averaged in order to obtain the impedance
signal that would be later on used for the analyses.

3.2. Loading Procedure

The loading history applied to the specimen typically consisted of several sustained
four-point loading tests and their subsequent unloading. Five different levels of increasing
sustained loading were applied along the history, 8, 9.3, 13.7, 17.7, and 19.6 kN. The first
three levels correspond to the cracking load plus 15%, 35%, and 100%, respectively. The
fourth level is associated with the steel reinforcement yielding and, finally, in the fifth level,
being the steel reinforcement in the yielding state, the increment of internal tensile force
was practically supported by the FRP reinforcement. For each level, the test was repeated
several times with different time sequences. Additionally, along the loading history, the
beam was also subjected to some temperature increments provided by the heaters. Details
of the loading history are shown in Table 1.
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Table 1. Loading history.

Test Number dd/mm/yyyy Sustained Load
Level [kN]

Loading Test
Duration [days] Test Temperature [◦C]

0 08/01/2018 0 - NA NA
1 11/01/2018 8 2 17 Environmental
2 25/01/2018 8 7 19 Environmental
3 08/02/2018 8 14 17 Environmental
4 13/02/2018 8 4 17 Environmental
5 15/02/2018 8 1.5 17 Environmental
6 19/02/2018 8 3 18 Environmental
7 22/02/2018 0 3 18 Environmental
8 12/03/2018 8 14 19.5 Environmental
9 03/04/2018 8 21 19 Environmental

10 24/04/2018 8 21 22 Environmental
11 26/04/2018 0 1 42 Heated
12 30/04/2018 0 3 22 Environmental
13 03/05/2018 0 3 21 Environmental
14 27/05/2018 8 23 24 Environmental
15 31/05/2018 0 3 42 Heated
16 01/06/2018 0 2 24 Environmental
17 02/07/2018 8 30 27 Environmental
18 05/07/2018 0 3 47 Heated
19 09/07/2018 0 3 27 Environmental
20 25/07/2018 8 14 28 Environmental
21 26/07/2018 9.3 1 27.5 Environmental
22 04/09/2018 9.3 31 27 Environmental
23 05/09/2018 0 1 44 Heated
24 07/09/2018 0 3 27 Environmental
25 06/10/2018 9.3 21 25 Environmental
26 07/10/2018 13.7 1 22 Environmental
27 06/11/2018 13.7 28 20 Environmental
28 04/12/2018 13.7 29 20.5 Environmental
29 04/02/2019 13.7 60 17.4 Environmental
30 13/03/2019 13.7 41 19.5 Environmental
31 14/03/2019 17.7 1 19.5 Environmental
32 13/05/2019 17.7 60 22 Environmental
33 10/06/2019 17.7 30 24 Environmental
34 13/06/2019 19.6 2 24 Environmental
35 27/07/2019 19.6 42 29 Environmental

In Table 1, the first column contains the number of the test, while in the second column
the end date of each test is shown. The applied sustained load level previous to each
impedance test is identified in the third column. The fourth and fifth columns show the
duration and the temperature, respectively. After each load test, the beam is unloaded
previously to the impedance test. Temperature tests are always performed on the unloaded
beam and the corresponding electromechanical impedances are measured after one or
several days under sustained temperature. Furthermore, a new impedance test is always
made once the beam has returned to the environmental temperature.

For each impedance test, five frequency sweeps were conducted for each sensor,
resulting in five impedance signals that were averaged to obtain the impedance signal that
would be later on used for further analysis.

PZT2 sensor came partially unglued from test 17 and, from that moment, its measure-
ments were not considered in the study.

