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Abstract: Crowdsourcing is a new mode of value creation in which organizations leverage numerous
Internet users to accomplish tasks. However, because these workers have different backgrounds
and intentions, crowdsourcing suffers from quality concerns. In the literature, tracing the behavior
of workers is preferred over other methodologies such as consensus methods and gold standard
approaches. This paper proposes two novel models based on workers’ behavior for task classification.
These models newly benefit from time-series features and characteristics. The first model uses
multiple time-series features with a machine learning classifier. The second model converts time
series into images using the recurrent characteristic and applies a convolutional neural network
classifier. The proposed models surpass the current state of-the-art baselines in terms of performance.
In terms of accuracy, our feature-based model achieved 83.8%, whereas our convolutional neural
network model achieved 76.6%.

Keywords: annotation; crowdsourcing; classification; neural networks; quality control; time-series

1. Introduction

Crowdsourcing, a concept first coined by Howe [1], refers to numerous people being
involved in computing tasks to solve problems that are more difficult for computers than
humans. It is an alternative mechanism for solving such problems at a lower cost. Therefore,
many researchers have resorted to crowdsourcing as a preferable labeling choice in different
domains, such as natural language processing [2] and image labeling [3]. Moreover, many
researchers have incorporated crowdsourcing into studies on the COVID-19 pandemic [4],
disasters [5], fake news [6], and preprocessing for deep learning applications [7,8]. Such
studies leverage the availability of crowdsourcing platforms such as Amazon Mechanical
Turk (AMT), as well as the abundant ordinary Internet users (i.e., crowd workers) [9]. Due
to the heterogeneous nature of such workers, crowdsourcing is prone to quality concerns.

Crowd workers have different motivations, expertise, and backgrounds [10,11]. More-
over, human-specific factors (e.g., boredom, laziness, and inexperience), identity, and bias
are other sources of quality errors [12]. Notably, numerous crowd workers are untrust-
worthy [13]. The percentage of spammers among crowd workers could be as high as
50% [14]. Moreover, crowd workers may attempt to maximize their monetary rewards by
cheating using quick submission [15] or copy and pasting [16]. There are also sophisticated
spammers who can evade certain anti-cheating crowdsourcing tests [17]. Others such
as Sybil attackers can attack crowdsourcing tasks [17] using pseudo accounts to submit
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similar answers [18]. All of these problems can lead to deceptive results from such work-
ers or high variability in quality due to variance in their effort or skills. In 2016 at least
20 million adults in the U.S. earned money by working from crowdsourcing like those
found on Amazon Mechanical Turk (AMT), a number that is expected to rise with the
growth of AI [19]. Furthermore, crowdsourced data processing is performed at scale at
many tech companies, with tens of millions of dollars spent every year [20], so the quality
improvement is a critical issue for those companies [21]. To attain high-quality results
from crowdsourcing, various approaches have been proposed. A common technique is
to evaluate crowd workers’ output using gold standards [22–24]. Unfortunately, many
crowd workers may be rejected just due to bad luck on gold set questions. Moreover,
spammers are aware of the use of such questions. Another widely used approach involves
studying the relationship between crowd workers’ answers based on consensus methods
such as majority voting [25–28]. One limitation of such a method is the high costs due
to redundancy [29]. Moreover, such methods fail against collusion attacks by malicious
workers [18]. Another approach uses motivations such as reputation in advanced quality
measures [30].

An alternative way to cope with these problems is to study crowd workers’ behavior
rather than their output. Compared with gold standard and consensus methods, behavior-
based approaches can be generalized across tasks and do not only target closed questions.
Moreover, these approaches are free from the cold-start problem, and they do not require
workers’ historical annotation information.

Regrettably, only a few studies have targeted crowd workers’ behavior. Gadiraju
et al. [16] studied different workers’ behavior limited to online surveys. Hirth et al. [31]
examined different time aspects of worker behavior to find the most crucial features related
to worker qualifications. Rzeszotarski and Kittur [32] estimated the labeling quality and
accuracy of workers on different tasks based on task fingerprints and a set of statistical
behavior features. Similarly, Kazai and Zitouni [29] collected experts’ behavior and trained
a supervised classifier to detect poor crowd workers. However, none of these works
have shared their source code or dataset. Leveraging from the open source of [33], Goyal
et al. [34] are the only researchers who have shared their collected dataset. The present
study benefited from this dataset and works.

The contributions of this paper can be summarized as follows:

• It proposes novel time-series-based models in the field of crowdsourcing quality control.
• It introduces two new models with various experiments. The first was based on

time-series feature generation, showing the important features of crowd workers’
behavior. The other model was based on converting time series into heatmaps and then
leveraging from their recurring characteristics to classify the tasks of crowd workers.
The latter model establishes a baseline for research in the application of a lightweight
deep learning model in the field of crowdsourcing workers’ assessment control.

• The proposed models possess superior performance. We demonstrated that our
models outperform time-series state-of-the-art models such as dynamic time warping
(DTW) and time-series support vector classifier (TS-SVC), as well as leading research
works by Rzeszotarski and Kittur [32] and Goyal et al. [34].

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 describes the methodology and the proposed models. Section 4 illustrates
the experiment details and results as well as provides the discussion. Finally, Section 5
presents the conclusion and recommendations for future works.

