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Abstract: The estimation of the parameters of a simulation model such that the model’s behaviour
matches closely with reality can be a cumbersome task. This is due to the fact that a number of
model parameters cannot be directly measured, and such parameters might change during the course
of operation in a real system. Friction between different machine components is one example of
these parameters. This can be due to a number of reasons, such as wear. Nevertheless, if one is able
to accurately define all necessary parameters, essential information about the performance of the
system machinery can be acquired. This information can be, in turn, utilised for product-specific
tuning or predictive maintenance. To estimate parameters, the augmented discrete extended Kalman
filter with a curve fitting method can be used, as demonstrated in this paper. In this study, the
proposed estimation algorithm is applied to estimate the characteristic curves of a directional control
valve in a four-bar mechanism actuated by a fluid power system. The mechanism is modelled by
using the double-step semi-recursive multibody formulation, whereas the fluid power system under
study is modelled by employing the lumped fluid theory. In practise, the characteristic curves of
a directional control valve is described by three to six data control points of a third-order B-spline
curve in the augmented discrete extended Kalman filter. The results demonstrate that the highly non-
linear unknown characteristic curves can be estimated by using the proposed parameter estimation
algorithm. It is also demonstrated that the root mean square error associated with the estimation
of the characteristic curve is 0.08% with respect to the real model. In addition, all the errors in the
estimated states and parameters of the system are within the 95% confidence interval. The estimation
of the characteristic curve in a hydraulic valve can provide essential information for performance
monitoring and maintenance applications.

Keywords: parameter estimation; curve fitting method; multibody dynamics; hydraulic system;
predictive maintenance; characteristic curve; product life cycle; digital twin

1. Introduction

Multibody system dynamics (MBS) approaches enable the creation of the equations
of motion that describe a mechanical system and relevant sub-components of complex
mechanical systems [1,2]. The use of MBS leads to physics-based models that act as a single
source of information [3] and represent the operation of an equivalent physical system in
the real world [4]. The data generated by an MBS simulation model can be used to solve
real-world problems throughout a product’s life cycle [5].

A physical system might have parameters that are difficult to estimate and that could
accordingly create uncertainties in MBS models. In the real world, these parameters might
be cumbersome or sometimes even impossible to measure directly due to economical
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limitations and sensor implementation difficulties. In addition, these parameters might
change over time due to wear and other factors that come into play during operation. In
some cases, parameters can only be interpreted from the manufacturer’s catalogues while
not manifesting the current state of a product or differences in individual products due to
manufacturing tolerances. Estimating these parameters can provide valuable information
about the state and working performance of a product [6,7]. Manufacturers can use this
information for condition monitoring [8,9], predictive maintenance [10–12], and real-time
simulations for digital-twin applications [13,14].

In general, parameter estimation is a discipline that provides the essential tools for the
estimation of parameters appearing in the modelling of a system [15]. The most common
techniques for parameter estimation are weighted least squares [16,17], Kalman filter-
ing [18,19], orthogonal least squares [20], robust techniques that include clustering [10],
and regression diagnostics [21]. Among these algorithms, Kalman filters for parameter
estimation have been utilised in a wide variety of engineering studies, ranging from
control [22] and mechatronics [23] to heat transfer [24,25], fluid mechanics [26,27], turbu-
lence [28], and others.

In the MBS field, several types of Kalman filter algorithms have been used to estimate
system states based on the multibody equations of motion [29–34]. In state estimation,
the independent coordinate method was introduced by using the independent positions
and velocities of the multibody model as the states of the Kalman filter [30]. Using the
independent coordinate method, the MBS formulation offers a general approach for esti-
mating the system coordinates in terms of independent states for open- and closed-loop
systems [30,31,34]. Less attention has been given to parameter estimation in MBS sys-
tems [35]. This is due to the complexity of the problem. As in many cases, the parameters
are not constant and have to be estimated from the measurable variables of the dynamic
system. In an-MBS related study, vehicle suspended mass and road friction were estimated
in a dual-estimation application by using the extended Kalman filter (EKF) and the un-
scented Kalman filter (UKF) [36]. The generalised polynomial chaos (gPC) theory was first
implemented in the framework of MBS in 2006 to quantify the parametric and external
uncertainties [37,38]. However, in [37,38], only constant parameters were estimated.

Contrary to this, in practical systems, the parameters are a function of several system
variables and may follow very complicated and unknown non-linear variations during
the working cycles [39,40]. For instance, in the case of a hydraulically actuated mobile
working machine, the characteristic curve of a hydraulic valve can play a significant
role in terms of machine performance [41,42]. The characteristic curve of a hydraulic
valve can be expressed as a function of the spool position and the semi-empiric flow rate
coefficient [41,42]. The semi-empiric flow rate coefficient relates the discharge coefficient,
pressure losses, and flow characteristics that demonstrate the dynamic characteristics
of a hydraulic valve [43–45]. Accordingly, the characteristic curve of a hydraulic valve
can be used in the condition monitoring and predictive maintenance of hydraulically
driven systems [42]. However, in an operating hydraulic system, only the minimum and
maximum points on the characteristic curve can be determined from the manufacturer’s
catalogues with a high level of certainty [41,42]. The characteristic curve of a hydraulic
valve remains unclear in a working cycle and varies from one hydraulic valve to another
due to manufacturing tolerances and possible wear [41,42]. Applying parameter estimation
theories [46,47] in combination with MBS equations of motion can enable the estimation of
the characteristic curve of a hydraulically driven physical system in operation by using a
limited amount of information.

Generally, unknown parameters are treated as constants in the dynamic equations of
motion. The estimation of non-linear parameters typically requires an accurate description
of the first derivatives of the corresponding parameters. However, in the real world, the
first derivatives of parameters are unclear. The first derivative of a characteristic curve in a
hydraulic valve is an example. In the case of a characteristic curve, a vector of data points
can be constructed using random points between the minimum and maximum values
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provided in the manufacturer’s catalogues. Through a parameter vector, the characteristic
curve of a hydraulic valve in the real world can be estimated by combining parameter
estimation algorithms [46,47] and curve-fitting methods [48–52]. Considering parameter
estimation constraints, this study proposes the estimation of parameters by combining the
augmented discrete extended Kalman filter (ADEKF) with curve-fitting methods.