3.3. Results

Figure 3 presents the evolution of the strain (sensors FBG1, FBG2, and FBG3) and
the temperature (FBG4) for the four optical sensors along the loading history. In the same
way, the evolution of the vertical midspan deflection as well as the compressive strain
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in the upper concrete surface are shown in Figures 4 and 5, respectively. From the very
beginning, FBG3 sensor did not work correctly and, therefore, the orange line in Figure 3
is only slightly visible initially. Strain values are shown in Figure 3 once temperature
compensation has been performed.
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Although Figures 3–5 show the results until November 2019, the last impedance test
was performed at the end of July 2019 (Table 1). The load increments along the time are
perfectly reflected by the increment experienced by the strains. However, because of the
short duration of the sustained load tests, the creep behavior was little developed. FBG2
sensor, located at the midspan of the beam, did not already work correctly when yielding
initiated and its value is only shown until that moment. A remanent strain remained at
the midspan of the NSM-FRP laminate after each unloading. One interesting aspect to
remark is that this strain is lower whenever the level of sustained load previously reached
is higher.

The four levels of artificial heating of the specimen are captured by the FBG4 tempera-
ture sensor. In the same way, the environmental temperature variations along the different
year seasons are also identified in Figure 3. From September 2019, some instabilities in
the measurements of FBG4 sensor demonstrate that, probably, this sensor was already
partially unglued.

4. LMM Analysis
4.1. Linear Mixed Model

Linear mixed models involve a generalization of linear regression but with both fixed
and random effects and could represent an appropriate statistical procedure to deal with
intersensors variability. Both fixed and random effects in linear mixed-effects models
occur linearly in the model function. These models are particularly used when there
is not independence in the data, such as arises from a hierarchical structure as the tests
performed in this work are. The data set-up of these tests corresponds to repeated measures
or multistage sampling where correlations among the experiments are likely.

The study of the changes experienced by a specimen generally involves a repeated
monitoring of each of the sensors installed on the specimen. Two sources of variability
might appear in the repeated datasets: the variability between the observations measured
on the same sensor along the time and the variability between the sensors themselves.
The mixed model is a statistical tool allowing highlighting the relationship between the
observed response and explanatory covariates, considering these two types of variations.

In this case, the observed response consists in the impedance measurements captured
from different PZT transducers bonded to the beam. This response has been condensed
by RMSD coefficient. The Linear mixed model is used to model the relationship between
RMSD index and the variations of the beam by considering each sensor individual response
as a random effect. These variations will affect the value of RMSD index and are referred
to as fixed effects. Additionally, if the variations are due to mechanical damage, the model
would be useful as indicator about the real condition of the structure, although other effects,
such as thermal changes, will also originate variations. The mixture of both fixed and
random effects is what gives name to the mixed model.

The use of MAPD metrics has been also evaluated, but the conclusions are similar to
RMSD; because of it, only the results obtained with RMSD will be presented.

Formally, the assumptions of a linear mixed-effects model involve validity of the
model, independence of the measurements from each other, linearity of the relationship
between the predictor and response, homogeneity of the residuals or homocedasticity and
normality of the residuals.

4.2. Preliminary Analysis

Initially, before performing the statistical analysis, means and standard deviations
were calculated for the variable RMSD. As a sample, Figure 6 shows the RMSD histograms
for tests 13 and 17 according to Table 1. Test 2 was taken as the reference stage to compute
RMSD values since previous to this stage the specimen was moved which required the
disconnection and subsequent connection of the measurement equipment. From Test 2,
the beam remained permanently installed in the same location and the equipments were
not disconnected again. It is clear that RMSD was not normally distributed for tests 13
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and 17. Although not shown her by simplicity, the conclusion would be the same for the
other tests.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

referred to as fixed effects. Additionally, if the variations are due to mechanical damage, 
the model would be useful as indicator about the real condition of the structure, although 
other effects, such as thermal changes, will also originate variations. The mixture of both 
fixed and random effects is what gives name to the mixed model. 

The use of MAPD metrics has been also evaluated, but the conclusions are similar to 
RMSD; because of it, only the results obtained with RMSD will be presented. 

Formally, the assumptions of a linear mixed-effects model involve validity of the 
model, independence of the measurements from each other, linearity of the relationship 
between the predictor and response, homogeneity of the residuals or homocedasticity and 
normality of the residuals. 