2. Related Work

Generally, at least two types of approaches have been explored by researchers to
obtain high-quality data from crowd workers, traditional and behavior-tracing approaches.
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2.1. Traditional Approaches

In this line of research, quality control is applied to crowd workers’ responses. This
can be based on other independent human evaluators, who are employed to assess the
answers of other crowdsourcing workers [3]. Other studies have implemented consensus
algorithms, where multiple answers are gathered for each task. These answers are then
aggregated into the most likely answer or the so-called majority vote [35–37]. Unfortunately,
this approach can greatly inflate costs due to the needed redundancy [38]. Furthermore, it is
vulnerable to gaming, the majority effect, or at worst Sybil attacks [39]. Another traditional
approach is to use gold standard data for filtering workers [22–24,40]. These gold data can
be created by injecting a few ground truth labels from experts in rich crowd labeling [41] or
by gathering a set of experts [22]. These standard data can also be generated automatically
from just a few gold unit seeds [23]. A real-time system can evaluate crowd workers’
reliability using a collected reference set [24]. A shortcoming of such gold standard data is
that they are not always available or applicable in some generative tasks, such as tagging
and summarization. Both majority voting and gold data approaches assume that the
response spaces are structured (i.e., the tasks have closed questions).

Other researchers have applied social motivations such as reputation as a pre-quality
filtering approach. A social norm and welfare framework was simulated in [30] to mitigate
the “free-riding” problem in crowdsourcing. Such an approach entails the drawback of
evasion by malicious workers. Such workers can even acquire high reputation scores by
accepting tasks that are unlikely to be rejected [32].

2.2. Behavior Tracing Approaches

A different line of research is focused in tracing the behavior of crowd workers when
performing tasks. Kazai and Zitouni [29] stored experts’ behavior as behavior features (e.g.,
mouse movements, clicks, scrolls, and key-presses) of three different tasks. They applied
it to training a gradient boosted decision tree classifier to detect poor crowd workers.
Rzeszotarski and Kittur [32] proposed a task fingerprinting prototype that was mainly
based on the recording of sequential logs of interface events. They collected statistical
features related to time and browsing events, and then applied the prototype in different
tasks and investigated decision trees to classify passing versus failing workers. Both of
the aforementioned studies applied or necessitated expert behavioral data, which are
difficult and costly to acquire in practice. In [31], the authors developed and applied the
behavior approach of application layer monitoring. They studied three time aspects (i.e.,
completion, working phases, and consideration) using very fine-grained interaction level
features to feed a support vector machine. One of their main findings was that a robust
correlation existed between task interaction time and workers’ qualifications. They focused
only on time features and neglected other behavior features. A visualization tool called
CrowdScape was introduced in [42]. The researchers visualized both worker behavior and
output information. They traced workers by analyzing and showing a highly granular
user interface interaction level such as mouse movements, clicks, and focus changes. An
analysis of search engine result pages was presented in [43], which studied the behavior of
the assessors working on these pages. The authors defined different patterns based on time
analysis and ratings accordingly and reported the possibilities of cheating and noncheating
behaviors according to those patterns. Another work [16] was limited to an online survey,
and collected data from two pre-defined workers. They presented five different groups
of workers differentiated by their behavior. Restricted to a questionnaire, the researchers
in [10] studied behavior in terms of five personality traits and observations of workers’
interactions with some task parameters, and defined another five types of workers.

A recent study [34] leveraged from [29,32] to generate richer behavior features investi-
gated the feasibility of using these features of crowd workers for classifying the correctness
of labels and predicting the labeling accuracy of workers. They applied a random forest
classifier and a k-means clustering classifier for transforming sequence-like features. Next,
they combined the random forest classifier with a co-training supervised naïve Bayes model
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for the sequence features. Lastly, some crowdsourcing quality research has focused on the
consistency behavior of crowd workers, such [44,45]. Different from the aforementioned
studies, the present study aimed to enrich the research by manipulating data as time-series
data. This new angle of data manipulation will create opportunities for enhancing the
performance of machine learning (ML) models, either by feeding ML models with spacious
features as in our feature-based model or by leveraging deep learning models as in our
second image-convolutional neural network (image-CNN) model.

3. Method and Materials
3.1. Dataset

To evaluate the performance of the proposed models against baselines and for ex-
perimental evaluation, we used the public dataset by Goyal et al. [34]. Its behavior data
include 3984 HIT records. The data used for crowdsourcing tasks were collected from the
2014 NIST TREC Web Track.1. AMT workers were asked with judging the relevance of
documents on 50 predefined topics. The judgment scale for those HITs was multiscale.
For our experiments, we used a binary scale; that is, each record was either labeled as 1
if the worker correctly answered the task or 0 if he or she did not. The behavior features
of these workers during their annotation were collected. The features were action-based,
such as mouse movement, clicking, and scrolling, as well as time-based, such as total time
and dwell time. We focused on action-based and converted them into time-series–based
features as we will describe later.

3.2. Proposed Models

Human intelligent tasks (HITs) are tasks performed by crowd workers in crowdsourc-
ing markets. For each HIT, the browsing behavior events of the worker are recorded. In
our methodology, these browsing events were: e ∈ {mouse movement, key click, focus
change, scroll, paste} [34].

In general, time series can be sampled regularly or irregularly through time and can
therefore be represented as a vector of time stamps ti , and associated measurements xi.
Let the sampling times be t0, t1, . . . , tn satisfying 0 < t0 < . . . < tn. If the time points are
equally spaced, that is, (ti+1− ti = ∆ for all i = 0, . . . , n− 1 where ∆ > 0 is some constant)
then the time series is regularly sampled; otherwise, it is an irregularly sampled time series.