The objective of this study is to propose a parameter estimation algorithm by com-
bining the ADEKF algorithm with a curve-fitting method in an application for estimating
linear and non-linear parameters. To this end, parameters are introduced as vectors in
the augmented state vector. Due to the accuracy of the finite difference schemes in the
complex plane, as demonstrated in [53,54], an approach to computing the Jacobian of a
non-linear system of ordinary differential equations (ODEs) through complex variables in
the framework of a parameter estimation algorithm is proposed. Based on the parameter
estimation algorithm, the structures of covariance matrices of plant and measurement
noises are introduced. The parameter estimation algorithm is applied to estimate the char-
acteristic curve of a directional control valve in a hydraulically driven four-bar mechanism.
As reported in [55], the double-step formulation has advantages over Index-3 Augmented
Lagrangian formulation due to the use of a coordinate partitioning method [56]. Therefore,
the double-step semi-recursive formulation is used to model the four-bar mechanism with
relative coordinates. A fluid power system, in turn, is modelled by using the lumped fluid
theory. This algorithm is verified by estimating the characteristic curves of the directional
control valve using three, four, five, and six vector data control points in the mechanism.
The implementation of the parameter estimation algorithm is explained by using MBS
simulation models that represent the real model, estimation model, and simulation model.
The estimation model considers the actuator position, pump pressure, and the pressure on
the piston side as sensor measurements to account for the system responses. Applying the
proposed parameter estimation methodology in MBS systems can enable the estimation of
parameters of any complex system in a real-world system.

The rest of this paper is organised as follows. In Section 2, the parameter estimation
methodology is described. Section 2 details further into the double-step semi-recursive
MBS formulation, lumped fluid theory, monolithic approach, the ADEKF with a curve-
fitting method, and structure of covariance matrices of plant and measurement noises. The
parameter estimation methodology is applied to the case example presented in Section 3.
Section 4 demonstrates the results of the parameter estimation algorithm for the case
example. Finally, conclusions about parameter estimation are provided in Section 5.

2. Parameter Estimation Methodology

Figure 1 depicts a methodology that can be used to estimate the parameters of a
dynamic system by using a simulation model. In this model, an initial covariance matrix

P+
k−1 ∈ RL×L and an augmented state vector x̂′+k−1 =

[
xT

k−1 yT
k−1

]T
at the time step k− 1

are introduced. Here, L is the dimension of the augmented state vector, and R denotes the
set of real numbers. x ∈ RL−nhp and y ∈ Rnhp represent the states and parameters of the
system, respectively. Here, nhp is the number of hydraulic parameters.

In the real world, the sensors shown in the Figure 1 can be replaced by sensor measure-
ments obtained from a physical system, such as a forklift, a tractor, etc. [4,57]. To account
for the system response, the sensor measurement vector o includes the minimum number
of measurements required by the ADEKF algorithm to estimate the states and parameters
of a real system. In Figure 1, h corresponds to the sensor measurement function. Note
that the parameters should not be included in the measurement vector, i.e., y /∈ o. The
parameter estimation algorithm estimates the augmented state vector x̂′+k and covariance
matrix P+

k from the minimum information of the real system at time step k − 1 in the
simulation model.
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Figure 1. Parameter estimation methodology.

2.1. Multibody Dynamic Formulations

The parameter estimation methodology described in Section 2 is applied to the sim-
ulation of a hydraulically driven mechanism. In this study, the hydraulically driven
mechanism is modelled using a double-step semi-recursive MBS formulation and the
lumped fluid theory. The coupled multibody and hydraulic dynamics are integrated
by using a single-step implicit trapezoidal integration scheme in a monolithic coupling
approach. As demonstrated in [55], the double-step semi-recursive formulation uses a
coordinate partitioning method [58–60] to express the hydraulically driven mechanism in
terms of independent coordinates. As a result, the double-step semi-recursive formulation
presents an appropriate multibody simulation approach for state and parameter estimation
applications.

2.1.1. Double-Step Semi-Recursive Formulation

In the semi-recursive formulation, a body i is defined by the set of six Cartesian

velocities as Zi =
[
ṙT

i ωT
i

]T
and six Cartesian accelerations as Żi =

[
r̈T

i ω̇T
i

]T
for a

complete description [61,62]. Here, ṙi, r̈i, ωi and ω̇i are velocities, accelerations, angular
velocities, and angular accelerations of the body, respectively. In the relative coordinate
system, the position of nb bodies in a system can be described by using joint coordinates

as z =
[
z1 z2 .... znb

]T
[61,62]. The absolute velocity Z and the absolute acceleration

Ż of the system bodies can be mapped in terms of the relative joint velocity vector ż
and the relative joint acceleration vector z̈ by using the velocity transformation matrix as
follows [61,62]:

Z = TRdż

Ż = TRdz̈ + TṘdż

}
, (1)

where T ∈ R6nb×6nb is the path matrix that demonstrates the topology of the system, and
Rd ∈ R6nb×nb is a block diagonal matrix. The path matrix T is a lower triangular matrix
and contains entries of 6× 6 (I6) unit matrices representing bodies between the body under
observation and the root of the system [61]. In Equation (1), the block diagonal matrix Rd
and the product Ṙdż can be computed with the joint-dependent element of the velocity
transformation matrix bi ∈ R6×1 and the joint-dependent element of the acceleration
transformation vector di ∈ R6×1, respectively [61,62]. The semi-recursive formulation is
described hereafter, but the interested reader is referred to [61,62] for further details of T, bi,
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and di. The composite mass matrix Mi ∈ R6×6 and the composite force vector Qi ∈ R6×1

of the ith body can be described using absolute coordinates as [61,62]:

Mi =

[
miI3 −mig̃i
mig̃i Ji −mig̃ig̃i

]
, (2)

Qi =

[
fi − ω̃i(ω̃imigi)

ni − ω̃iJiωi + g̃i(fi − ω̃i(ω̃imigi))

]
, (3)

where mi is the mass of the i body, fi ∈ R3×1 is a vector of external forces, ω̃i is the
skew-symmetric matrix of the angular velocity vector, ni ∈ R3×1 is the vector of external
moments, I3 is a 3× 3 unit matrix, and g̃i ∈ R3×3 is the skew-symmetric matrix of the
position vector of the centre of mass of the body in the global coordinate system. In
Equation (2), Ji is the inertia tensor of the ith body, which can be computed as described
in [61]. Applying the principle of virtual work and using Equation (1) yields the equation
of motion for an open-loop system in the simplified form [61,62]:

Rd
TTTMTRdz̈ = Rd

TTT(Q−MTṘdż), (4)

where M ∈ R6nb×6nb is the block diagonal matrix consisting of the composite mass matrices
of the bodies. The force vector Q ∈ R6nb×1 is the column matrix of composite forces. To
incorporate closed-loop systems, the double-step semi-recursive formulation is used in
this study [62]. In this method, a set of m constraint equations Φ(z) = 0 are introduced
for closure of an open-loop system. This method employs Gaussian elimination with a
full pivoting approach to identify the independent and dependent columns of the Jacobian
matrix Φz [62–64]. Through this formulation, relative joint-independent coordinates can be
used to define the dynamics of a system, i.e., the relative joint-dependent coordinates can
be computed in terms of the relative joint-independent coordinates. Hence, this provides
an appropriate option for the state and parameter estimation applications. The relative
joint velocity vector ż can be described using the coordinate partitioning method [59]:

[
żd

żi

]
=


−
(

Φd
z

)−1
Φi

z

I


żi ≡ Rzżi, (5)

where żd ∈ Rm are the relative joint-dependent velocities, żi ∈ Rn f are the relative joint-
independent velocities, Rz ∈ Rnb×n f is the velocity transformation matrix, Φd

z ∈ Rm×m,
and Φi

z ∈ Rm×n f are the Jacobian matrices of the constraint equations with respect to the
dependent and independent relative joint positions, respectively. In Equation (5), it is
assumed that neither singular configurations nor redundant constraints exist; as a conse-
quence, the inverse of matrix Φd

z can be obtained [55,59]. The relative joint acceleration
vector can be expressed by differentiating Equation (5) [59]:

z̈ = Rzz̈i + Ṙzżi, (6)

where z̈i are the relative joint-independent accelerations, and Ṙz is the derivative of the
velocity transformation matrix. Substituting Equation (6) into Equation (4) results in an
equation of motion for a closed-loop system in a simplified form [55,56,58,63,64]:

RT
z RT

d TTMTRdRzz̈i = RT
z RT

d

(
TTQ− TTMD

)
, (7)

where D = TRd


−
(

Φd
z

)−1(
Φ̇zż

)

0


+ TṘdż represent the absolute accelerations when

the vector z̈ is zero in Equation (6). Equation (7) can be further simplified using the
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accumulated mass matrix MΣ = RT
z RT

d TTMTRdRz and the accumulated force matrix

QΣ = RT
z RT

d

(
TTQ− TTMD

)
.

2.1.2. Hydraulic Lumped Fluid Theory

The lumped fluid theory can be used to compute pressures within a hydraulic cir-
cuit [65]. Using this approach, a hydraulic circuit is assumed to be composed of discrete
volumes. The pressures inside the volumes are equally distributed, with the acoustic
waves having a negligible effect on the pressures [41,65]. In any hydraulic volume Vh, the
differential pressure ṗh can be computed [41,65] as

ṗh =
kp + phk0

Vh

n f

∑
h=1

Qh, (8)

where Qh is the sum of incoming and outgoing volume flow rates, k0 is the flow gain, kp is
the pressure flow coefficient, and n f is the total amount of volume flows. By employing a
semi-empirical method, the volume flow rate QR through a throttle valve can be described
as [66]

QR = CR sgn(∆p)
√
| ∆p |, (9)

where ∆p is the pressure difference and CR = Cd AR

√
2
ρ is the semi-empirical flow rate

coefficient of the throttle valve. Here, Cd is the flow discharge coefficient and ρ is the fluid
density. In Equation (9), AR is the cross-sectional area of the pressure relief valve. Similarly,
the volume flow rate Qd through a directional control valve can be computed as [67,68]

Qd = CvU sgn(∆p)
√
| ∆p |, (10)

where Cv is the semi-empiric flow rate coefficient, and U is the relative position of the spool.
Equation (10) is complemented by the following first-order differential equation:

U̇ =
Ure f −U

τ
, (11)

where Ure f is the reference voltage signal, and τ is the time constant. The incoming flow
rate Qin and outgoing flow rate Qout in the hydraulic cylinder can be described as

Qin = ṡA1, Qout = ṡA2, (12)

where ṡ is the piston velocity, and A1 and A2 are the areas on the piston and piston-rod
side of the cylinder, respectively. The force Fh produced by the cylinder can be written as

Fh = p1 A1 − p2 A2 − Fµ, (13)

where p1 and p2 are, respectively, the pressure on the piston and piston-rod side, which can
be calculated by using Equation (8). Fµ is the total friction force in the hydraulic cylinder
caused by the hydraulic sealing. As proposed in [69], this friction force can be calculated
by employing the Brown and McPhee model [70], which is valid for both positive and
negative tangential velocity. The actuator velocity dependent friction force can be written
in the vector form as

Fµ =


Fc tanh

(
4
‖ṡ‖
vs

)
+ (Fs − Fc)

‖ṡ‖
vs

 1
4

(
‖ṡ‖
vs

)2

+ 3
4




2


sgn(ṡ) + σ2ṡ tanh(4), (14)



Sensors 2021, 21, 5029 7 of 23

where Fc is the Coulomb friction, vs is the Stribeck velocity, Fs is the static friction, σ2 is the
coefficient of viscous friction, and ṡ is the actuator velocity vector.

2.1.3. Monolithic Approach: Coupling MBS and Hydraulic Dynamic Systems

The MBS formulation can be combined with the fluid power system solver to form a
unified set of non-linear differential equations in a monolithic approach:

MΣ(z)z̈i = QΣ(z, ż, p)

ṗ = v(z, ż, p, y, U)

}
, (15)

where p is the pressure vector, and y is the vector of hydraulic parameters. Equation (15) is
a set of non-linear equations that can be represented as f(x, U) = 0. Here, the vector x =[

zT żT pT yT
]T

. The solution of the non-linear equations described in Equation (15)
is stiff. A stiff equation can be solved by using single-step implicit trapezoidal integration
scheme [55,71–73]. In this integration scheme, the relative joint-independent positions and
the pressures are initially predicted as zi

k+1 = zi
k + żi

k∆k + 1
2 z̈i

k∆k2 and pk+1 = pk + ṗk∆k,
respectively [73]. The derivatives of zi

k+1 and pk+1 can be predicted as

żi
k+1 =

2
∆k

zi
k+1 + ˇ̇zi

k

z̈i
k+1 =

4
∆k2 zi

k+1 + ˇ̈zi
k

ṗk+1 =
2

∆k
pk+1 + ˇ̇pk





, (16)

where ˇ̇zi
k = −( 2

∆k zi
k + żi

k), ˇ̈zi
k = −( 4

∆k2 zi
k +

4
∆k żi

k + z̈i
k) and ˇ̇pk = −( 2

∆k pk + ṗk). Note that
the relative joint-dependent positions zd

k+1 are obtained from zi
k+1 and the previous step zd

k
by solving the position problem Φ(z) = 0 [59–61]. The non-linear constraint equations are
solved iteratively with the Newton–Raphson method [59–61]. The derivatives of the relative
joint-dependent positions zd

k+1 are computed from Equations (5) and (6) at the velocity and
acceleration levels, respectively [55]. Substituting Equation (16) into Equation (15) leads to
a set of dynamic equilibrium equations as F(χk+1) = 0 at the time step k + 1 as