4.2. Preliminary Analysis 
Initially, before performing the statistical analysis, means and standard deviations 

were calculated for the variable RMSD. As a sample, Figure 6 shows the RMSD histograms 
for tests 13 and 17 according to Table 1. Test 2 was taken as the reference stage to compute 
RMSD values since previous to this stage the specimen was moved which required the 
disconnection and subsequent connection of the measurement equipment. From Test 2, 
the beam remained permanently installed in the same location and the equipments were 
not disconnected again. It is clear that RMSD was not normally distributed for tests 13 and 
17. Although not shown her by simplicity, the conclusion would be the same for the other 
tests. 

  
Figure 6. RMSD histograms. 

Normal distribution of the residuals (difference between the observed values and the 
model-estimated values) was also verified by the Shapiro–Wilk test when all results from 
the experimental tests were combined. A p-value (probability of our data following a nor-
mal distribution given the dataset) lower than 2 × 10−16 was computed, which indicates a 
significant departure from the normal distribution in the residuals of the model. 

Non-normality is also confirmed by the quantile-quantile plot (Q-Q plot) (Figure 7). 
The strong deviation from the provided line is a clear symptom of non-normality of the 
residuals. 

Figure 6. RMSD histograms.

Normal distribution of the residuals (difference between the observed values and
the model-estimated values) was also verified by the Shapiro–Wilk test when all results
from the experimental tests were combined. A p-value (probability of our data following a
normal distribution given the dataset) lower than 2 × 10−16 was computed, which indicates
a significant departure from the normal distribution in the residuals of the model.

Non-normality is also confirmed by the quantile-quantile plot (Q-Q plot) (Figure 7).
The strong deviation from the provided line is a clear symptom of non-normality of
the residuals.
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Because of the non-normality of the residuals, we will work with a log-transform of
the response to check if this condition is improved. Kolmogorov-Smirnov test will allow
to know if the data have a significant departure from log-normality. Table 2 shows the
p-values for all tests considering all sensors. The interpretation of p-value is similar to the
Shapiro-Wilk test. Results demonstrate that, except for test 32, our data follow a log-normal
distribution and, therefore, the LMM analysis will be made using logRMSD. As a sample
and for comparison with Figure 6, Figure 8 shows the logRMSD histograms for tests 13
and 17.
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Table 2. Kolmogorov-Smirnov test.

Test number 3 4 5 6 7 8 9

p-value 0.0676121 0.17934489 0.07940822 0.46347637 0.10371856 0.15253014 0.28992103

Test number 10 11 12 13 14 15 16

p-value 0.0568042 0.81895703 0.60769883 0.49746651 0.91459634 0.79595994 0.69038784

Test number 17 18 19 20 21 22 23

p-value 0.86443078 0.36518012 0.9042454 0.89197109 0.96226618 0.90848409 0.91443105

Test number 24 25 26 27 28 29 30

p-value 0.85373292 0.95754631 0.70759643 0.5601079 0.43779154 0.73708194 0.49989917

Test number 31 32 33 34 35

p-value 0.05344414 0.04345163 0.84320087 0.33456275 0.95263826
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As previously commented, we can perform analyses across all measurements. How-
ever, results from the analysis could vary between sensors since different types of sensors
and different locations (embedded or external surface bonded) were used in the test. There-
fore, the intersensor variability should be taken into account when analyzing the data
to avoid inaccurate results. For the analysis, four groups of sensors were considered
according to Figure 1. Group 1 includes sensors PZT1 and PZT2, which are the larger
surface-bonded sensors. Group 2 includes sensors PZT3 and PZT4, which correspond to
the smaller surface-bonded sensors, group 3 includes PZT6 and PZT9, and, finally, group 4
includes sensors PZT7 and PZT8. These last two groups include sensors of the same type
(P-876.SP1) and symmetric location.