In our case, the timestamps of the samples were not equally spaced, which meant that
our samples were irregularly sampled time series. For each sample, the representation is an
ordered vector of events x = {x1, x2, . . . , xn} with n measurements, where the associated
measurement xi is the time at which the associated browsing action occurred. The HIT
vectors have variable lengths depending on the number of actions a worker performed
for each HIT. Finally, our two models were based on the manipulation of these samples
as irregular time-series-like data. For example, consider a simple HIT log listing four
browsing events over a 30-s period: ((t = 0, mouse-move), (t = 8, click), (t = 19, focus-
change), (t = 30, click)). We recorded such an example as time-series data. This simple
HIT is represented as vector = {0, 8, 19, 30}; such vectors are the input samples for our two
models, namely the feature-based model and the image-CNN model.

Figure 1 depicts the two proposed models. First, the browsing behaviors of the crowd
workers are captured as sets of events ∈ e. Then, the timestamps of these events are
stored for each HIT as time-series samples. These time-series are the inputs for both
models. Whereas the feature-based model receives these samples as time-series features
and uses an ML model, the image-CNN model receives them as sets of recurrence plot
(RP) images/heatmaps. Finally, for both models, the output is a binary class that predicts
whether the worker will label the HIT correctly or incorrectly.
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3.2.1. Feature-Based Model

In this model, we used feature generation and selection approaches to enhance the
ML performance. Leveraging from transformed time-series samples, we generated a huge
number of features to train ML models. Then, we selected and shed light on those features
that remarkably enhanced the ML models’ performance and the most important features.

Feature Generation

For each time-series sample (workers’ HIT browsing behavior), we generated a set of
global time-series features [46] (such as measures of its trend, entropy, and distribution).
Then, we applied an ML classifier using these features to classify the samples (HITs). Global
features of the time-series samples refer to algorithms that quantify patterns in time series
across the full sample (rather than capturing subsequences). These global features are
divided into different categories, which are described in the following four subsections.

• Statistical:

In this category, there are some simple statistical features, such as mean, median,
variance, standard deviation, and sets of quantiles (where a quantile determines how
many values in a distribution are above or below a certain limit). Others include count
below the mean and ratio beyond sigma. Other more advanced features such as skewness
and kurtosis are measures that define how far the distribution differs from a normal
distribution. Another one is Benford correlation, which is a correlation resulting from the
Newcomb-Benford’s Law distribution [47].

• Transformed:

This category contains two popular transformations. The first is the generation of
Fourier transform coefficients. We generated the Fourier coefficients of one-dimensional dis-
crete Fourier transform for real input using the fast Fourier transformation (FFT) algorithm
as follows:

Ak =
n−1

∑
m=0

ame(−2πi mk
n ), k = 0, . . . , n (1)

where A is the returned coefficients and a is the time series. Furthermore, we leveraged FFT
to extract statistical features of the absolute Fourier transform spectrum, such as spectral
centroid (mean), variance, skew, and kurtosis. The second transformation is continuous
wavelet transformation (CWT). We applied Mexican hat wavelet [48], which is the negative
normalized second derivative of a Gaussian function:

ψ(x) =
2

π
1
4
√

3σ

(
x2

σ2 − 1
)

e(
−x2

2σ2 ) (2)
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where σ is the width parameter of the wavelet function ψ.

• Information theory/entropy:

Different entropy measures were generated, such as sample and approximate en-
tropy [49] and permutation entropy [50]. Other entropy measures were generated from the
transformed one such as the binned entropy of the FFT.

• Time-series-related/others:

We also generated simple features related to the time-series, such as the sum, length,
maximum, and minimum. Other specific time-series features were generated, including
absolute energy, which is the sum over the squared values of the samples; energy ratio
by chunks, which is the sum of squares or chunk i out of N chunks, and it is a ratio over
the whole series; complexity estimation, which estimates how complex the time series
is (e.g., whether it has more peaks or valleys); and symmetry, which checks whether the
distribution of the sample is symmetrical.

Feature Selection/Reduction

Many features from the previous step have many sub-features. For example, there
are nine quantiles and many coefficients for CWT and FFT, and many Fourier entropy
bins. For each event e, there are approximately hundreds of generated features. As
a result, the number of features returned from the generation step is huge. Therefore,
we applied a feature selection/reduction approach to shed light on the most important
features, and those remarkable features enhanced the ML models’ performance. We
selected the extremely randomized trees classifier (ExtraTreeClassifier) for the feature
selection/reduction. In our case, the HIT events in terms of time stamps were the vector
samples. These samples were the input feature for this approach. The tsfresh [51] module
was used for feature generation. In this step, the number of features generated was
enormous. There were 3896 features, including the features in the section above, as well as
others. These features were divided into training and testing sets for training a random
forest (RF) model. Moreover, due to the huge number of features generated, we applied a
feature selection approach to find the important features that mainly affect the ML model;
then, we shed light on the most important features. We applied the ExtraTreesClassifier [52]
for feature selection and then trained and tested the same RF model using these resulting
features. We experimented with different thresholds for this step and investigated how
they would affect the performance of the model. The list of 78 important features that
returned from a mean threshold are shown in Table A1 at Appendix A.

3.2.2. Image-CNN Model

In this model, we first converted the input time-series data into other behavior recur-
rent samples and then used the CNN model to train and test the new samples.