MΣzi
k+1 −

∆k2

4
QΣ

k+1 +
∆k2

4
MΣ ˇ̈zi

k = 0

∆k
2

pk+1 −
∆k2

4
vk+1 +

∆k2

4
ˇ̇pk = 0





, (17)

where χk+1 =
[
(zi)T

k+1 pT
k+1

]T
is unknown. The Newton–Raphson method is employed

on the non-linear Equation (17) to iteratively compute the unknown variables [73,74]:

[
∂F(χ)

∂χ

](h)
k+1

∆χ
(h)
k+1 = −

[
F(χ)

](h)
k+1

, (18)

where
∥∥∥∆zi

k+1

∥∥∥ < 1× 10−10 rad and
∥∥∆pk+1

∥∥ < 1× 10−2 Pa are the error tolerances in
the relative joint independent positions and pressures provided in the Newton–Raphson

method. In Equation (18),
[
F(χ)

](h)
k+1

is the residual vector, which can be computed as

[
F(χ)

](h)
k+1

=
∆k2

4

[
MΣz̈i −QΣ

ṗ− v

](h)

k+1

. (19)
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In Equation (18),
[

∂F(χ)
∂χ

](h)
k+1

is the tangent matrix, which can be numerically ap-

proximated at a point χ0 by using a forward finite differences, as demonstrated in the
literature [72,75]. Now, by computing ∆χ

(h+1)
k+1 from Equation (18), the next iteration χ

(h+1)
k+1

can be calculated.

2.2. Estimation Algorithm: ADEKF with a Curve-Fitting Method

In this section, the ADEKF parameter estimation algorithm is introduced in the frame-
work of a B-spline curve-fitting method. It is important to note, however, that the intro-
duced procedure can be easily modified for applications of other curve-fitting methods, as
mentioned in [48,49]. Parameter estimation through the ADEKF comprises prediction and
update stages. At the prediction stage, in the case of the coupled multibody and hydraulic

systems, the augmented state vector can be described as x′ =
[
(zi)T (żi)T pT yT

]T
.

At this step, x̂′−k is calculated in the time integration of a dynamic model described as [46]

x̂′−k = f(x̂′+k−1, Uk), (20)

To account for unknown parameters, the proposed parameter estimation algorithm
employs the curve-fitting method. Through this method, a B-spline curve is constructed
with the knot vector u for non-uniform open splines [48,49] at the current time step:

C(u) =
n

∑
i=0

Bi,d(u)Ni, (21)

where n is the number of control points, d is the degree, Bi,d(u) are the dth order of B-spline
basis functions, and Ni is the control point vector. The control point vector can be expressed
in terms of the system parameters y. For instance, in the case of the characteristic curve,
the control point vector can be written in terms of the spool position and semi-empiric flow

rate coefficient as N =

[
Umin U1 ... Un Umax
Cvmin Cv1 ... Cvn Cvmax

]
. Here, Umin, U1, and Un represent

spool positions, and Cvmin , Cv1 , and Cvmax are the semi-empiric flow rate coefficients of a
hydraulic valve. Bi,d(u) can be defined by using the Cox–de Boor recursion formula [48,49]:

Bi,0(u) =





1 ui ≤ u < ui+1

0, otherwise
, (22)

Bi,j(u) =
u− ui

ui+j − ui Bi,j−1(u) +
ui+j+1 − u

ui+j+1 − ui+1 Bi+1,j−1(u), (23)

where ui is the ith element of the knot vector for non-uniform open splines. Next, the nu-
merical values of parameters, which are scalar, should be evaluated by using Equation (21)
at time step k to be incorporated in Equation (20). The calculation of Equation (20) at the
desired input signal is straightforward. However, the numerical computation of the Jaco-
bian matrix fx′k−1

could be challenging when using a curve-fitting method. Each term of the
Jacobian matrix can be approximated by using complex variables to reduce the truncation
error [53,54] for very small increments. For instance, in the case of a multi-variable function,
the Jacobian column of Equation (20) with respect to the rth term of the augmented state
vector x̂′k−1 can be written in the partial derivative form as

∂f(x̂′k−1,1, x̂′k−1,2, ..., x̂′k−1,L)

∂x̂′k−1,r
=

Im(f(x̂′+k−1,1, x̂′+k−1,2, ..., x̂′k−1,r + iδ, ..., x̂′+k−1,L))

δ
+ O(δ2), (24)
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where r ∈ [1, L], and iδ represents a very small increment in the complex plane. δ = Lε is a
real value. Epsilon ε is a very small number and depends on the machine’s precision. The
rth term of the state vector x̂′k−1,r + iδ is expanded by using the Taylor series [53,54].

The evaluation of Im(f(x̂′+k−1,1, x̂′+k−1,2, ..., x̂′k−1,r + iδ, ..., x̂′+k−1,L)) for the parameter vector
uk requires the evaluation of C(uk−1) as complex numbers. However, the knot vector
cannot contain any complex numbers [48,49]. Therefore, a criterion |t − ti

k−1| < Ξ is
introduced, where Ξ can be a small real number, such as 0.1, which implies that the knot-
point distance between ti

k−1 and the complex input argument t should be less than Ξ. Using
this criterion enables the knot points to be evaluated with the curve-fitting method through
complex input. With the Jacobian of the dynamic system fx′k−1

, the covariance matrix P−k is
approximated as [46]

P−k = fx′k−1
P+

k−1fT
x′k−1

+ Qk, (25)

where Qk is the covariance matrix of the plant noise. In the update stage, the sensor
measurements are taken into account to improve the estimated augmented state vector x̂′−k .
The innovation ∆k is calculated as [46]

∆k = ok − h(x̂′−k ), (26)

where ok are the sensor measurements at the k time step, and h(x′−k ) is the sensor measure-
ment function. With the Jacobian of the sensor measurement function hx′ , the innovation
in the covariance matrix Sk and the Kalman gain Kk can be calculated as [46]

Sk = hx′k
P−k hT

x′k
+ Rk

Kk = P−k hT
x′k

S−1
k





, (27)

where Rk is the covariance matrix of the measurement noise. Finally, the augmented state
vector x̂′+k and covariance matrix P+

k are updated at the time step k, which will be used for
the next time step as [46]

x̂′+k = x̂′−k + Kk∆k

P+
k = (IL −Kkhx′k

)P−k



, (28)

where IL is the identity matrix of dimension L.