Normal distribution of the four groups was checked with the Lilliefors-corrected
Kolmogorov-Smirnov test. This test was used instead of Shapiro–Wilk test because this last
became enough conservative when applied in this case. Considering that the normality of
residuals assumption is the one that is least important for LMM analysis, since these models
are robust even in the absence of normality in the data, Kolmogorov test is considered as
valid. Table 3 shows the p-value of the residuals for the four groups of sensors as well as
for all sensors considered jointly.

Table 3. Kolmogorov test—Groups of sensors.

Group Number p-Value

All sensors 0.05832
1 0.04118
2 0.06561
3 0.7728
4 0.0085
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Histograms and Q-Q plots confirm these results (Figures 9–12).
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residuals of the model for each group of sensors. As the variance of the residuals is not
dependent on the fitted value, the homocedasticity condition is not violated. Furthermore,
none obvious pattern can be inferred in the residuals, and therefore the linearity assumption
is also verified.
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4.3. Statistical Analysis

All statistical calculations were carried out using the statistical software “R” version
1.3.1093 [26]. Mixed linear models have been adjusted using the library “lme4” [27].

LMMs enable to estimate fixed effects while properly taking into account the ran-
dom variance associated with different participants, in this case the different sensors and
experimental tests.

To analyze the evolution of the variations of the fixed effects experienced by the speci-
men across the 35 experimental tests (Table 1) with the fitted LMMs, several alternatives are
possible. Such examination can be carried out using test statistics and p-values. Boxplots
have been constructed for all sensors and for each of the groups of sensors (Figures 17–21).
For group 1, only results until test 17 are shown since this group includes PZT2 sensor
which came unglued partially during this test. Table 4 shows the p-values computed from
the analysis of deviance for the LMM. A low p-value, such as observed in Table 4, means
that the variations experienced by the specimen, both due to mechanical damage and
temperature, affect significantly to the RMSD index. This confirms the suitability of this
metric to assess the structural condition of the beam. In a further study, the frequency was
also included as a fixed effect in the model and p-value was computed such as shown in
the last row of Table 4. In this case, it is clear that the frequency does not have effects on
RMSD coefficient.
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Table 4. Analysis of deviance—p-value.

All Sensors Group 1 Group 2 Group 3 Group 4

Variations <2.2 × 10−16 2.0 × 10−16 2.0 × 10−16 2.0 × 10−16 2.0 × 10−16

Frequency 1 0.99999 0.99879 1 2.0 × 10−16

Boxplots shown in Figures 17–21 show clearly how the increase of temperature (tests
11, 15, 18, and 23) affects in a higher proportion to RMSD than the mechanical variations
introduced by the applied loads. This different sensitivity can be used to discriminate those
variations due to the temperature from those due to mechanical damage. This conclusion is
extensible to all groups of sensors. Boxplot of RMSD for the different temperatures reached
along the test campaign has been also computed (Figure 22). It shows clearly the influence
of the temperature on RMSD index and the sensitivity for each temperature value.
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Now, if we compare the evolution of boxplots in Figures 17–21 with the evolution of
temperature of the specimen (red line in Figure 3), we observe clearly that the evolution is
very similar which demonstrates the high sensitivity of the impedance to the temperature
and can explain some of the phenomena occurring in the specimen. Any decrease of
temperature is reflected by a decrease of log(RMSD), while any increase of temperature
involves an increase of log(RMSD). This is clearly identified for tests 26 to 30 under
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13.7 kN where an initial decrease of temperature is continued with a subsequent increase
of temperature (Figure 3). The keypoint is how to filter this from the variations due
to mechanical damage. For it, the identification of the results of Figures 18–21 with
Figures 3 and 22 and the data contained in Table 1 helps to filter the observations. For
instance, the results show that under sustained loads, except in case of a remarkable
mechanical change, little variations are identified in log(RMSD) and those are probably
due more to environmental temperature variations than to damage. In this sense, if we
observe Figure 21 for tests 3 to 10 in comparison with Figures 18–20, it is clear that some
mechanical damage occurred near the sensors belonging to group 4. Additionally, some
cracks developed around the external sensors during test 10. By using the same philosophy,
it is clear that for the last test a severe damage occurred near all sensors with special focus
on those sensors closer to the midspan (groups 2 and 3).