Recurrence Plot

Time series can be characterized by a featured recurrent behavior such as irregular
periodicities. The recurrence plot (RP) is a famous tool for studying and visualizing such
behaviors. It provides a graphical representation of the recurrent patterns in time-series
signals. Eckmann et al. [53] proposed the RP as a matrix of pairwise recurrences of phase-
space states. For a given trajectory

→
xi = (i = 1, 2, 3, . . . , N) and xi ∈ Rm, the RP is defined

as follows:
Ri,j = H

(
ε− ||→xi −

→
xj ||

)
, i, j = 1, . . . , N (3)

where H(·) is the Heaviside function, ||·|| is the norm, and ε is a distance threshold.
Basically, Ri,j ≡ 1 if time i recurs to a former (or later) state at j, and Ri,j ≡ 0 otherwise. In
our case, we used a gray level instead of binarization to preserve much information (i.e., to
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which level xj is close to xi)). The distance between two states ||→xi −
→
xj || was calculated

using the Euclidean distance:

D
(

xi, xj
)
=

m

∑
k=1

√(
xik − xjk

)2
) , m = 2 (4)

Regarding ε, we ignored the distance threshold.
After calculating the distances, the recurrence matrices were stored as gray-level

images (heatmaps) to be inputs for the model.

CNN Model

Compared with traditional ML methods, deep learning (DL) recently achieved great
success in many computer science fields. CNNs are one of the most popular DL models.
CNNs have achieved excellent performance in the image classification field [50]. We used
a CNN to classify the images formed from the RP step as introduced in [51]. We used
an enhancement of the model by concatenating the feature outputs from the CNN with
auxiliary features to optimize the classifier. The details of CNN model are as follows.

The input to our network is an observation set D = {Ii, yi; i = 1, . . . , N} containing
N instances of Ii ∈ Rd (gray-scale image as the d-dimensional vector, d = 2 and number
of channels = 1) with corresponding labels yi ∈ C (i.e., C{0, 1} for binary classification)
annotated by the workers. The goal is to learn the CNN model, represented by f : I → Y ,
from the labels that generalized well on unseen data:

p̂ = f (I, y; θ) (5)

where p̂ is the predicted label for an unseen image x, and θ is the learned model parameter.
The 2D convolution layer has the images I masked by a kernel K as follows:

(K ∗ I)(i, j) = ∑
m,n

K(m, n)I(i + n, j + m) (6)

where i, j are dimensions of the image and m, n are dimensions of the kernel.
Now, we consider a kernel K of size k× k, and x is a k× k patch of the image. The

activation is obtained by sliding the k× k window and computing

z(x) = ϕ(K ∗ x + b) (7)

where b is a bias and ϕ is the activation function. The rectified linear unit (ReLU) [54] is
used as follows:

ϕ(x) = max(x, 0) (8)

Then, a sub-sampling is used by adding a pooling layer (MaxPooling). After that, the
flattening of the output is concatenated with a set of auxiliary features that are entered in
two layers. These layers are the multilayer perceptron (or neural network). First, the fully
connected hidden layer is followed by the output layer as follows.

For L = 1 (hidden layer):

aL(x) = WLhL−1(x) + bL (9)

hL(x) = δ
(

aL(x)
)

(10)

For L = L + 1 (output layer):

aL+1(x) = WL+1hL(x) + bL+1 (11)

hL+1(x) = ψ
(

aL+1(x)
)

:= p̂ = f (I, θ) (12)
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where h0(x) = z(x) that was calculated in (7); W is the weight vector wg =
(

wg,1, . . . , wg,d

)
;

and δ is the ReLU activation function for the fully connected layer. Finally, ψ is the acti-
vation function of the output layer, which is Sigmoid, and its output is the classification
label p.

At each step, WL is a matrix for which the number of rows is the number of neurons
(features x) in layer L and the number of columns is the number of neurons in layer +1.
Regarding the architecture of our model, we defined the startup architecture and then
we optimized it by tuning different hyper-parameters. The CNN model had one input
channel of size 32 × 32, which represents the height and width of the gray images (the
reason being that the time-series data had variable length, the longest sample being 128
and the smallest being 28; the average length was 32, so we selected the average length).
These images were generated from RP mapping; 3985 samples were converted into gray
images with variable dimensions. All were resized to the fixed 32 × 32 dimensions. The
number of filters was 32; these filters had a 3 × 3 window size. Regarding the activation
function, ReLU Equation (8) was implemented. The model had a subsampling step using
the MaxPooling layer. To prevent the model from overfitting, a dropout with a 0.2 rate
value was used. The model was flattened after that to enable the concatenation with
auxiliary features. These auxiliary features were used to enhance our CNN model. They
are shown in Table 1 (adapted from [32,34]). A fully connected layer with 64 neurons was
used, followed by another dropout with a 0.5 rate. The last layer in the model is a single
neuron with sigmoid activation to classify the images into two classes. For learning, we
applied the Adam optimizer [55]. Binary cross entropy was used as the loss function. The
number of epochs started with 200 and a batch size of 25. The validation ratio was 20% of
the data.

Table 1. The auxiliary features for image-CNN model.

Feature Name Type Feature Description

total_mouse_movements

Action-based

The total number of mouse movements.

total_scrolled_pixels _vertical The total number of scrolled pixels.

total_clicks The total number of mouse clicks.

total_keypresses The total number of keyboard pressing.

total_pastes The total number of pastes.

total_focus_changes The total number of focusing changes.

total_pixels The total number of pixels movements in x/y directions.

total_task_time

Time-based

The total time of completing the HIT.

total_on_foucs_time The total time that was spent completing the HIT.

recorded_time_disparity Difference between the total time and the time spent outside the HIT.

avg_dwell_time Average time between two successive logged events.

For added details, we now describe the output dimensions of the layers. We have
image I with dimensions of 32× 32, one channel C (grayscale), and a filter size of 3× 3.
The default stride s of filter movement was 1. Furthermore, the convolution padding p
was zero.