Covariance Matrices of Process and Measurement Noises

It is well known that when applying Kalman filters, the tuning of the filter parameters
is crucial, especially the covariance matrices of the plant and measurement noises. Further-
more, it was established in [30,31] that in dealing with non-linear systems, the improper
tuning/setting of these covariance matrices can make the algorithm unstable. In this study,
the properties of measurement noise are precisely known because the measurements are
built from a dynamic model (providing ground truth) with an addition of white Gaussian
noise to replicate real sensors. Thus, the covariance matrix of measurement noise can be
obtained. For instance, when using position and pressure sensors, the covariance matrix of
the measurement noise, R, would then take the form [30,31,34]

R =




(
σ′s
)2

In 0n×np

0np×n

(
σ′p
)2

Inp


, (29)

where σ′s and σ′p are the standard deviations of measurement noises at the position and
pressure levels, respectively. In Equation (29), n is the number of actuator sensors and
np is the number of pressure sensors. In, Inp , 0n×np , and 0np×n are the identity and zero
matrices of corresponding orders, respectively. In the case of a multibody model along
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with positions and velocities as the state vector, the structure of the plant noise in the
discrete-time frame was well established in [30,31] and can be written as

Q =




σ2
ẍ ∆t3In f

3

σ2
ẍ ∆t2In f

2
σ2

ẍ ∆t2In f

2
σ2

ẍ ∆tIn f


, (30)

where ∆t is the size of the integration time step and n f is the number of degrees of
freedom of the system. It should be noted that Equation (30) includes the variance at
the acceleration level, σẍ, because of the acceleration errors arising from the inaccurate
description of forces and mass distribution. Furthermore, the state vector in this study also
includes the hydraulic pressures and the hydraulic parameters, along with the positions
and velocities, and errors can occur at the pressure and parameter levels as well. Therefore,
inspired by [34], the variance of hydraulic pressures, σp,D, and the variance of hydraulic
parameters, σhp,D , can be directly incorporated as the diagonal elements in Equation (30).
Accordingly, the structure of the covariance matrix of the plant noise, Q, in the parameter
estimation can be written as

Q =




σ2
ẍ ∆t3In f

3

σ2
ẍ ∆t2In f

2
0n f×np+nhp

0n f×np+nhp

σ2
ẍ ∆t2In f

2
σ2

ẍ ∆tIn f 0n f×np+nhp
0n f×np+nhp

0np+nhp×n f 0np+nhp×n f σ2
p,D 0n f×np+nhp

0np+nhp×n f 0np+nhp×n f 0np+nhp×n f σ2
hp,D




. (31)

In this study, the integration errors are assumed to be negligible in comparison to the
acceleration, pressure, and parameter errors.

3. Case Example: Hydraulically Actuated System

The parameter estimation methodology described in Section 2 is applied to estimate
the characteristic curves at the a, b, c, and d ports of the 4/3 directional control valve shown
in Figure 2. A four-bar mechanism actuated by a hydraulic circuit is presented in Figure 2.
The dynamics of the mechanism are modelled using the semi-recursive and hydraulic
lumped fluid theories, as described below.

3.1. Dynamic Model of the System

The bodies of the mechanism are assumed to be rectangular beams whose lengths are
L1 = 2 m, L2 = 8 m, and L3 = 5 m and whose masses are m1 = 100 kg, m2 = 400 kg, and

m3 = 250 kg, respectively. The position vector at point D is rD =
[
− L1

2 0 0
]T

. The point
G is located at the centre of mass of body 1. The double-step semi-recursive formulation
described in Section 2.1.1 is used to model the four-bar mechanism.

The four-bar mechanism is actuated using the sinusoidal reference input signal, which
is taken as Ure f = 10 sin (0.4πk), where k is the simulation run time. The simulations are
performed for 5 s. The hydraulic circuit consists of a double-acting hydraulic cylinder, con-
necting hoses 1 and 2, a 4/3 directional control valve, a pressure relief valve, a connecting
hose of volume Vp, a differential pump of pressure pp , and a tank with a constant pressure
source pT .
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control volumes Vp and V1.

The lumped fluid theory described in Section 2.1.2 is used to compute the pressures
within the hydraulic circuit. In the application of the lumped fluid theory, the hydraulic
circuit can be divided into three control volumes Vp, V1, and V2. The pressure derivatives
ṗp, ṗ1, and ṗ2 through these volumes can be computed as

ṗp =
kp + ppk0

Vp
(Qp −QR −Qd1)

ṗ1 =
kp + p1k0

V1
(Qd1 − A1 ṡ)

ṗ2 =
kp + p2k0

V2
(A2 ṡ−Qd2)





, (32)

where Qd1 and Qd2 are the flow rates in the control volumes 1 and 2. In Equation (32), Qp
and QR are the pump flow rate and flow rate through the pressure relief valve, respectively.
The flow rates QR, Qd1 , and Qd2 can be computed by employing Equations (9) and (10),
respectively. The constant hydraulic parameters are tabulated in Table 1. In Equation (32),
ṡ is the actuator velocity, which can be determined from the actuator position vector s.
Following Figure 2, the vector s can be calculated from the position vectors rG and rD as

s = rG − rD

ṡ =
d | s |

∆t
= ṡ ·

s
| s | = ṙG ·

s
| s |





, (33)
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where ṙG is the velocity vector of point G. The control volumes V1 and V2 appearing in
Equation (32) can be calculated as follows:

V1 = Vh1 + A1l1
V2 = Vh2 + A2l2

}
, (34)

where Vh1 , Vh2 , and Vp are the control volumes of the respective hoses, as described in
Table 1. In Equation (34), l1 and l2 are the lengths of the piston side and the piston-rod side
chambers, respectively. l1 and l2 can be calculated with the vector s as

l1 = l10 − |s|+ s0

l2 = l20 + |s| − s0

}
, (35)

where l10 and l20 are the initial piston side length and the initial piston-rod side length,
respectively. l10 and l20 are computed from the length of cylinder l, which is given in Table 1.