Another interesting point to remark which may affect to the interpretation of the
results is that after any sustained loading test, some remanent strains stay in the speci-
men, especially in those more loaded areas. However, if we observe Figures 20 and 21,
corresponding to groups 3 and 4 of sensors, respectively, bonded directly to FRP, we can
check too that after heating, when the beam recovers the environmental temperature, the
remanent strain previous to the heating has grown. This phenomenon is much more
remarkable for the sensors bonded to the most loaded zones (Group 4). To our knowledge,
this observed behavior is due to the combined effect of the load removal, to the temperature
increment provided by the heating, which originates an increase of tensile stresses in FRP
because of its small thermal dilatation coefficient in comparison with steel and concrete,
and to the delayed effects induced by the creep of the concrete. A temperature increment
would induce an elongation in all materials. Considering that these elongations are not
uniform, a small curvature would appear in the specimen, resulting in an increment of the
tensile stress in the FRP with respect to the previous residual stress and an opening of the
cracks. The delayed creep effects once the cooling has concluded may explain the presence
of this remanent strain.

The high variance of the data observed in some of the boxplots makes difficult its
interpretation and advises to carry out a further complementary pairwise analysis between
the different tests to identify which pairs of tests differ significantly from each other. For
simplicity, considering the high number of tests of the experimental programme, we will
limit the pairwise study only to consecutive tests (Table 5). As in previous analyzes, a
p-value smaller than 0.05 means that there is a significant difference in RMSD index between
that pair of consecutive tests, and therefore the model has successfully distinguished them
with a significant confidence.

From Table 5, the following conclusions can be extracted in combination with
the boxplots:

(a) In general, the observed pattern for all groups of sensors according to the pairwise
analysis across the tests is very similar in agreement with the boxplots, except for
some differences which will be commented next;

(b) It is clear that the highest contrast in the p-values appears when heating of the
specimen is performed. That high contrast is also shown when the specimen returns
to the environmental temperature once its heating is interrupted. Therefore, high
temperature variations are perfectly identified with p-values.

(c) For the first tests which were performed under a sustained load of 8 kN (tests 3 to 10),
there is not a significant difference between consecutive tests except for test 10 when
sensors of groups 1, 2 and 4 are considered. This test was the longest test of all those
tests carried out under 8 kN and this same conclusion was derived from the boxplots.

(d) When a new sustained load test of 8 kN is performed after the heating and subsequent
cooling of the beam, the groups of sensors fail to detect a significant difference in
RMSD coefficient, except for group 2 between 13 and 14.

(e) For the sustained load tests under 9.3 kN, no significant difference was detected. The
same occurs for the sustained tests under 13.7 kN. In this case, only a clear variation
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is identified for those sensors bonded to FRP close to the midspan when the beam is
initially loaded up to 13.7 kN.

(f) The last load increment until reaching 19.6 kN shows a clear deterioration of the
specimen clearly identified by the internal sensors. The much lower p-value in
comparison with other previous values, except those due to heating/cooling may be
a symptom of severe damage in the structure as the experimental tests demonstrated.

Table 5. Pairwise analysis between consecutive tests—p-value.

Tests
p-Value

All Sensors Group 1 Group 2 Group 3 Group 4

3–4 1 1 1 1 1
4–5 1 1 1 1 1
5–6 1 1 1 1 1
6–7 1 1 1 1 1
7–8 1 1 1 1 0.013256
8–9 1 1 1 1 0.459903
9–10 0.00000189 0.000224 0.000013 1 0.036852

10–11 <2 × 10−16 8.67 × 10−12 7.11 × 10−13 0.00000351 2 × 10−16

11–12 <2 × 10−16 2.26 × 10−13 2 × 10−16 0.0000437 2 × 10−16

12–13 1 1 1 1 1
13–14 0.00000716 0.778527 1.52 × 10−8 1 0.09984
14–15 <2 × 10−16 4.42 × 10−13 7.57 × 10−10 0.00000138 2 × 10−16