The convolution output dimension = [((I − K) + 2× p)/s] + 1× C (13)

Therefore, the output dimension = 30× 30× 1. This was put into the pooling layer. In
the MaxPooling2D layer in Keras, the default stride equals the pooling size, and our pooling
size was 2× 2; thus, s = 2. Using Equation (13) again, [((30− 2) + 2× 0)/2] + 1× 1 = 15 .
Consequently, the pooling output dimension = 15× 15× 1, and we had 32 filters, so the
number of features was 15× 15× 32 = 7200. These features, concatenated with 11 auxiliary
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features, give the total number of features—7211. This means that WL in Equation (13) has
dimensions of 7211× 64, namely the features multiplied by the number of neurons of the
fully connected layer. The last sigmoid layer produces a label of either 0 or 1. The detailed
architecture of this model is presented in Figure 2.
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4. Experimental Results and Evaluation
4.1. Experimental Results
4.1.1. Evaluation Metrics

To evaluate the classification, we adopted accuracy as the comparison evaluation
metric. Moreover, since the dataset had imbalance classes, we used the area under the
curve (AUC) of the receiver operating characteristics (ROC) curve scores.

4.1.2. Features-Based Model

• Parameters tuning:

One of the most common techniques for hyperparameters tuning in machine learning
models is cross-validation (CV) using k number of folds. Random forests are not an
exception. So, we first tuned the model hyperparameters using 10-fold CV to ensure
that the model train and test 10 different data samples. We then calculated the average
performance of these divided data samples. We further tuned the hyperparameters by
randomizing search of optimized parameters. We defined a grid of hyperparameter ranges
and random samples from the grid, performing 10-fold CV with each combination of values.
We tuned different parameters using this method and the results were: no bootstrapping, no
maximum depth, 131 features as maximum number, 7 minimum number of samples split,
and 408 estimators. This optimization improved the performance for feature generation
model by 1.7% in terms of accuracy and by non-noticeable improvement for AUC-ROC.
Approximately, the feature selection model enhanced accuracy by 1% and it seems like the
first model in terms of AUC-ROC.

• Feature generation and selection:

For the first model, 3896 features were generated. Therefore, we used ExtraTreesClas-
sifier for feature selection and to demonstrate the important features from among the
numerous features. Using ExtraTreesClassifier, we retrieved the importance of each feature.
The importance represents the mean decrease in the Gini-impurity. Mean decrease in Gini
is a famous measure of variable importance for estimating a target variable in decision
trees, random forests, ExtraTrees models. The variable is the feature, and the target is the
class. Different means of importance of all features are considered as importance thresh-
olds. The higher the number, the more important the feature. Moreover, we used different
thresholds to show how many important features were reduced by the model, as well as the
accuracy and AUC-ROC score for each threshold. The thresholds are different means of the
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importance threshold that resulted from the ExtraTreesClassifier, as presented in Table 2. It
reveals that both the accuracy and AUC-ROC fluctuated between 83% and 80% until the
number of features reached 41, when they began to decrease to approximately 78%.

Table 2. Accuracy and AUC-ROC for features vs. different importance thresholds.

Importance
Threshold

(Log10)

Mean/18

−11.156

Mean/9

−10.463

Mean/3

−9.365

Mean

−8.266

Mean × 3

−7.1678

Mean × 9

−6.061

Mean × 18

−4.970

No. of features 1629 1158 984 770 377 78 41

Accuracy 82.9 83.3 83.1 82.1 82.8 80.6 78.2

AUC-ROC 81.1 81.3 80.9 82.0 81.1 80.8 79.1

4.1.3. Image-CNN Model

• Parameter tuning:

In this subsection, we outline the results of our CNN model using various hyper-
parameters. Since the learning rate is one of the most important hyper-parameters to
tune for training deep neural networks, we implemented an experiment to select the most
suitable learning rate. We fixed the number of epochs to 300 and the dropout rate for the
convolutional layer and dense layer to 0.5 and 0.25, respectively; consequently, the batch
size was set to 50. Leveraging from [56], we set the learning rate range as base_lr = 0.1 and
max_lr = 10−6. We started from a low learning rate and increased it exponentially for every
batch using the step size, which we set to step_size = 20.

As Figure 3 shows, there was a continuous decrease until reaching a stable state. The
point of stability estimates the most suitable learning rate. We approximated it as 10−4.
We fixed this learning rate for all subsequent hyper-parameters experiments. Regarding
the number of epochs, we experimented with the training/validation loss and accuracy
against 300 epochs, as shown in Figure 4. We found that at approximately 150 epochs, the
validation accuracy and loss started to be fixed. This meant that the model started to be
stable around 150 epochs and it seemed to enter in overfitting just after that. Therefore, we
fixed the number of epochs to 150 for the following experiments.
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Therefore, our initial hyper-parameters were as follows: learning rate: 10−4, epochs:
150, input dimensions 32 × 32, and dropout rates for the convolutional layer and dense
layer = 0.5 and 0.25, respectively. Table 3 presents the use of different hyper-parameters and
the corresponding training, validation accuracy, and loss. We selected the best validation
accuracy and loss for fixing the hyper-parameters and then started to tune the next one.
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Table 3. Hyper-parameter tuning.

Hyper-Parameter Training Accuracy Validation Accuracy Training Loss Validation Loss

Batch size Learning rate: 10−4, Epochs: 150, Input Dimensions 32 × 32, dropout rate for conv. layer and dense layer = 0.5 and
0.25, respectively.