Table 1. Parameters of the hydraulic circuit.

Parameter Symbol Value

Pump flow rate Qp 0.001 m3/s
Tank pressure pT 0.1 MPa

Volume of the hose p Vp 3.42 × 10−3 m3

Volume of the hose 1 Vh1 3.42 × 10−1 m3

Volume of the hose 2 Vh2 3.42 × 10−1 m3

Oil density ρ 869 kg/m3

Hydraulic parameter kp 1600 MPa
Hydraulic parameter k0 0.5

Area of the piston A1 2 × 10−3 m2

Area of the piston-rod A2 1.8 × 10−3 m2

Length of the cylinder/piston l
√

3 m
Area of pressure relief valve Ar 2.24 × 10−12 m2

Area of directional control valve Ad 1.96 × 10−6 m2

Coulomb friction force Fc 210 N
Static friction force Fs 830 N
Stribeck velocity vs 1.25 × 10−2 m/s

Coefficient of viscous friction σ 330 Ns/m
Discharge coefficient Cd 0.5

Area of throttle AR 2.24 × 10−12 m2

Using the vector s, the hydraulic force Fh produced by the double-acting cylinder can
be calculated as

Fh =
[

sX
|s| Fh

sY
|s|Fh

sZ
|h|Fh

]T
, (36)

where Fh is computed from Equation (13). The hydraulic force vector Fh is combined
with the external force vector fi to calculate Q in Equation (3). The resultant equations of
motion (15) are formulated for the hydraulically driven four-bar mechanism. Equations (15)
are solved by using an implicit single-step trapezoidal integration scheme in a monolithic
approach, which was described in Section 2.1.3.

3.1.1. Real and Estimation Models

In this study, three dynamic versions of the mechanism are used to demonstrate the
implementation of the parameter estimation algorithm. One of the models is the real
model. The sensor measurements o are taken from the real model. The modelling errors are
introduced in the force model of the estimation model with respect to the real model. The
properties of the estimation model and the simulation model are the same. In Table 2, the
properties of the real model, the estimation model, and the simulation model are provided.
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Note that the simulation model is used in this study to demonstrate the differences between
the simulated world and the real world.

Table 2. Properties of the real model, the estimation model, and the simulation model. Errors in the
simulation model and the estimation model are given in comparison to the real model. s10 , pp0 , and
p10 represent the initial actuator position, the initial pump pressure, and the initial pressure on the
piston side as the system states. The system parameters Cva , Cvb , Cvc , Cvd , k0, and kp represent the
semi-empiric flow rate coefficient at the a, b, c, and d ports of the directional control valve, the flow
gain, and the pressure flow coefficients, respectively.

Errors Symbol Real Model Estimation Model Simulation Model

State s10

√
3 m 1.62 m 1.62 m

State pp0 7.6 MPa 5.6 MPa 5.6 MPa
State p10 1 MPa 2 MPa 2 MPa

Parameter Cva Non-linear Linear Linear
Parameter Cvb Non-linear Linear Linear
Parameter Cvc Non-linear Linear Linear
Parameter Cvd Non-linear Linear Linear

Parameter k0 0.5 0.4 0.4
Parameter kp 1600 MPa 1500 MPa 1500 MPa

As in practise, the minimum and maximum points on the characteristic curves of a
directional control valve can be determined from the manufacturer’s catalogues. Using
this limited information, the characteristic curves are defined linearly at all ports of the
directional control valve in the cases of the estimation model and the simulation model. The
linear characteristic curves are implemented by using the minimum and maximum values
of the semi-empiric flow rate coefficients Cva , Cvb , Cvc , and Cvd at the valve closing and
the valve opening positions, respectively. The linear characteristic curves of the directional
control valve affect the dynamics of the estimation model throughout the simulation
runtime. In the case of the real model, the characteristic curves of the directional control
valve are unclear and can be non-linear. With Equation (21), the non-linear characteristic
curves of the directional control valve are implemented using Cva , Cvb , Cvc , and Cvd in the
hydraulic circuit of the real model. Similarly, the initial actuator positions s10 of the real
model and the estimation model are different. Note that the initial relative joint coordinates
of the bodies in the system can be found from s10 and ṡ10 by using geometrical relationships.
To avoid instabilities in the integration process, the simulations are started in the static
equilibrium position, the details of the mechanism of which can be found in [34].

3.1.2. Sensor Measurements

In this study, the measurable observations o =
[
s pp p1

]T
are taken from the real

model. In the real model, the actuator position sensor measures the actuator position
s [76]. Gauge pressure sensors are used for the pressure measurements pp and p1 [34].
These pressure sensors measure the pressure with respect to the atmospheric pressure. The
pressure sensors are installed on their respective volumes, as also shown in Figure 2. The
numerical values of the standard deviation, as mentioned in Equation (29), are taken as
σ′s = 1.12× 10−3 m and σ′p = 1.5× 105 Pa for the actuator and pressure sensors, respectively.

3.2. Parameter Estimation Algorithm

In the parameter estimation algorithm, the augmented state vector x̂′ is defined as

x̂′ =
[
︸ ︷︷ ︸

x̂

s ṡ pp p1 p2 ︸ ︷︷ ︸
ŷ

kp k0 Cv

]T
, (37)
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where s is the actuator position, ṡ is the actuator velocity, pp, p1, and p2 are the pressures,

kp is the pressure flow coefficient, k0 is the flow gain, and Cv =
[
Cva Cvb Cvc Cvd

]
are

the semi-empiric flow rate coefficients at the corresponding ports of the directional control
valve. In Equation (37), x̂ and ŷ present the states and the parameters of the hydraulically
driven four-bar mechanism, respectively. Equations (20)–(28) are implemented to estimate
the augmented state vector x̂′ and the characteristic curves of the directional control valve.
In this application, the third-order B-spline interpolation method is combined with the
ADEKF. For the case example, three, four, five, and six control points are used in the
parameter estimation algorithm to compute Equations (20) and (24). As mentioned earlier,
the first, third, and fourth state variables are measured. Therefore, the sensor measurement
function h(x̂′−k ) and its Jacobian hx′ can be written as

h(x̂′−k ) =
[
x̂′−k,1 x̂′−k,3 x̂′−k,4

]T

hx′ =




1 0 0 0 0 0 0
∂h

∂Cva

∂h
∂Cvb

∂h
∂Cvc

∂h
∂Cvd

0 0 1 0 0 0 0
∂h

∂Cva

∂h
∂Cvb

∂h
∂Cvc

∂h
∂Cvd

0 0 0 1 0 0 0
∂h

∂Cva

∂h
∂Cvb

∂h
∂Cvc

∂h
∂Cvd








, (38)

where Cv =
[
Cva Cvb Cvc Cvd

]
. h(x̂′−k ) and hx′ are used in Equations (26) and (27),

respectively, in the parameter estimation algorithm.