15–16 <2 × 10−16 2 × 10−16 2 × 10−16 0.0000519 2 × 10−16

16–17 0.280975 0.977147 0.449131 1 1
17–18 <2 × 10−16 3.35 × 10−11 0.00000479 2 × 10−16

18–19 <2 × 10−16 9.06 × 10−14 0.000369 2 × 10−16

19–20 1 1 1 1
20–21 1 1 1 1
21–22 1 1 1 1
22–23 <2 × 10−16 0.0000125 0.000254 2 × 10−16

23–24 <2 × 10−16 2 × 10−16 0.003112 2 × 10−16

24–25 1 1 1 0.541478
25–26 1 1 1 1
26–27 1 1 1 0.0000966
27–28 1 1 1 1
28–29 1 1 1 1
29–30 1 1 1 1
30–31 1 1 1 1
31–32 1 1 1 0.569178
32–33 0.494927 0.263567 1 1
33–34 1 1 1 1
34–35 6.22 × 10−11 4.85 × 10−9 1 3.8 × 10−8

5. Discussion and Conclusions

The available research about the behavior of concrete beams strengthened with NSM-
FRP systems when subjected to different levels of sustained loads and at ambient and
elevated temperature is very limited or practically inexistent. However, its prediction is
essential taking into account the sudden and brittle nature of the most common failure
modes for this type of strengthening. Because of it, EMI technique based on high fre-
quency impedance spectra has been used. This technique is also particularly sensitive to
temperature variations. To give a suitable interpretation of the experimental impedance
measurements, strain and temperature FBG sensors together with LMM analysis model
have been used.

For the study, an extensive experimental programme has been carried out during more
than 1.5 years on a concrete beam strengthened with a NSM-FRP laminate. In the work,
three main difficulties have been addressed. On the one hand, the application of high levels
of load which will introduce mechanical damage into the structure. On the other hand,
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the application of a load sustained along the time and the possible induced creep strains;
and, finally, the consideration of elevated temperature variations which will influence on
the performance of the strengthened beam. The complexity of these three aspects together
with the hierarchical structure of the monitored data along the experimental programme
using PZT based EMI method in different regions require of some methodologies able to
address them suitably.

Linear mixed models provide an appropriate framework for the analysis of data which
are likely to be correlated across the variability of an experimental programme as those
derived from the monitoring of a structure along time and under different conditions. By
using a linear mixed model, accounting for repeated measures among PZT sensors, as well
as sensor level variance, it was found how the mechanical and thermal effects affected on
RMSD metrics. Variations of temperature experienced by the beam are filtered from those
variations due to mechanical damage. Additionally, the mechanical performance of the
beam under sustained load is also collected by LMMs.

LMMs are becoming increasingly popular as a data analysis method in other scientific
areas and researchers are encouraged to apply them rather than other analysis tools
for structural monitoring purposes since they allow for the consideration of different
phenomena in a direct and joint way giving a global vision about the structural performance
but considering simultaneously the individuality of the sensors as well as of the different
monitored stages.

Usually, in the proposed impedance-based methods to separate temperature varia-
tions from structural damage, temperature compensation techniques based on the use
as a pattern of impedance measurements obtained from the structure in various thermal
levels are applied. These techniques are applicable in a lab framework but, however, its
application on real structures is more limited because of the lack of a reference pattern to
do the compensation. In the proposed method the analysis is performed in a direct way
using as a support FBG measurements and LLMs. Although this methodology is mainly
qualitative, p-values derived from a pairwise analysis can be assumed as quantitative
indicators of the severity of the experienced changes.

The lack of published works about this topic in the literature make difficult its compar-
ison with other proposed approaches. Because of it, one of the topics to be covered in the
near future should be the comparison of the proposed procedure with machine learning
approaches since these methods are able to detect hidden patterns from monitored data. In
the same way, another possible topic to be addressed in the far future is about the study of
the performance of this type of structures under the effect of high loading rates, which is a
still hardly explored topic.
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