25 0.8050 0.7633 0.4446 0.6291

50 0.7956 0.7712 0.4786 0.5475

75 0.7827 0.7539 0.4988 0.5517

Dropout rate (for the Conv.
layer) Batch size: 50, Learning rate: 10−4, Epochs: 150, Input Dimensions 32 × 32, dropout rate dense layer: 0.25.

0.25 0.7485 0.7649 0.5225 0.5264

0.50 0.7587 0.7367 0.5306 0.5505

0.75 0.7254 0.7179 0.5523 0.5826

Dropout rate (for the
Dense layer) Dropout rate: Conv. layer: 0.25, Batch size: 50, Learning rate: 10−4, Epochs: 150, Input Dimensions 32 × 32

0.25 0.8054 0.7821 0.4551 0.5423

0.50 0.7391 0.7680 0.5495 0.5236

0.75 0.6865 0.6959 0.6121 0.6059

Image Input dimensions Dropout rate: Conv. layer: 0.25, Batch size: 50, Learning rate: 10−4, Epochs: 150

32 × 32 0.7705 0.7837 0.4987 0.5080

56 × 56 0.8195 0.7382 0.4271 0.5778

28 × 28 0.7991 0.7649 0.4695 0.5408

First, we used batch sizes of 25, 50, and 75 and found that the optimal validation
accuracy and loss were achieved with a batch size of 50. Second, for the convolutional
layer, we used dropout rates of 0.25, 0.50, and 0.75. We noticed that the model attained the
optimal validation accuracy and loss with the 0.25 dropout rate. The same was found with
the fully connected layer where the 0.25 dropout rate achieved the best results. Finally,
we tried some different dimensions for the images, namely 56 × 56, 28 × 28, and 32 × 32,
as recommended in [57]. Regarding the training, validation loss, and accuracy across the
epochs, since we conducted a k-folding experiment with k = 10, we only present two folds
(the third and eighth epochs) in Figure 5.
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4.1.4. Baselines

The proposed models’ performances were compared with different baselines using
the dataset of Goyal et al. [34]. The first baseline was a decision tree with aggregate features
(DT-AF) classifier, which is a classifier model from Rzeszotarski and Kittur [32]. It uses
behavior features in addition to updated aggregated behavior features of Goyal et al. [34].
The second baseline was a random forest [58] with the same aggregate features (RF-AF)
classifier, which was a generalization of the DT-AF classifier. We applied some optimization
for these two baselines like the parameters tuning in Section 4.1.2. Same parameters for
RF-AF with our feature-based models, which are random forest algorithms. However, we
tuned the parameters less with DT-AF since decision trees had fewer parameters to be
tuned. In spite of that, DT-AF had noticeable enhancement compared to no improvement
for RF-AF.

The third and fourth baselines were popular classifiers in time-series field. The third
was k-nearest neighbor classifier using dynamic time warping (DTW) as a distance measure.
This classifier has received enduring interest and been shown to be effective for time-series
classification [59]. DWT is a popular comparison algorithm in time-series analysis that
finds an optimal alignment between two given (time-dependent) sequences under certain
restrictions [60], rather than measuring similarity or dis-similarity between two input times
series using Euclidian distance between the corresponding points of the inputs. DTW is a
very robust method to compare them using a sliding window instead of pair comparison.
This is to ignore any phase shifts and speed between the inputs. We consider this simple
approach, since it often produces better results than more complex classifiers [61].

The fourth and final baseline was a support vector classifier SVC for the time series
data (TS-SVC). Support vector classifier (SVC) is an algorithm that searches for the opti-
mal separating surface between classes using hyperplane. When there is a non-linearity
relation between the data, such as in our case, SVC needs to apply a suitable kernel. In the
domains that frequently use time-series data such as bioinformatics, there is increasing
domain-kernels usage [62]. We applied SVC with such time-series called global alignment
kernel [63]. This kernel implements a maximum smoothed DTW score across all possible
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alignments between the two compared time-series samples. TS-SVCs are promising meth-
ods for predicting different time-series domains such as financial [64] or biomedicine [65].
No dedicated optimization is applied for these models. We tried some parameter tuning
like the number of neighbors, but no noticeable enhancement occurred. This, unfortunately,
came with a large increase in time complexity.

4.1.5. Parameters and Software

For the DT-AF baseline, we used the default settings. For the RF-AF model, we used
an ensemble of 100 trees in the forest. We used the scikit-learn module [66] for these
baselines. For DTW, we used two neighbors for distance calculations. For both the DTW
and TS-SVC baselines, we implemented the corresponding Tslearn [67] libraries. For the
division of data, we used 10-fold cross-validation and the test size was 20% for all models.
The experiments were conducted on a machine with the following criteria: a GeForce GTX
980 GPU with 47 GB RAM, using Python 3.8 and Keras API in the Ubuntu 20.04 operating
system.4.2.6. Comparison with baselines:

In this subsection, we present the classification metrics and results of the proposed
methods and baselines. Our models achieved optimal accuracy. The two feature-based
models attained accuracies of 83.8% and 81.8%, followed by the image-CNN model, which
attained 76.6%. Furthermore, in terms of AUC-ROC, the two feature-based models won,
achieving accuracies of 82% and 80.9%, followed by the image-CNN model, which achieved
72.3%. We believe that the image-CNN model was able to achieve better results; however,
the number of samples was small, and such CNN deep networks require a huge amount of
data. For DTW, we only used two neighbors since any increase in neighbors would increase
the time complexity of the model without any noticeable enhancement in performance.
TS-SVC had the same time complexity challenge, and the same observations were noted;
specifically, any increase in the comparison numbers led to increased quadratic time
complexity without a remarkable improvement in the results. Table 4 presents the results
of the performance comparison against baselines in terms of accuracy and AUC-ROC with
an average 10-fold cross-validation.