4. Results and Discussion

In this section, the results of the simulation of the estimation model of the parameter
estimation algorithm are presented. The results of the estimation model are compared
to those of the real model and the simulation model. The initial covariance P0 used in
the augmented state estimator includes σ2

s = 1× 10−4 m2 for the actuator position, σ2
ṡ =

1× 10−4 m2/s2 for the actuator velocity, and three pressure terms of σ2
p = 22.50× 107 Pa2 in

the diagonal. For the hydraulic parameters, the initial covariance values σ2
kp

= 1× 1014 Pa2,

σ2
k0

= 1× 102 and σ2
Cv

= 9× 102 m6

s2Pa are used in the diagonal. The numerical values of
the plant noise σ2

ẍ = 0.8 m2/s4 and σ2
p = 259.81× 107 Pa2 for Equation (31) are obtained

through trial and error. All models are run with a time step of 1 ms and provide sensor
data to the parameter estimation algorithm at 1000 Hz.

4.1. Estimating the Characteristic Curve of the Valve

In the real model, as only the minimum point cmin and the maximum point cmax on
the characteristic curves are known at the a, b, c, and d ports of the directional control valve,
the characteristic curves are generally unclear in the working cycles of the real model. The
characteristic curves may vary from one valve to another and can be highly non-linear in
the working cycle. In Figure 3, Spline 1 and Spline 2, which are in the cyan colour, are used
to demonstrate the non-linear behaviour of the directional control valve in the real model.
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B-spline interpolation. (a) Three-point B-spline estimation. (b) Four-point B-spline estimation. (c) Five-point B-spline
estimation. (d) Six-point B-spline estimation.

The proposed parameter estimation algorithm can be used to estimate the characteris-
tic curves of the real model with this limited information. To this end, the semi-empiric flow
rate coefficients Cva , Cvb , Cvc , and Cvd are defined with the data control points between
cmin and cmax in Equation (37). Equation (37) is further used in terms of the control point
vector N in Equations (20)–(28) to estimate the characteristic curves.

For instance, in the case of Figure 4, the control point vector Na at port a of the
directional control valve can be defined in terms of c1, c2, c3, and c4 as

Na =
[
cmin c1 c2 c3 c4 cmax

]T
. (39)

To estimate the characteristic curve, three, four, five, and six control points are used in
the control point vector Na. As an example, these data control points for Spline 1 in each
case are presented in Table 3.

The abscissa of vector Na represents the spool position U, whereas the ordinate of
vector Na indicates the semi-empiric flow rate coefficients Cva at port a of the directional
control valve. The results of the second-order B-spline are described in Appendix A. The
results of the third-order B-spline demonstrate the characteristic curve of the directional
control valve relatively better in a working cycle, as shown in Figure 3. As can be seen, Spline
1 and Spline 2 of the third-order B-spline are drawn in each data control point estimation

Figure 3. The estimation of the characteristic curves of the directional control valve by using the ADEKF with third-order
B-spline interpolation. (a) Three-point B-spline estimation. (b) Four-point B-spline estimation. (c) Five-point B-spline
estimation. (d) Six-point B-spline estimation.

The proposed parameter estimation algorithm can be used to estimate the characteris-
tic curves of the real model with this limited information. To this end, the semi-empiric flow
rate coefficients Cva , Cvb , Cvc , and Cvd are defined with the data control points between
cmin and cmax in Equation (37). Equation (37) is further used in terms of the control point
vector N in Equations (20)–(28) to estimate the characteristic curves.

For instance, in the case of Figure 4, the control point vector Na at port a of the
directional control valve can be defined in terms of c1, c2, c3, and c4 as

Na =
[
cmin c1 c2 c3 c4 cmax

]T
. (39)

To estimate the characteristic curve, three, four, five, and six control points are used in
the control point vector Na. As an example, these data control points for Spline 1 in each
case are presented in Table 3.

The abscissa of vector Na represents the spool position U, whereas the ordinate of
vector Na indicates the semi-empiric flow rate coefficients Cva at port a of the directional
control valve. The results of the second-order B-spline are described in Appendix A. The
results of the third-order B-spline demonstrate the characteristic curve of the directional
control valve relatively better in a working cycle, as shown in Figure 3. As can be seen, Spline
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1 and Spline 2 of the third-order B-spline are drawn in each data control point estimation
case. The dashed red-coloured line indicates the characteristic curve of the simulation
model. The dashed black-coloured line demonstrates the estimation model. In Figure 3a,
three points, cmin, c1, and cmax, are used to estimate Spline 1 and Spline 2 of the real model.
The characteristic curve of the estimation model precisely follows the real model in the
case of three points. Further, the percentages of the root mean square error (RMSE) are
described in the Table 3 for Spline 1 and Spline 2 to verify the observations.
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Table 3. Root mean square error in the estimation of the characteristic curve. The third and fourth
columns represent the root mean square errors in Spline 1 and Spline 2, respectively.

Control Points Control Point Vector Na RMSE RMSE

Three points

[
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0 47.5 95

]
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]
0.07% 0.08%

Figure 3b shows the estimation of the characteristic curve when using four points
cmin, c1, c2, and cmax. As can be seen in Figure 3b, the semi-empiric flow rate coefficient
Cva for Spline 2 changes with small increments until 52% opening of the spool as compared
to Spline 1 in the real model. After this point, the parameter Cva increases sharply towards
the maximum point cmax. The difference of the estimated curve from the real model’s
curve is indistinguishable. The RMSEs of these curves are given in Table 3. The relatively
complicated non-linear behaviours of the directional control valve can be estimated by
using five control points and six control points. This can be seen in Figure 3c,d. By using
the estimated characteristic curves, the working conditions of the directional control valve
can be predicted.
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0 3.3 6.6 10
0 31.6 63.3 95

]
0.05% 0.01%

Five points

[
0 2.5 5 7.5 10
0 23.7 47.5 71.2 95

]
0.06% 0.07%

Six points

[
0 2 4 6 8 10
0 19 38 57 76 95

]
0.07% 0.08%

Figure 3b shows the estimation of the characteristic curve when using four points
cmin, c1, c2, and cmax. As can be seen in Figure 3b, the semi-empiric flow rate coefficient
Cva for Spline 2 changes with small increments until 52% opening of the spool as compared
to Spline 1 in the real model. After this point, the parameter Cva increases sharply towards
the maximum point cmax. The difference of the estimated curve from the real model’s
curve is indistinguishable. The RMSEs of these curves are given in Table 3. The relatively
complicated non-linear behaviours of the directional control valve can be estimated by
using five control points and six control points. This can be seen in Figure 3c,d. By using
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the estimated characteristic curves, the working conditions of the directional control valve
can be predicted.