Table 4. Performance comparison against baselines.

Baseline\Performance Metric Accuracy AUC-ROC

DT_AF [32,34] 65.2 52.1
RF_AF [34] 66.6 53.0

DTW 65.0 50.0
TS-SVC 68.2 49.5

Feature-based model 83.8 82.0
Feature-based with reduction (avg. thresholds) 81.8 80.9

Image-CNN based model 76.6 72.3

5. General Discussion
5.1. Feature-Based Models

The feature-based models achieved superior performance over analogous models
such as [32,34]. A significant factor is the large number of features generated from our
time-series transformation. Rather than having around twenty features in the baselines,
our model has around 4k features in the first feature-based model and 41 features for the
worst performance of the second model. The results showed that the feature-based models
classified the workers well when their browsing events in HITs were captured as time-series
samples. This gives the indication about the good consideration of crowd behavior as a
time-series representation. Regarding the optimization of these models, we found that
cross validation with main hyperparameter tuning raised the performance around 2%. This
is a fine percentage. However, we did not expect more noticeable improvement for further
optimization. These models have limited options in the optimizations. Regarding the most
important features affecting the performance, as Appendix A shows, the majority were



Sensors 2021, 21, 5007 14 of 20

related to either mouse movement or focus change events. Mouse movement was the most
significant event followed by focus change and then key clicks. In addition, scrolling and
paste events seemed not to exhibit any noticeable enhancement in the ML models. This
seems reasonable, since the workers in the HIT used more mouse movements than other
events. The focus change gives a good indication about the intention of the workers to
do a good work. Generally, among 78 features, we found that 41 features were related to
mouse movement, followed by 20 related to focus change and only 16 related to key clicks.
In particular, significant features were the transformed ones such as the CWT and FFT
coefficients for both focus change and mouse movement. In addition, large sets of quantiles
had significant impacts in the ML models. Other statistics such as mouse movement and
focus change maximum, minimum, and mean were also important. This indicated that the
statistical features of mouse movement and focus change remarkably affected the classifier
performance. Mouse movement absolute energy and energy ratio by chunks were other
important features. Moreover, especially for mouse movement, approximate entropy was
returned as an important feature. This could be reasonable since approximate entropy is
designed to work for small data samples (n < 50 points) [68], and we had n = 32.

5.2. Image-CNN Model

Differently, we selected a new model in this research scope compared to saturated
ones such as random forest, decision trees [29,32,34]. Our image-CNN model archived
comparable performance results despite the small number of behavior traces. Such shortage
in data samples does not yield competitive performance using such neural networks
models [34]. Therefore, one of the factors of such performance is the transformation of
the numeric data into heatmap images. CNN is the most widely used deep learning
model in the areas of image processing [69]. Many researchers used variations of CNNs
for image classification and achieved superior performance such as [70–72]. Another
factor is the intensive optimization for this model. We deepened the optimization in
this model to enhance the performance because such models are rare/nonexistent in the
research of classifying crowdsourcing workers using their behavior. This model presents a
prospective beginning for further research on neural models such as deep CNN and long
short-term memory (LSTM) models. For the optimization we implemented hyperparameter
optimization HPO [73]. It consists in fixing the various hyperparameters of the model. We
optimized global hyperparameters like learning rate, epochs, and regularization parameters
such as dropout rates. We started the tuning from the learning rate since it is one of the
most important factors [56]. Then, we gradually tuned other significance hyperparameter
like number of epochs, batch size, dropout rate, and dimensions. The accuracy and loss
monitoring are the key for such tuning. In terms of the number of epochs and the dropout
rate, overfitting was alarming. We selected 150 epochs and dropout rates as 0.25 in both
layers since other values for epochs and dropout rates led to overfitting. Regarding the
image dimension, as expected, 32 × 32 provided the best results since it was equal to our
average time-series sample length, which is 32.

5.3. Baselines

The baselines are of two types: (a) state-of-the-art models such as dynamic time warp-
ing (DTW) and time-series support vector classifier (TS-SVC). (b) Leading research works
by Rzeszotarski and Kittur [32] and Goyal et al. [34]. Regarding their optimizations, for
both DT-AF and RF-AF, in terms of accuracy, only DT-AF model achieved considerable
enhancement. It reached the performance adjacent to RF-AF model. This could be inter-
preted based on the small number of features. A small number of features did not result in
any performance disparity between decision trees and random forests. However, decision
trees needed some more optimization. RF-AF model did not achieve any noticeable en-
hancement. In terms of AUC-ROC, there was no enhancement for either model. Even after
optimizations, DT-AF and RF-AF models still achieved lower performance compared to the
proposed models. Alternatively, we did not make any considerable optimizations for DTW
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or TS-SVC models. For DTW, we only used two neighbors since any increase in neighbors
would increase the time complexity of the model without any noticeable enhancement in
performance. TS-SVC had the same time complexity challenge, and the same observations
were noted; specifically, any increase in the comparison numbers led to increased quadratic
time complexity without a remarkable improvement in the results.