4.2. Convergence of the Vector Data Control Points

The convergence rate of the data control points in the parameter vector Cva is further
explained in Figure 5 to describe the estimation process. These plots demonstrate the
convergence rate of data control points in the case of Spline 2, as presented in Figure 3. For
instance (see Figure 5b), c1 and c2 converge towards the corresponding point on the curve
of the real model at 0.22 s. However, during the estimation process, c1 briefly becomes
negative, and shortly thereafter converges smoothly to the real model.
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Figure 5. Convergence of the control points in the vector Cva in the case of Spline 2. (a) Convergence
of c1 in the three-point estimation process. (b) Convergence of c1 and c2 in the four-point estimation
process. (c) Convergence of c1, c2, and c3 in the five-point estimation process. (d) Convergence of c1,
c2, c3, and c4 in the six-point estimation process.

The curves of Spline 2 change into an S-shape during the working cycle, as shown in
Figure 3c,d. In these cases, c2, c3, and c4 converge at different simulation times according
to the corresponding order in the vector Cva . Through the ADEKF algorithm, unknown
curves start converging within a range of 0 < t ≤ 0.3 s when using the three-, four-, five-,
and six-point estimation techniques.

4.3. Accuracy Requirements of State Estimations

The successful application of the parameter estimation algorithm requires the accurate
estimation of the system states x. To demonstrate this requirement, the errors in the
estimated actuator position s, estimated actuator velocity ṡ, estimated pump pressure pp,
estimated piston side pressure p1 , estimated piston-rod side pressure p2, and estimated
parameter Cva in the case of Spline 2 (described in Figure 3d) are shown in Figure 6. The
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errors in the estimated parameters kp and k0 are presented in Appendix B. The average of
the parameter vector Cva at each time step is considered in Figure 6.

The errors are computed from ±1.96σ. Here, σ is the standard deviation calculated from
the covariance matrix P+

k at each time step. These plots demonstrate the requirement of an
accurate estimation of the system’s states to estimate the system’s parameters. As can be seen
in Figure 6, the 95% confidence interval (CI) is used by the system states in the 5 s simulation
period. The errors in s, ṡ, pp, p1, and ṡ fluctuate in the confidence interval. As indicated earlier,
s, ṡ, and pp are measured in this example. The errors in the parameters Cva , kp, and k0 are
also in the CI, as can be seen in the corresponding plots. The key to the parameter estimation
is that the estimated system states should be in the 95% CI during the working cycle.
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Figure 6. Requirements for the accuracy in the system states for parameter estimation. (a) Error in
s with 95% CI. (b) Error in ṡ with 95% CI. (c) Error in pp with 95% CI. (d) Error in p1 with 95% CI.
(e) Error in p2 with 95% CI. (f) Error in parameter Cv with 95% CI.
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5. Conclusions

This work proposes the estimation of the parameters of a system by combining param-
eter estimation theories and curve-fitting methods. The ADEKF algorithm is introduced in
the framework of a B-spline curve-fitting method. Using the proposed algorithm, the pa-
rameters can be defined as a vector containing a set of data control points. This algorithm
is applied on a hydraulically driven four-bar mechanism to estimate the characteristic
curves of a directional control valve. The double-step semi-recursive formulation and
lumped fluid theories are used to model the four-bar mechanism and the hydraulic system,
respectively. The measurements taken from the real system include the actuator position,
pump pressure, and piston side pressure. The semi-empiric flow rate coefficient vector Cva

is defined with three to six data control points in order to define the characteristic curve of
the directional control valve.

The unknown non-linear nature of the characteristic curves of the directional control
valve are precisely estimated. The maximum RMSE observed in the estimation of the
characteristic curves is 0.08%. This implies that the characteristic curves are accurately
estimated. The data control points in the parameter vector Cva converge in the range
of 0 < t ≤ 0.3 s in these estimation cases. To account for the system’s response, the
estimation of the system’s state vector variables should be located in the 95% confidence
interval. By using the estimated characteristic curves, important information about the
discharge coefficient, pressure losses, and flow characteristics of the directional control
valve can be interpreted. With this valuable information, manufacturers and users can
monitor the condition of a system and make decisions about the repair and maintenance of
hydraulically driven systems.

Applying the parameter estimation algorithm in the real world by using a multibody-
based estimation model can enable the estimation of important parameters. This can be
challenging, as the estimation model might not be as accurate as the real world necessitates.
However, despite implementation challenges, the application of this parameter estimation
algorithm will provide an interesting area for manufacturers and researchers. Manufac-
turers can use these parameters in condition monitoring, repair and maintenance, and the
anticipation of product life cycles. With a product’s application history, important design
changes can be introduced in future designs of the product. This will ultimately lead to
more efficient MBS-based digital-twin applications through the use of real-time simulations
and more sustainable future products.
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Appendix A. The Estimation of the Curve Using Second-Order (Linear) B-Spline
Interpolation

When using second-order (linear) B-spline interpolation, the characteristic curves of
the directional control valve are not continuous, as shown in the Figure A1. Therefore, to
demonstrate the real-world application, it is recommended to use the third-order B-spline
or above.
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Figure A1. The estimation of the characteristic curve of the directional control valve by using
the ADEKF algorithm with second-order (linear) B-spline interpolation. (a) Three-point B-spline
estimation. (b) Four-point B-spline estimation. (c) Five-point B-spline estimation. (d) Six-point
B-spline estimation.

Appendix B. Estimation of the Pressure Flow Coefficient and the Flow Gain

The estimation of the pressure flow coefficient kp and the flow gain k0 in the case
example is represented below.
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Figure A2. Requirements for the accuracy in the system states for parameter estimation. (a) Error in
kp with 95% CI. (b) Error in k0 with 95% CI.
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The estimation of the pressure flow coefficient kp and the flow gain k0 in the case
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