6. Conclusions

In this study, two new models were proposed to deal with the quality problems related
to crowdsourcing. These models depended on time-series data. These data represented
the browsing behavior of crowd workers. Each model dealt with the data differently. The
feature-based model generated a huge number of features that fed an ML classifier. The
richness of the features enhanced the classifier’s performance. Our experiments shed light
on which features were the most important, and, consequently, on the remarkable browsing
events that determine crowdsourced work quality. The image-CNN model gathered the
time-series data as recurrent heatmaps and fed a CNN model. The two models provided a
classification for HITs that predicted whether a HIT would be performed correctly by a
worker based on his or her browsing behavior. Both models significantly outperformed the
state-of-the-art and leading classifiers.

There are some limitations in our work. The training data are limited in this study
regarding models such as image-CNN model. The performance of new promising AI
approaches, such as deep learning, is strongly correlated with the amount of training
data available. Therefore, further research is needed to exploit larger training data. This
could be carried out either by creating an extensive dataset and then using this dataset
as time series with recent models such as LSTM, or, alternatively, by implementing data
augmentation for the generated recurrent images in this study. Undoubtedly, this will
enhance the CNN performance, specially with extending the CNN model into deep CNN
with more deep layers and more hyperparameter tuning. Another limitation is the trans-
formation into irregular time series samples. Although the performance of the proposed
models is noteworthy, having a likely regular time series sample will enhance the models
remarkably. Therefore, in future work, we plan to resample time-series using different
techniques. Rather than primitive methods such as shifting and imputing, we will exploit
more advanced resampling approaches such as periodic identification [74] and causality
analysis [75]. One more limitation is the performance of DTW and TS-SVC models. We did
not perform an optimization for these models due to the time complexity of such models.
However, a window of further research is possible using Faster DWT algorithms [76]
similar to [77]. This will feasibly optimize these time series models.
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Appendix A

In this appendix, we present the details of the features that result from the feature
selection stage of the feature-based model at Table A1.

Table A1. The features of the feature-based model.

Feature Name Feature Description Action Name Importance
Order Parameters

Continuous Wavelet
Transform coefficients

The Continuous Wavelet Transform for the Mexican
hat wavelet

MMT *

1 1st Coefficient width 2

8 1st Coefficient width 5

15 1st Coefficient width 10

18 1st Coefficient width 20

63 2nd Coefficient width 5

68 2nd Coefficient width 20

71 2nd Coefficient width 10

72 2nd Coefficient width 2

FCT *

28 1st Coefficient width 10

33 1st Coefficient width 2

36 1st Coefficient width 20

38 1st Coefficient width 5

CST *

64 1st Coefficient width 2

66 1st Coefficient width 10

77 1st Coefficient width 5

Quantile The q quantile of the sample (10 quantiles)

MMT

2 The 9th quantile

6 The 1st quantile

7 The 2nd quantile

9 The 3rd quantile

10 The 6th quantile

11 The 7th quantile

12 The 8th quantile

14 The 4th quantile

78 The 5th quantile

FCT

22 The 1st quantile

23 The 9th quantile

25 The 8th quantile

26 The 4th quantile

27 The 6th quantile

29 The 7th quantile

32 The 3rd quantile

34 The 2nd quantile

CST

48 The 9th quantile

52 The 8th quantile

57 The 4th quantile

59 The 2nd quantile

73 The 6th quantile

74 The 7th quantile

75 The 1st quantile

Fast Fourier Transform
coefficient

The fourier coefficients of the one-dimensional discrete
Fourier Transform

MMT

16 Real 1st coefficient

17 Absolute 1st coefficient

76 Absolute 2nd coefficient

FCT
30 Absolute 1st coefficient

35 Real 1st coefficient

Sum values The sum over the sample values MMT 19

FCT 37
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Table A1. Cont.

Feature Name Feature Description Action Name Importance
Order Parameters

Benford correlation The correlation resulted from the Newcomb-Benford’s
Law distribution

MMT 39

FCT 40

CST 56

Absolute energy The absolute energy of the sample which is the sum
over the squared values MMT 41

Energy ratio by chunks
The sum of squares of chunk i out of N chunks

expressed as a ratio with the sum of squares over the
whole series. (10 segments)

MMT
43 First segment

42 Second segment

Fast Fourier Transform
aggregated

The spectral centroid (mean), variance, skew, and
kurtosis of the absolute fourier transform spectrum. MMT

44 Centroid

61 Variance

Change quantiles
The average, absolute value of consecutive changes of
the series x inside the corridor of quantiles q-low and

q-high.
MMT

45

Mean without absolute
difference of (the higher
quantile and the lower

quantile)

55

Mean with absolute
difference of (the higher
quantile and the lower

quantile)

Variation coefficient The variation coefficient (standard error/mean, give
relative value of variation around mean) of x MMT 46

Mean absolute change The mean over the absolute differences between
subsequent sample values MMT 47

Mean change The mean over the differences between subsequent
sample values. MMT 49

Linear trend
The linear least-squares regression for the values of the

sample versus the sequence from 0 to length of the
sample minus one.

MMT
50 Slope

60 Intercept

Complexity Estimator The estimation for a sample complexity (A more
complex sample has more peaks, valleys etc.). MMT 53 Without normalization

Standard deviation The standard deviation of the sample x. MMT 69

Absolute sum of changes The sum over the absolute value of consecutive
changes in the series x. MMT 62

Maximum The largest value of the sample x.

MMT 3

FCT 20

CST 70

Minimum The smallest value of the sample x.

MMT 4

FCT 21

CST 58

Mean The mean of the sample x

MMT 5

FCT 24

CST 54

Median The median of the sample x

MMT 13

FCT 31

CST 65

* MMT: Mouse Movement Time, FCT: Focus Changes Time, CST: Clicks Specific Time.
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